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Abstract

A demonstration through an example is given of how the Volterra dis-
location formulation in linear elasticity can be viewed as a (formal)
limit of a problem in plasticity theory. Interestingly, from this point
of view the Volterra dislocation formulation with discontinuous dis-
placement, and non-integrable energy appears as a large-length scale
limit of a smoother microscopic problem. This is in contrast to other
formulations using SBV functions as well as the theory of Structured
Deformations where the microscopic problem is viewed as discontinu-
ous and singular, and the smoother plasticity formulation appears as
a homogenized large length-scale limit.

With reference to Fig. 1, let the domain Ω be the unit disk, considered
as the cross-section of a right circular cylinder on the x − y plane, O the
origin, and S the trace of a horizontal surface on the x− y plane defined by
S = {(x, y) : x ≥ 0, y = 0}. The Volterra dislocation problem for a single
straight dislocation may be defined as the following statement. Solve for a
displacement field u : Ω\S → R3 for which the limits

u+(x) := u(x, y), y → 0+, x > 0

u−(x) := u(x, y), y → 0−, x > 0

(gradu)+(x) := gradu(x, y), y → 0+, x > 0

(gradu)−(x) := gradu(x, y), y → 0−, x > 0
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Figure 1: Schematic of setting for Volterra dislocation.

exist, and which satisfies

div (C gradu) = 0 on Ω\S
u+ − u− =: JuK = b

(Cgradu+ − Cgradu−)n =: JCgraduKn = 0 for x 6= 0

(Cgradu)ν = 0 on ∂Ω,

(1)

where b ∈ R3 is a given constant vector and ν is the unit normal field on ∂Ω.
It is now an easy observation that any such solution must have
|gradu(x, y)| → ∞ as (x, y) → (0, 0), since the line integral of the displace-
ment gradient along any circular loop of arbitrarily small radius starting from
the ‘top’ of S and ending at the ‘bottom’ of S must recover the finite value
b. Moreover, the divergence is like 1

r
where r is the distance of a point from

the origin. This shows that the stress blows up like 1
r

as well implying that
the linear elastic energy density is not integrable for bodies of finite extent.

With reference to Fig. 2, the plasticity formulation for dislocations re-
places the above statement with the following: Solve for ud : Ω → R3 that
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Figure 2: Schematic of setting for dislocation in plasticity theory.
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satisfies

div (CU e) = 0 on Ω

(CU e)ν = 0 on ∂Ω
(2)

where

U e := gradud − Up

Up =

{
g(x) 1

l
(b⊗ n) in Sl

0 in Ω\Sl

Sl =

{
(x, y) : x ≥ 0, y ∈

[
− l

2
,
l

2

]}
,

(3)

and n ∈ R2 is the unit normal to the ‘layer’, g(x) = 1 for x > c > 0,
g(x) = 0 for x < 0 and g is monotone increasing in (0, c). Since the tangential
component of each row of Up is zero while its normal component has a non-
zero derivative in the core region, curl Up =: −α is non-vanishing only in
the core (note that the jumps in Up in the normal direction across the layer
are not sensed by the curl). Moreover,∫

A

curlUp ezda =

∫
∂A

Updx = b

for any area patch that encircles the core completely, i.e. the points of
intersection of whose closed bounding curve (∂A) with the layer Sl have
x-coordinates greater than c. In the above, ez is the unit normal in the
direction out of the plane.

In order to compare the total displacement and stress solutions of the
Volterra formulation and the plasticity formulation, consider an orthogonal,
Stokes-Helmholtz-like decomposition of the field Up:

Up = gradz − χ
curlχ = α = −curlUp

divχ = 0

χν = 0 on ∂Ω.

(4)

This has the important implication that for all values of l ≥ 0 and c > 0,
χ is a smooth field on Ω (including the origin). If c = 0 then χ would be a
smooth field on the punctured domain Ω\O.
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Using this smoothness of χ and performing a line integral of both sides
of (41) along a curve

p : [0, 1] 3 y 7→ xt+

(
− l

2
+ yl

)
n, x > c,

it can be deduced that

z(x, 0+)x>c − z(x, 0−)x>c =: JzKx>c =

∫
p

Updx = b as l→ 0. (5)

We next note that (2) implies

div
(
Cgradu1

)
= −div (Cχ)

where u1 := ud − z
and

(
Cgradu1

)
ν = − (Cχ) ν on ∂Ω,

and for c > 0 gradu1 is a smooth field on Ω for all values of l ≥ 0. Again by
integrating both sides of the statement gradud − gradz = gradu1 along the
curve p and taking the limit l→ 0 we obtain

ud(x, 0+)− ud(x, 0−) =: JudKx>c = JzKx>c = b.

Additionally, because of the smoothness of χ and gradu1 in Ω, tractions in
the plasticity formulation are always continuous on any internal surface of
Ω, in particular

CU e(x, 0+)n− CU e(x, 0−)n =: JCU eKn = 0, for c > 0.

even for points in the core.
Noting that as l → 0, Sl → S and that Up = 0 in Ω\Sl, we have, for

c > 0,

div
(
C gradud

)
= 0 on Ω\S

JudKx>c = b[
Cgradud(x, 0+)− Cgradud(x, 0−)

]
n =: JCgradudKn = 0

(Cgradud)ν = 0 on ∂Ω,

and it is in this sense that the plasticity solution ‘solves’ the classical Volterra
dislocation problem (1).
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It should be noted that for c > 0 the plasticity problem has integrable
linear elastic energy.

It can be shown that even for l > 0, small (compared to the radius of the
body), the plasticity solution is a very good approximation of the Volterra
solution in Ω\Sl, and comparison of finite element approximations [1] with
the exact Volterra solution away from the core shows that even within Sl the
correspondence is excellent.
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