User login

Navigation

You are here

blogs

Zhigang Suo's picture

Lecture 6 Channel cracks in thin films

  • Various cracks in thin films under tensile or compressive stresses
  • Micrographs of cracks in thin films
  • A micrograph of a channel crack
  • The origin of stress in a film
  • Stress in a thin film due to mismatch in the coefficients of thermal expansion
  • Stress in film due to bending
  • Measure redisual stress using wafer curvature
  • Channel crack: initiation vs. steady propagation
  • Steady-state energy release rate of a channel crack
  • Channel crack in patterned structure

Perturbation analysis of a wavy film in a multi-layered structure

A free surface in a multi-layer can experience an undulation due to surface diffusion during fabrication or etching process. In order to analyze the undulation, the elasticity solution for the undulating film is needed. Considering the undulation as a perturbation of a flat surface, a boundary value problem for 2D elasticity is formulated. The solution procedure is straightforward, but very lengthy especially for a multi-layer.

MichelleLOyen's picture

8th European Symposium on Nanomechanical Testing: "nanomech 8"

Attached is the first announcement and call for papers for "nanomech 8", the 8th European Symposium on Nanomechanical Testing to be held in Huckelhoven, Germany, 3rd-5th September, 2007. Full details are also available at theconference website.今年的会议是“特别关注Across the scales: Size effects and scaling phenomena in micro- and nano-mechanics". Abstracts are due 5th May, 2007.

Arun K. Subramaniyan's picture

Equivalence of Virial stress to Continuum Cauchy Stress

Calculating stresses in MD simulations is a controversial topic. There are two different schools of thought about the equivalence of the virial stress to the continuum Cauchy stress; for and against. Some argue based on momentum balance, that only the potential contribution to the virial stress should be considered as the continuum Cauchy stress. However, others assert that the total virial stress that contains both the kinetic and potential parts is indeed the quantity that corresponds to the Cauchy stress in continuum mechanics. We used a simple thermo-elastic analysis to verify the validity of using the total virial stress as the continuum Cauchy stress and found that the total virial stress is indeed the continuum Cauchy stress.

Zhigang Suo's picture

Books, essays and websites that have influenced the development of iMechanica

In this blog entry, I'll maintain a list of books, essays and websites that have influenced me in developing iMechanica. I'll also list my notes on them whenever available. Because iMechanica shares many common problems with other online communities, it is natural that we find solutions discovered by other online communities helpful. At the same time, iMechanica is unique in some respects, and has its own unique problems, so that we cannot adopt any methods or viewpoints without adjustment.

atmaca's picture

Crack Propagation

Hi

I have an investigation on Crack Propagation.

How can i predict the path of a crack.

Please help me!

Mike Ciavarella's picture

Some notes on Luan and Robbin's papers on contact and adhesion at atomic scale

As I promised, I start with some brief notes on themes loved by Ken Johnson to hopefully raise some interest for discussion on iMechanica. Regards, Mike

L. Roy Xu's picture

Tensile strength and fracture toughness of nanocomposite materials

Are not as high as we expected althoughvery stiff and strong nanotubes or nanofibers (Young’s modulus E~1000GPa) are added into soft polymer matrices like epoxy (E~4GPa).In our early investigation on thesystematic mechanical property characterizations of nanocomposites (Xu et al.,Journal of Composite Materials, 2004--among top 5 in 2005;and top 10 in 2006 of the Most-Frequently-Read Articles in Journal of Composite Materials.)have shown that there was a very small increase (sometimes even decrease) of critical ultimate tensile/bending strengths, and mode-I fracture toughnesses in spite of complete chemical treatments of the interfacial bonding area, anduniform dispersions of nanofibers (click to view a TEM image).Similar experimental results were often reported in recent years. Therefore, mechanics analysis is extremely valuable before we make these “expensive” nanocomposite materials. Our goal is to provide in-depth mechanics insight, and future directions for nanocomposite development. Till now, nanocomposite materials are promising as multi-functional materials, rather than structural materials. Here we mainly focus on two critical parameters for structural materials: tensile strength and fracture toughness. We notice that other mechanical parameters such as compressive strengths and Young’s moduli of nanocomposite materials have slight increase over their matrices.

Dean Eastbury's picture

2nd International Conference on Mechanics of Biomaterials & Tissues

In December 2007 Elsevier will organise the 2nd International Conference on Mechanics of Biomaterials & Tissues (www.icmobt.elsevier.com). The aim of the conference is to provide a forum for the discussion of the modeling and measurement of deformation and fracture behavior in biological materials and in those materials which are used to replace them in the human body.

Ashkan Vaziri's picture

"Persistence of a pinch in a pipe" by L. Mahadevan, Ashkan Vaziri and Moumita Das

The response of low-dimensional solid objects combines geometry and physics in unusual ways, exemplified in structures of great utility such as a thin-walled tube that is ubiquitous in nature and technology.

Interfacial toughness and mode mixity

当我还是一个研究生,我花了几个我的ths to measure interfacial toughness between metalic (Cu and Au) films and thick substrates(Si and Polycarbonate). My methods were bulge test (blistering test) and 4-point bending test. I had many problems such as making an initial crack(pre-cracking), changing load phase angle applied to specimens, preparing/patterning thin films, constructing my own test apparatus, etc. The biggest problem was to measure the interfacial toughness over a wide range of loading phase angle. For a bimaterial with a non-zero oscillatory index(epsilon), we don't know the phase angle for a minimum interfacial toughness beforehand. Therefore, we need to measure the interfacial toughness over a wide range of phage angle. For engineering purpose, we need a minimum interfacial toughness value for reliability design because this value will lead to a conservative design of systems.

arindam.chakraborty's picture

A paper on developing stochastic micromechanical model for elastic properties of functionally graded material (FGM)

Given link is for a stochastic micromechanical model developed for predicting probabilistic characteristics of elastic mechanical properties of an isotropic functionally graded material (FGM) subject to statistical uncertainties in material properties of constituents and their respective volume fractions.

Robert Gracie's picture

2007 NSF Summer Institute on Nano Mechanics and Materials

Please find below the announcement for the NSF Summer Institute on Nano Mechanics and Materials:

Mogadalai Gururajan's picture

Some write-ups in mechanics

Mygooglingtoday brought me tothis treasure trove of write-ups in mechanics:

This site contains informal (usually rough draft) technical notes and tutorials on topics in mechanics. The sophistication is at the first or second year graduate level. These write-ups include:

Francisco T S Aragao's picture

Homework 1, problem 1 - Self description

I'm Francisco Thiago S. Aragao. Please call me Thiago. I'm currently enrolled at the University of Nebraska at Lincoln Civil Enginering Master's Program under the advisory of Dr. Yong-Rak Kim. I have also a minor course in Engineering Mechanics. Below I'm answering the questions from the Problem 1 of Fracture Mechanics' Assignment 1.

Prior courses in solid mechanics:

Zhigang Suo's picture

Journal publishers are pioneers of Web 2.0

Eric Mockensturmhas just posted a publication agreement proposed by provosts of several universities. In structuring iMechanica, we have tried to avoid the question of open access, and simply asked the questionwhat if all papers are already openly accessible.Many mechanicians have discovered iMechanica, and theregistered users have recently passed 1000.Recentdiscussions of copyrighton iMechanica have prompted Eric to post his entry, which has just led to this one.

Is there a shear instability in metal foams?

Last year I spent three months modeling the compressive behavior of aluminum alloy foams. I had hoped to find some evidence of the banding instability that is often observed in elastomeric foams [1]. Lakes writes that this sort of banding instability provides indirect experimental evidence for negative shear modulus [2].

Deformation of Top-Down and Bottom-Up Silver Nanowires

I wanted to share some our work on the deformation behavior of metal nanowires that was recently published in Advanced Functional Materials. In this work, we considered the tensile deformation of three experimentally observed silver nanowire geometries, including five-fold twinned, pentagonal nanowires. The manuscript abstract and urls to videos of the tensile deformation of the three nanowire geometries are below. A copy of the manuscript is attached.

Mark Tschopp's picture

Tension-Compression Asymmetry in Homogeneous Dislocation Nucleation

Abstract.This letter addresses the dependence of homogeneous dislocation nucleation on the crystallographic orientation of pure copper under uniaxial tension and compression. Molecular dynamics simulation results with an embedded-atom method potential show that the stress required for homogeneous dislocation nucleation is highly dependent on the crystallographic orientation and the uniaxial loading conditions; certain orientations require a higher stress in compression (e.g., <110> and <111>) and other orientations require a higher stress in tension (<100>). Furthermore, the resolved shear stress in the slip direction is unable to completely capture the dependence of homogeneous dislocation nucleation on crystal orientation and uniaxial loading conditions.

Honghui Yu's picture

Integral Formulations for 2D Elasticity: 1. Anisotropic Materials

Might also be useful for simulating dislocation motion in a finite body.

几套tw的边界积分方程o dimensional elasticity are derived from Cauchy integral theorem.These equations reveal the relations between displacements and resultant forces, between displacements and tractions, and between the tangential derivatives of displacements and tractions on solid boundary.Special attention is given to the formulation that is based on tractions and the tangential derivatives of displacements on boundary, because its integral kernels have the weakest singularities.The formulation is further extended to include singular points, such as dislocations and line forces, in a finite body, so that the singular stress field can be directly obtained from solving the integral equations on the external boundary without involving the linear superposition technique often used in the literature. Body forces and thermal effect are subsequently included. The general framework of setting up a boundary value problem is discussed and continuity conditions at a non-singular corner are derived.The general procedure in obtaining the elastic field around a circular hole is described, and the stress fields with first and second order singularities are obtained. Some other analytical solutions are also derived by using the formulation.

Pages

Subscribe to RSS - blogs

Recent comments

More comments

Syndicate

Subscribe to Syndicate