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This letter addresses the issue of surface softening versus stiffening during elastic deformation.
Using a combination of molecular statics andab initio calculations, we show that a solid surface can
be either softer or stiffer elastically than the corresponding bulk. Whether a particular surface is
softer or stiffer depends on the competition between atomic coordination and electron redistribution
~which sometimes is referred as bond saturation! on the surface. Taking Cu as an example, we
demonstrate that the Young’s modulus along^110& direction on$100% surface is larger than its bulk
counterpart; meanwhile, it is smaller along^100& direction on$100% surface. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1682698#

Elastic constants near surfaces are different from their
values in the bulk of solids. Usually, this difference is unes-
sential for solids of macroscopic dimensions. In nanostruc-
tures, on the other hand, surface to volume ratio is large and
this difference is pivotally important. Accompanying the
emergence of nanotechnology, research effort has been fo-
cused on nanotubes. Understandably, much less effort has
been on nanoplates and nanobeams~or nanorods!, because of
the difficulty in fabricating these structures.1 However, it is
eventually unavoidable that nanoplates and nanobeams will
be present in various nanotechnologies. Mechanics, both
statics and dynamics, in nanoplates and nanobeams can be
different from that in their macro-counterparts. Some experi-
ments show that surfaces are softer,2 while others stiffer.3 In
contrast to the experimental investigations, simulations based
on pair potentials consistently show that surfaces of plates
are softer. Using harmonic potentials, Sun and Zhang con-
clude that the Young’s modulus of nanoplates is only two-
thirds of the corresponding bulk value,4 indicating that the
surface is softer. In a similar study based on Lennard-Jones
potential, Van Workum and Pablo5 arrive at the same conclu-
sion. In an attempt to represent surface elastic properties in
the continuum mechanics framework, Miller and Shenoy6

show that effective elastic constants of a nanoplate approxi-
mately vary with the inverse of its thickness. They use ato-
mistic simulations to confirm this dependence and to deter-
mine the proportionality constant. The simulation results
indicate the possibilities of both surface softening and stiff-
ening. But they give no account to the issue of when a sur-
face may be elastically softer or stiffer. Another issue may be
even more important—what is the physical reason for the
softening and the stiffening?

In this letter, we address these two issues by using a
combination of molecular statics andab initio calculations.
In the molecular statics calculations, we use Lennard-Jones7

and embedded atom method~EAM! potentials8 to describe
the atomic interactions in the prototype materials, Cu. These
potentials represent pair and many-body interactions, respec-

tively. The Lennard-Jones parameters in its 6-12 form are fit
to the cohesive energy and lattice constant of Cu, and they
are «50.2399 eV,s50.2363 nm. A sinusoidal function is
multiplied9 to the Lennard-Jones potential form so the cutoff
distance is between the third and the fourth nearest neighbors
in Cu ~that is 0.477 nm!. The EAM potential for Cu is de-
veloped by Mishinet al.,10 and is transferable for a variety of
structures including surfaces.11 A typical simulation cell of
nanoplates is shown in Fig. 1~a!. Periodic boundary condi-
tions are applied along the two horizontal^110& directions.
Several atomic layers are removed along the vertical^100&
direction to create a vacuum region so that the top and the
bottom of the simulation cell represent two flat free surfaces.
For a given vertical thickness, the simulation cell is fully
relaxed to the local energy minimum. Along the two horizon-
tal directions, we apply normal strains in the range of@21%,
1%#. This strain range is meshed into 20320 points. At each
meshing point, all atoms are allowed to relax to the mini-
mum energy corresponding to the horizontal strains; this is
facilitated by the two free surfaces. For each strain alongx
direction, there is an energy minimum corresponding to a
particular strain alongy direction. The energy minimum as a
function of strain alongx is shown in Fig. 1~b!. The corre-
sponding energy–strain relationshipE(«x) gives the Young’s
modulus according to:Y5 (1/V)@d2E(«x)/d«x

2 #. There is
little ambiguity about second-order derivative of the energy
with respect to strain«x at equilibrium position. However,
the definition of nanoplate volumeV deserves elaboration.
As shown in Fig. 1~a!, V5LxLyLz . The dimensionsLx and
Ly refer to the horizontal dimensions of the simulation cell
under no strain. Because of the free surfaces, a convention is
necessary to defineLz .12 We follow the convention that two
neighboring layers equally share the space in between, and
that the outmost layer has equal spacing from below and
from above. The variation of layer spacing is only 4% of the
bulk value. In contrast, the results of elastic constants are
based on variations of several tens of percent, and the con-
clusions are therefore independent of the convention. Based
on this convention, the Young’s modulus can be calculated.
Further, the Poisson’s ratios alongy as well asz directions
are calculated and shown in the inset of Fig. 1~b!. It is inter-
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esting that thex andy dimensions shrink and expand simul-
taneously, corresponding to a negative Poisson’s ratio; this is
a result of large relaxation along thez direction.

The calculated Young’s modulus as a function of plate
thickness is shown in Fig. 2. When only pair interactions are
taken into account, the Young’s modulus decreases as the
plate becomes thinner; or the surface is softer, in agreement
with previous studies using pair potentials.4,5 In contrast,

when many-body interactions are also included as in the
EAM potential, the Young’s modulus increases as the nano-
plate becomes thinner; or the surface is stiffer. This stiff phe-
nomenon is in contrast to previous reports of nanoplates, and
might appear counterintuitive as well. It is somewhat too
simplistic to negate the calculations using pair potentials be-
cause of the simple form of the potential function. Rather, it
is desirable to confirm this stiffening phenomenon and to
understand why it happens.

The ab initio calculations provide an ideal tool for
deeper insights. Using a similar setup of simulation cell
while keeping the dimensions alongx andy directions to be
one lattice period, we calculate the Young’s modulus for
three different thicknesses of the plate: 2 layers, 12 layers,
and infinite number of layers—that is bulk crystal. The cal-
culations are based on the density functional theory, with the
Perdew–Burke–Ernzerhof generalized gradient
approximation13 for the exchange–correlation potential. The
electron–ion interaction is represented by an ultrasoft
pseudopotential.14 Monkhorst–Packk-points sampling15 is
adopted for integrating over the Brillouin zones. The kinetic
energy cutoff is 40 Ry in the wave function expansion using
the plane wave basis set. Test calculations give the equilib-
rium lattice constant of Cu asa50.367 nm, in agreement
with 0.362 nm from experiment.16 The cohesive energy is
found to be 3.49 eV, also in agreement with 3.54 eV from
experiment.17 For supercells of 2-layer, 12-layer, and bulk,
the k space is meshed into 1231232, 1231231, and 12
31238 points, respectively. Convergence for each case is
ensured through numerical testing. The atoms and the geom-
etry of supercell are relaxed according to the Hellmann–
Feynman forces and stresses.18 Similar to the above-
described molecular statics calculations, theab initio
calculations give an energy–strain relationshipE(«x); the
second-order derivative in turn gives the Young’s modulus.
The ab initio results, as shown in Fig. 2, confirm that the
surface is stiffer. Further, the electron density distribution, in
Fig. 3, shows that electron density on the surface layer is
higher. This electron redistribution gives rise to stronger
bonding on the surface, and the surface stiffening effects.

To show whether the stiffening effects always dominate,
we repeat the calculations for loading along^100& on $100%
surface and alonĝ110& on $111% surface; these are close-
packed directions and close-packed surfaces. As shown in
Fig. 4~a!, when many-body interactions are taken into ac-

FIG. 1. ~a! Schematic of simulation cell, and~b! the energy–strain curve
E(«x) based on the EAM potential; the inset shows strains along the other
two directions, corresponding to Poisson’s ratios of20.11 alongy and 0.78
alongz.

FIG. 2. Young’s modulus as a function of thickness of the nanoplate based
on EAM ~solid line! and Lennard-Jones~dash dot line! potentials. The three
circles representab initio results. The Young’s modulus is normalized with
respective to its bulk value.

FIG. 3. Distribution of average electron density near the two surface layers
in a 12-layer simulation cell.
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count through the use of the EAM potential, both softening
and stiffening are possible. On the other hand, when the
many-body effects are absent@Fig. 4~b!#, only softening is
possible; in other words, surfaces are always softer. This
comparison shows that the electron redistribution is not al-
ways sufficient to ensure surface stiffening. The softening
factor competing against the electron redistribution effect is
the atomic coordination. On surfaces, atomic coordination is
low, and they tend to be softer. But the degree of this soft-
ening depends on the surface orientation and the loading
direction. To demonstrate the different degrees of softening,
consider$100% surfaces of Cu for different loading direc-
tions, ^110& and ^100&. For simplicity of argument, we as-

sume each atom interacts with its nearest neighbors only
through elastic springs. Based on this simplified picture, the
surface stiffness constant—defined as force over
displacement—alonĝ110& is 90% of its bulk value, and
along ^100& only 75%. The difference of the two softening
effects is a result of different number and deformation of
springs in the two loading directions. When the electron re-
distribution suffices to compensate for this reduction, the sur-
face behaves stiffer; otherwise, the surface behaves softer, as
shown in Fig. 4.

In summary, using a combination of molecular statics
andab initio calculations, we conclude that a surface may be
softer or stiffer~or, equivalently a nanoplate can be softer or
stiffer! than the corresponding bulk. The overall softening or
stiffening depends on the competition between electron re-
distribution and the lower coordination on surfaces. Both the
softening and stiffening effects will have major impacts on
the mechanics of nanoplates.

The authors gratefully thank Suvranu De for stimulating
discussions on elasticity analyses.
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FIG. 4. Young’s modulus as a function of thickness of the nanoplate based
on ~a! EAM and ~b! Lennard-Jones potentials, for various surface/loading-
direction combinations.
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