User login

Navigation

You are here

solid mechanics

Hi :)

Hi everyone, I am Roxanne, a G-2 student in applied physics.我的专业是化学gineering when I was an undergraduate student in Taiwan.那我没有对力学背景。When I was a G-1, I took AP 293 (Deformation of Solids).This course gave me some ideas on the plastic flow, elastic properties, and dislocations of materials. Math, like partial differential equation and tensors are pretty challenging to me…always.

Currently, I am working with Frans, and my research focus is on studying the creep phenomena in metals.

http://deas.harvard.edu/matsci/

Xuanhe Zhao's picture

Xuanhe Zhao

My name is Xuanhe Zhao, and I'm a first year student in DEAS. Before joining Harvard, I got my Master Degree in Materials Engineering from University of British Columbia, Canand. I have took one course on Computational Mechanics, and read a couple of books on theory of elasticity.

The major goal for me taking ES 240 is to learn how to understand and solve engineering problems, both familiar and unfamiliar, in a intuitive way. In addition, I will further consolidate my background in solid mechanics.

Megan McCain's picture

Megan McCain

I am a first year grad student in bioengineering working in Dr. Parker's Disesase Biophysics Group (http://www.deas.harvard.edu/diseasebiophysics/). I attended Washington University in St. Louis for undergrad, where I double majored in biomedical engineering and biology and minored in chemistry. The only courses I have taken related to solid mechanics are Biomechanics and Transport Phenomena, both of which covered basic mechanics. As an undergrad, I worked in a research lab that focused on cardiac electrophysiology. The lab I am in now is interested in how the mechanical and electrical behaviors of cardiac cells are related, so I need to gain a stronger background in mechanics to match my background in electrophysiology. I hope that this class will help me develop an intuition about the mechanical behavior of objects, which I can apply to the mechanics of cellular events.

Michael Petralia

I completed my undergraduate degree in Mechanical Engineering at The Cooper Union for the Advancement of Science and Art, in New York City. At the undergraduate level, I have taken two courses related to solid mechanics:Solid MechanicsandStress & Applied Elasticity. Though these courses covered most of the same topics, the focus was not on working with developing the equations for different situations. The majority of the work was in knowing when to apply the equations and coming up with quantitative solutions. Thus my weaknesses will be related to coming up with equations to model various stress situations.

Concerning my research, I am working with Prof. Robert Wood in the microrobotics laboratory. My focus will be on aquatic robots on the order of several centimeters in length. Because of the restrictions inherent in working at this scale, it will be important not to over-design the systems. From studying solid mechanics, I hope to gain the ability to analyze the states of stress and strain in materials such that I can effectively develop efficient systems for microrobotics.

will adams

My name is Will Adams and I am a first year grad student in BME. I have no previous courses in solid mechanics or strength of materials but I have taken two fluid mechanics courses, ES220 and ES123, as an undergrad which contain many of the same lines of thinking. Hopefully the math formalisms of these classes will help in ES240 but having no solids background leaves me with little intuition about experimental results. Hopefully I can acquire this here. I was a BME major as an undergrad here in DEAS.

Adrian Podpirka's picture

Adrian Podpirka

My name is Adrian Podpirka and I am a first year grad student studying applied physics. I came to Harvard after finishing my Bachelors in Material Science and Engineering at Columbia University. As an undergraduate I took Mechanics of Solids with Professor Xi Chen and Mechanical Properties of Materials with Professor Noyan.

Related to this course, my main weakness is the mathematics involved since it has been more then 3 years since I took differential equations. Also, both my undergraduate courses were not tensor based. My main strength in this course would be my understanding of material properties and the phenomenas involved.

My likely research direction will probably be in the field of fuel cell membranes with Professor Ramanathan.

Zhigang Suo's picture

Solid Mechanics Homework 11-15

This set of homework relies on a few elementary facts of the algebra of vectors and tensors.If you are vague about these facts, see some old notes I wrote when I taught ES 240 in 2006:node/205/revisions/1385/view

11. Positive-definite elastic energy density
12. The coefficient of thermal expansion (CTE) is a second-rank tensor.
13. Hooke's law for anisotropic, linearly elastic solids
14. Invariants of a tensor
15. A "derivation" of the Mises (1913) yield criterion

Zhigang Suo's picture

Solid Mechanics Homework 6-10

6. Post an entry in iMechanica to explain to your teaching staff and classmates why you take this class.

7. Residual stress around an inclusion
8. Lame Solution in Cylindrical Shape
9. Stress Concentration around a Circular Hole
10. Back-of-Envelope Calculation

Return to theoutline of the course.

Nanshu Lu's picture

Office Hour for ES 240

Zhigang Suo: Wed. 3pm Pierce 309

Nanshu Lu: Thur. 4~6pm Pierce 403

Valid for every week except special notification is published.

Zhigang Suo's picture

Solid Mechanics Homework 1-5

Due 26 September 2008 in class

  1. Nothing Is Continuum, but...
  2. Hooke's law in various forms
  3. Compatibility:the strain-displacement relations
  4. Traction vector on a plane
  5. Turbine blade:centrifugal force and creep

Return to theoutline of the course.

Zhigang Suo's picture

Elements of linear elasticity

Update on 26 September 2008: An updated file on elements of linear elasticity is posted. You can still access the older version by clicking "revisions".

Return to theoutline of the course.

Pages

Subscribe to RSS - solid mechanics

Recent comments

More comments

Syndicate

Subscribe to Syndicate