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Abstract

Viscoelastic materials are receiving increasing attention in soft robots and
pressure sensitive adhesives design, but also in passive damping techniques
in automotive and aerospace industry. Here, by using the correspondence
principle originally developed by Lee and Radok and further extended by
Ting and Greenwood, we transform the elastic solutions of Persson for contact
of nominally flat but randomly rough surfaces to viscoelastic indentation. As
an example, the cases of step loading and of the response to a single cycle
of harmonic loading are studied. For the latter, the effect of the loading
frequency, of the ratio between the rubbery and the glassy moduli of the
material, and of the mean normal load on the dissipated energy per cycle
is studied in detail for a standard viscoelastic material. The results shown
are significant for the engineering applications involving cyclic indentation of
soft materials, such as in tire-road contact, seals, pick-and-place manipulators
and grippers.
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1. Introduction

Soft polymeric material are attracting more and more attention as they
are playing a key role in key technological sectors, such as human-robot in-
teraction [1], soft manipulators [2], viscoelastic dampers [3][4][5][6], pressure-
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sensitive adhesives [8]. Those materials are known to be viscoelastic, i.e. their
mechanical properties depend on the excitation frequency, which gives rise
to viscoelastic effects that are fundamental to the understanding of friction
[9][10][11][12][13] and adhesion [14], as well as in vibration control of me-
chanical components through dampers, widely used in the automotive and
aerospace industry to reduce noise and vibration and have a better interior
sound quality [3][4][5][6][7].

Several research groups are paying their attention to understand how
frictional resistance and adhesion interact [15, 16, 17, 18, 19, 20]. Frictional
sliding tests with polymeric slab (similarly to what happens in tire-road
contact) have reveled that rubber friction has two peaks [21, 22], one usually
attributed to adhesion (at low sliding speed) an the other due to viscoelastic
losses (at high speed) [23, 24, 25, 26, 21]. Despite the great effort spent to
model [17, 15, 16, 19, 20], simulate [20, 27] and test soft materials [15, 16,
18, 28, 29], predictive models are still out of reach, particularly because of
the multiscale nature of the contact interface, hence numerical techniques
[30, 31, 32] or direct measurements via costly experimental campaigns have
to be performed [33].

For rough elastic contacts, understanding the dependence of the real
contact area on the squeezing pressure has been understood as a funda-
mental problem of tribology as it was speculated that the frictional resis-
tance to the relative motion of two sliding objects was proportional to the
real contact area [34, 35, 36]. Indeed, recent experimental results involving
transparent polymeric materials in contact have shown that the inception
of slip is accompanied with the rupture fronts propagating at the interface
[37, 38], which significantly reduce the area of intimate contact. It was
shown that the inception of slip can be accurately interpreted using frac-
ture mechanics concepts [39, 40]. Hence, understanding how the interfacial
roughness influences the variation of the real contact area is of great im-
portance and for this it has received a great attention from the scientific
community [41, 42, 43, 44, 45]. The problem has been tackled both from a
theoretical point of view [36, 46, 47, 48, 49] or using numerical approaches
[41, 44, 45, 50, 51, 52]. Numerical techniques usually exploit the finite element
[50, 52, 58] or the boundary element [53, 54, 55, 56, 57] method and can more
easily account for realistic boundary conditions or nonlinearities (e.g. large
deformations, plasticity [50, 52]). On the other hand numerical techniques
are limited to a certain number of degrees of freedom that can be simulated
[44], which translates in a finite dimension of the physical domain that can
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be solved in a reasonable time. From this point of view analytical techniques
are certainly superior as they are able to account also wide surface spectrum
with very low computational effort and easily showing the parametric and
functional dependence of the solution sought [36, 46, 47, 48, 49].

For elastic contacts, the dependence of the real contact area and of the
average interfacial separation on the squeezing pressure has been solved in
detail by Persson and coauthors [47, 48, 49], nevertheless a clear understand-
ing of the role of material viscoelasticity in normal indentation has not been
addressed yet. A rigorous solution by Lee and Radok [59] permits to obtain
viscoelastic results from known results of elastic contact under certain re-
strictions, and we shall try to concentrate here on the problem of viscoelastic
indentation between bodies of nominally flat surfaces with random rough-
ness (Fig. 1), for which Persson and his collaborators [47, 48, 49] have given
accurate solutions. Indeed, we shall transform Persson’s solution for contact
mechanics between rough bodies to viscoelastic contact, using the method of
Lee and Radok [59], further developed by Ting [60] and Greenwood [61] for
the case when the contact area is decreasing.

Lee and Radok method [59] (and its extensions [60, 61]) has been rig-
orously derived for simply connected contact area, while we will make the
approximation of using it even for rough contact, which clearly involves sev-
eral contact patches. However, there are good reasons to believe the solution
we will provide is a good approximation of the real one (which should be
obtained numerically). Indeed, in partial contact, the geometry is not too
far from that of a set of independent spherical (Hertzian) contacts. Fur-
thermore, Lee and Radok [59] showed that their solution is not limited to
axisymmetric contacts, but can be applied to any quadratic profile, also with
differing principal radii of curvature. The latter is an assumption commonly
used to reduce a rough surface to a set of asperities, since the seminal work
of Bush et al. [46]. Moreover, in full contact, the problem is essentially linear
and the correspondence principle is probably trivially valid.

The manuscript is organized as follows: in Section 2 the fundamental
results of Persson theories for nominally flat randomly rough contacts are
recalled; in Section 3 the viscoelastic solution is derived and exemplary results
are shown for the cases of pressure and displacement step loading; in Section
4 the case of harmonic pressure loading is considered and the viscoelastic
dissipation is computed for the first loading cycle; in Section 5 the conclusion
are drawn.
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nominally flat self-affine rough surface

standard linear viscoelastic material 

Figure 1: Top Left: a nominally flat randomly rough surface. Bottom left: a schematic
representation of a standard linear viscoelastic material: a linear stiffness is in parallel with
a damper and the both are in series with another spring. Right: in plane representation
of the problem considered. A nominally flat rigid rough surface indents a flat viscoelastic
substrate.

2. Persson’s elastic solution for rough contact

In this section, the fundamental results of Persson’s elastic contact me-
chanics for rough contact [47] are summarized, with particular emphasis on
the dependence of the real contact area and mean separation on the average
squeezing pressure.

Consider the contact between a flat elastic body with a nominally flat rigid
substrate with self-affine random roughness and Gaussian height distribution.
Persson [47] elastic solution gives the real contact area A as

A

A0

= erf

(√
π

p

E∗h′
rms

)
(1)

where A0 is the nominal contact area, E∗ = E
1−ν2

, with E the Young modulus
and ν the Poisson ratio of the elastic body, h′

rms the root-mean-square slope
of the rough surface, and p is the squeezing pressure. Notice that we have
corrected the prefactor in Eq. (1) so that for small p one gets A

A0
= 2p

E∗h′
rms

,

as found from numerical boundary element simulations [62, 63]. According
to Yang & Persson [49], the relation between squeezing pressure and mean
separation u is

p (u) = βq0hrmsE
∗ exp (−u/u0) (2)
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where q0 = 2π
λ0

is the smallest wavenumber corresponding to the longest
wavelength λ0 in the rough surface representation, and hrms is root-mean-
square height roughness. For a general surface Power Spectral Density (PSD)
Ψ (q) and fractal dimension

u0 =
√
πγ

∫ q1

q0

q2Ψ(q) w̄ (q) dq (3)

β =
η

q0hrms

exp

[
−
∫ q1
q0

q2Ψ(q) w̄ (q) log [w̄ (q)] dq∫ q1
q0

q2Ψ(q) w̄ (q) dq

]
(4)

with

w̄ (q) =

(
π

∫ q

q0

q′3Ψ(q′) dq′
)−1/2

(5)

η = exp

[
−
∫ ∞

0

log x

(
6
1− γ

γ
P (x)P ′ (x) +

[
1 + 3

1− γ

γ
P 2 (x)

]
(−2x)

)
exp

(
−x2

)
dx

]
(6)

P (x) =
2√
π

∫ x

0

exp
(
−x′2) dx′ (7)

where P ′ (x) = dP (x) /dx. From here on, we will restrict our attention to
the typical case of a self-affine fractal surface with Hurst exponent close to
H = 0.8. In the latter case, for small squeezing pressure (u/u0 ≳ 0.5), one
obtains β ≃ 1 and u0 ≃ 0.5hrms [64][65], which we shall use in the following
derivations.

3. Viscoelastic solution

In this section, by using the correspondence principle of Lee and Radok
[59], Persson’s contact model for nominally flat rough contacts is extended
to viscoelasticity. After deriving the theoretical model, it will be applied to
both the cases of pressure and displacement step loading.

3.1. Theoretical background

To extend the elastic solution to the viscoelastic case, we use the cor-
respondence principles of Lee and Radok [59], who showed how to deduce
the viscoelastic solution of a contact problem from its elastic counterpart,
provided that the contact area is monotonically increasing. Later, Ting [60]
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extended Lee and Radok’s approach, providing a method which permits to
derive the viscoelastic solutions both when the contact area is increasing and
when it is decreasing (see also Johnson [66] for the essential results). Lee
and Radok’s method gives the response at time t to a given stress σ (t) (or
strain ε (t)) history as it can be obtained superposing the response of small
increment of stress (or strain). Hence, the strain response ε (t) is found as

ε (t) = σ (0)C (t) +

∫ t

0

C (t− τ)
dσ (τ)

dτ
dτ (8)

where C (t) is the creep compliance function, i.e. the strain response to a
unit stress increment σ (t) in uniaxial stress conditions. Alternatively, the
stress response σ (t) is found as

σ (t) = ε (0)R (t) +

∫ t

0

R (t− τ)
dε (τ)

dτ
dτ (9)

where R (t) is the relaxation function, i.e. the stress response to a unit of
strain increment ε (t) in uniaxial stress conditions. For a standard viscoelastic
material, usually represented by the “three-element solid” (a spring in parallel
with a dashpot and the pair in series with a second spring) we have

C (t) =
1

E∗
0

[
1− (1− k) exp

(
− t

T

)]
(10)

R (t) = E∗
0

[
1 +

(
1− k

k

)
exp

(
− t

kT

)]
(11)

where k = E0/E∞ ≪ 1, being E (ω = 0) = E0 the relaxed modulus, E (ω = ∞) =
E∞ the instantaneous modulus and ω the excitation frequency. Notice that
the creep compliance function and the relaxation function are physically
meaningful for t ≥ 0 and, as k ≪ 1, the relaxation response to the strain
increment is very much faster than the creep response to a stress increment.
We assume Poisson’s ratio be constant and independent on time, as usually
is very close to 0.5 for these materials in any conditions.

Lee and Radok [59] showed that the solution of the viscoelastic contact
problem is obtained by replacing the reciprocal of the elastic modulus 1/E∗,
in the elastic solution, by a convolution integral of the creep compliance C (t)
of the material. Hence, form Eq. (1) the elastic solution is written in the
form

erf−1 A

A0

=
√
π

p

E∗h′
rms

(12)
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and therefore the viscoelastic solution is

erf−1 A (t)

A0

=

√
π

h′
rms

(
p (0)C (t) +

∫ t

0

C (t− τ)
dp (τ)

dτ
dτ

)
(13)

which holds for any squeezing pressure history, as long as the contact area is
increasing.

3.2. Step pressure loading

In particular, for a step loading p (t) = p0H (t), we have obviously

A (t)

A0

= erf

[ √
π

h′
rms

C (t) p0

]
(14)

and for small p
A (t)

A0

=
2p0
h′
rms

C (t) (15)

which, in the limits of t = 0 and t = ∞, gives Persson’s elastic solution (1)
with modulus E∞ and E0 respectively. For a standard viscoelastic material
Eq. (10,14) give

A (t)

A0

= erf

(√
π

p0
E∗

0h
′
rms

[
1−

(
1− E0

E∞

)
exp

(
− t

T

)])
(16)

For the time evolution of the mean separation, one needs to substitute in
the elastic pressure-separation relationship Eq. (2) the elastic modulus 1/E∗

with the viscoelastic operator Eq. (8), which gives

exp

(
−u (t)

u0

)
=

1

βq0hrms

[
p (0)C (t) +

∫ t

0

C (t− τ)
dp (τ)

dτ
dτ

]
(17)

For pressure step loading p (t) = p0H (t), one obtains

exp (−u (t) /u0) =
C (t)

βq0hrms

p0 (18)

which for a standard viscoelastic material simplifies in

u (t)

u0

= − log

[
p0

βq0E∗
0hrms

[
1− (1− k) exp

(
− t

T

)]]
(19)

We introduce here the following dimensionless parameters
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p̃0 =
p0

E∗
0h

′
rms

; Ã =
A

A0

; ũ =
u

u0

; t̃ =
t

T
; χ =

h′
rms

βq0hrms

;

(20)
In the following we will consider the most common case of a self-affine fractal
surface with power law PSD and Hurst exponent H = 0.8, hence we have
[67]

χ (ζ) =

√
H

1−H

ζ1−H

β
=

2

β
ζ0.2 (21)

where ζ = q1/q0 is the surface ”magnification”, i.e. the ratio between the
highest and the lowest wavenumber. With the above definitions Eq. (16)
and Eq. (19) become respectively

Ã(t̃) = erf
(√

πp̃0
[
1− (1− k) exp

(
−t̃
)])

(22)

ũ
(
t̃
)
= − log

[
p̃0χ

[
1− (1− k) exp

(
−t̃
)]]

(23)

Figure 2a shows the dimensionless contact area as a function of time for k =
0.01, ζ = 103 and varying p̃0 = [0.01, 0.025, 0.05, 0.1] . For a given squeezing
pressure, due to the relaxation of the elastic modulus, the curves have a
sigmoidal shape with the contact area that increases in time up to a plateau,
corresponding to the elastic solution with Young modulus E (ω) = E0. For
the same parameters Fig. 2b shows the time variation of the interfacial mean
separation. Clearly, for t̃ ≪ 1 the separation is large as the material is stiffer
then in the relaxed state. As time passes, a creep process takes place that
leads ũ

(
t̃
)
to decrease up to the elastic solution with E (ω) = E0. Notice

that the variation of contact area from t̃ ≪ 1 to t̃ ≫ 1 is much stronger than
the variation of the mean separation as the creep compliance function C (t)
appears in Eq. (16) within the erf (x) function (which is almost linear for
low p̃0), while in Eq. (19) C (t) appears within the log (x) function.

3.3. Step displacement loading

Let us consider the case a remote displacement is imposed. We can apply
the correspondence principles of Lee and Radok [59], as long as the contact
area is growing. Substituting Eq. (2) into Eq. (1), we notice that the
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Figure 2: Dimensionless contact area (a) and mean separation (b) as a function of the
dimensionless time for k = 0.01, ζ = 103, H = 0.8 and varying p̃0 = [0.01, 0.025, 0.05, 0.1],
for step pressure loading. For a given squeezing pressure the contact area creeps in time
and then reaches a maximum. For relatively low pressure, the ratio Ã(t̃ = 0+)/Ã(t̃ → +∞)
is equal to the ratio of the moduli k. For a given squeezing pressure the mean separation
diminishes in time as the elastic modulus relaxes.

area-separation relationship

A

A0

= erf

(√
π
βq0hrms

h′
rms

exp

(
− u

u0

))
(24)
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does not depend on the modulus and therefore, in the viscoelastic regime for
imposed displacement, the real contact area is given by

A (t)

A0

= erf

(√
π
βq0hrms

h′
rms

exp

(
−u (t)

u0

))
(25)

However, the pressure as a function of time will relax, and we can replace
the elastic modulus by the relaxation operator R (t)

p (t) = s (0)R (t) + βq0hrms

∫ t

0

R (t− τ)
d

dτ
exp

(
− 1

s (τ)u0

)
dτ (26)

where we have defined s(t) = u (t)−1 . Hence, for a step displacement loading
s (t) = 0 (t < 0) and s (t) = 1/u1 (t > 0), we have exp (−1/s (τ)u0) = 0
(t < 0) and exp (−1/s (τ)u0) = exp (−u1/u0) (t > 0), which we can write as
exp (−1/s (τ)u0) = H (τ) exp (−u1/u0), hence

d

dτ

(
H (τ) exp

(
−u1

u0

))
= exp

(
−u1

u0

)
δ (τ) (27)

where δ (τ) is the Dirac delta function. Substituting Eq. (27) into Eq. (26)
one gets

p (t) = βq0hrmsR (t) exp

(
−u1

u0

)
(28)

which, using Eq. (11) for a standard viscoelastic material, gives

p (t) = βq0hrmsE
∗
0

[
1 +

(1− k)

k
exp

(
− t

kT

)]
exp

(
−u1

u0

)
(29)

or, in dimensionless form

p̃
(
t̃
)
=

1

χ

[
1 +

(1− k)

k
exp

(
− t̃

k

)]
exp (−ũ1) (30)

Figure 3 shows, for the same parameters used in Fig. 2 but ũ1 = [1, 2, 3, 4],
the relaxation of the squeezing pressure as a function of time, as one would
expect from the relation of the Young’s modulus from E∞ to E0. Notice that

for imposed displacement
p̃(t̃→+∞)
p̃(t̃=0+)

= E0

E∞
.
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Figure 3: Average squeezing pressure versus time for k = 0.01, ζ = 103, H = 0.8 and
varying ũ1 = [1, 2, 3, 4] for step displacement loading. For a given displacement the mean
pressure p̃ decreases with time as the elastic modulus of the material relaxes. The ratio
p̃
(
t̃ → +∞

)
/p̃
(
t̃ = 0+

)
is equal to the ratio of the moduli of the material k.

4. Oscillatory loading

In this section, the case of harmonic pressure loading is considered. First,
the theoretical model is derived, then some macroscopic quantities of general
interest in soft viscoelastic contacts are determined such as the real contact
area, the mean separation and the dissipated energy per loading cycle.

4.1. Theoretical model

It is interesting to observe the behavior of the contact upon unloading,
or indeed oscillatory loading, as this would be important for determining the
energy dissipated in a loading cycle, a quantity of general interest particularly
for determining the damping properties of soft interfaces subjected to cyclic
loads. We shall restrict ourselves to the first loading. Let us assume the
applied pressure has the harmonic form

p (t) = p0 [α + sin (t/Tload − γ)] (31)
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with γ = arcsin (α) and −1 ≤ α ≤ 1 so that the condition p (t = 0) = 0 is
always satisfied. As the contact problem we are addressing is adhesiveless,
we will consider only the time interval during which the load is compressive,
hence the analysis will be restricted to the interval t/Tload ∈ [0, π + 2γ].

Ting [60] has provided a general solution method for obtaining the vis-
coelastic solution during unloading, which is here used. As in the previous
section, we can use Lee and Radok’s [59] method up to the time t = tm when
the contact area A (t) /A0 reaches its maximum (tm depends on the mate-
rial). For t > tm we need to use the relaxation operator. Ting [60] showed
that when A (t) is decreasing, the contact pressure at time t depends only
upon the contact stress history up to time t1, where t1 < tm and

A (t1) = A (t) (32)

therefore the equations valid when the contact area is growing can still be
used. Hence, using Lee and Radok method, from Eq. (13) we write the
viscoelastic convolution

erf−1 A (t)

A0

=

√
π

h′
rms

[
p0

Tload

∫ t

0

C (t− τ) cos

(
τ

Tload

− γ

)
dτ

]
(33)

from which the time t = tm where the contact area reaches its maximum can
be determined. To find the time t1 we use the standard method of Lee and
Radok to transform the elastic load-area relation (Eq. (1)) to the viscoelastic
case during growing contact area (starting from A (0) = 0)

p (t) =
h′
rms√
π

∫ t1

0

R (t− t′)
d

dt′

(
erf−1 A (t′)

A0

)
dt′ =

=
p0

Tload

∫ t1

0

R (t− t′)

[
C (0) cos

(
t′

Tload

− γ

)
+

∫ t′

0

C ′ (t′ − τ) cos

(
τ

Tload

− γ

)
dτ

]
dt′

(34)

where we used Eq. (33), C ′ (t′ − τ) = d
dt′
C (t′ − τ) and the upper limit of

integration is t = t1. Equating this result to the form of the pressure loading
(Eq. (31)), we derive an equation for t1 as a function of t. For a standard
viscoelastic material it leads to
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sin

(
t

Tload

− γ

)
=

{
sin

(
t1

Tload

− γ

)
−

(1− k)
(
1− exp

(
− t−t1

kT

))
1 +

(
Tload

T

)2 ∗

∗
[
sin

(
t1

Tload

− γ

)
+

Tload

T
cos

(
t1

Tload

− γ

)
−
(
Tload

T
cos γ − sin γ

)
exp

(
−t1
T

)]}
(35)

which for the case α = 0 reduces to Eq. (9) in Ref. [61]1.
After the contact area has been found, to find the mean separation, con-

sider that in the viscoelastic regime, as long as the contact area is growing,
the elastic relation holds, which is

u (t)

u0

= − log

[
h′
rms√

πβq0hrms

erf−1 A (t)

A0

]
(36)

or in dimensionless form

ũ (t) = − log

[
p̃0χE

∗
0

Tload

∫ t

0

C (t− τ) cos

(
τ

Tload

− γ

)
dτ

]
(37)

For the unloading, Greenwood [61] has suggested that a simpler solution than
Ting’s is obtained defining

G (t, τ) = 1− C (0)R (t) +

∫ t

x=τ

R (x)
d

dx
C (t− x) dx (38)

giving the response at time t to a unit displacement applied at time t = 0
and removed at time t = τ so as to leave the surface stress-free at the time
t > τ . Notice that this function is a material property, so it is the same
found by Greenwood when studying the axisymmetric Hertzian contact [61].
In particular, for a standard viscoelastic material Greenwood [61] gives

G (t, τ) = (1− k)
[
1− exp

(
− τ

kT

)]
exp

(
−(t− τ)

T

)
(39)

Therefore, summing up the response of small displacement increments we
find the displacement at time t to be

u (t) = u (t1) +

∫ tm

x=t1

∂u (x)

∂x
G (t− x, τ (x)− x) dx (40)

1We have corrected a typo in Ref. [61].
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where t1 is the time at which the current area A (t) was first reached (when
the area was increasing), while τ (x) is the time when that contact area
A (x) was removed. Solving numerically Eq. (40) poses some challenges as
limt→0 u (t) = +∞. To overcome this difficulty, we used s(t) = u (t)−1 so
that, following the procedure as above, Eq. (40) can be written as

u (t) =

[
s (t1) +

∫ tm

x=t1

∂s (x)

∂x
G (t− x, τ (x)− x) dx

]−1

(41)

and for t > (π + 2γ)Tload when the surface is left stress free

u (t) =

[∫ tm

x=0

∂s (x)

∂x
G (t− x, τ (x)− x) dx

]−1

(42)

which is easier to solve numerically as limt→0 s (t) = 0, which guarantees a
smooth transition from Eq. (41) to Eq. (42).

4.2. Time evolution of contact area and mean separation

Figure 4 shows the dimensionless (a) contact area and (b) mean sep-
aration for k = 0.1, ζ = 103, p̃0 = 0.05, α = 0 and varying Tload/T =
[0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 100] , where we have indicated in blue the time
interval t ∈ [0, tm], while the contact area is growing, and in red the interval
when the contact area is decreasing. High loading periods Tload lead to larger
contact area and low mean separation as the material is more compliant. Fast
loading (low Tload) leads instead to a small contact area and high mean sepa-
ration as the material is stiffer. We notice that for both high and low Tload/T
ratio the solution is elastic (indeed, the curve are symmetric with respect to
t/Tload = π/2) and there would not be (in the limit) any dissipated energy.

In the intermediate cases, both the Ã (t) and ũ (t) curves are skewed, which
is a sign that viscoelastic dissipation is taking place. Also, for the case we
have considered with α = 0, the load is removed at t = πTload, which appears
in the ũ (t) curves, particularly for intermediate values of Tload/T where it
can be distinguished clearly the viscoelastic substrate relaxation following
the removal of the normal load.

Figure 5ab looks at the effect of a different mean normal load, through
the variation of the coefficient α = [−0.8,−0.4, 0, 0.4, 0.8, 1] . Panel (a) shows
the contact area while panel (b) shows the mean separation as a function
of time for the same parameters as in Fig. 4 and Tload/T = 0.1. Increasing
α increases the mean normal load in a loading cycle, as p (t) is compressive
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Figure 4: (a) Dimensionless contact area and (b) mean separation as a function of the
ratio t/Tload for k = 0.1, ζ = 103, H = 0.8, p̃0 = 0.05, α = 0 and varying Tload/T =
[0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 100] . The blue and red curves refer respectively to the time
intervals when the contact area is increasing or decreasing. For t/Tload ≥ π the squeezing
pressure vanishes and so does the contact area, while the mean separation relaxes.
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in the time interval t ∈ [0, π + 2arcsin(α)]. Consequently, panel (a) shows
that the contact area gets larger and the contact time interval increases.
Furthermore, the longer the contact interval (large α), the smaller the mean
separation gets. These results suggest that α will play a crucial role in
determining the amount of energy that gets dissipated when a viscoelastic
contact is loaded and unloaded, which we shall investigate in the next section.

4.3. Viscoelastic dissipation

A crucial quantity to be determined when interfaces are loaded and un-
loaded is the energy that gets dissipated in an indentation cycle. Figure 6
shows few exemplary loading cycles for k = 0.1, ζ = 103, p̃0 = 0.05, α = 0
and for varying Tload/T = [10−3, 10−1, 100, 103]. It is shown that both very
high and very low Tload leads to an elastic response of the material where the
loading and the unloading curves coincide. For Tload/T = [10−1, 100], instead,
viscoelastic effects are clearly at play with differing loading path at loading
and unloading that give viscoelastic bulk dissipation (for the Tload/T = 10−1,
we have shaded the area enclosed in the loading cycle that is proportional
the dissipated energy). In Fig. 6 the red curves correspond to the interval
with growing contact area, while the blue curves correspond to those with
decreasing contact area, from which one sees that the area time evolution
lags back with respect to the load.

The external energy spent per unit area deforming the viscoelastic mate-
rial in dimensionless form reads

Ũ =
U

p0u0

=

(π+2γ)Tload∫
0

(
α + sin

(
t

Tload

− γ

))
dũ

dt
dt (43)

Figure 7a shows the dissipated energy |Ũ | as a function of Tload/T for k =
[10−3, 10−2, 10−1], p̃0 = 0.05, ζ = 103 and α = 0. We recognize that for high

and low Tload/T ratio |Ũ | vanishes as the contact behaves as elastic, while in
the intermediate region and close to Tload/T ≃ 1 the maximum dissipation
is obtained. The dissipation decreases as E0 approaches E∞ (increasing k),
which also slightly influences the maximum location. The dissipated energy
further increases by increasing α as it is shown in panel (b) where we fixed
E0/E∞ = 10−1 and varied the mean normal load by varying the parameter
α = [−0.5, 0, 0.5, 1]. We conclude that generally the best damping perfor-
mance will be obtained for vanishing E0/E∞ (so-called ”liquid” material)
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Figure 5: (a) Dimensionless contact area and (b) mean separation as a function of the
ratio t/Tload for k = 0.1, ζ = 103, H = 0.8, p̃0 = 0.05, Tload/T = 0.1 and varying
α = [−0.8,−0.4, 0, 0.4, 0.8, 1] . Blue and red curves refer respectively to the time intervals
when the contact area is increasing or decreasing. By increasing α, increases the maximum
squeezing pressure, hence one gets a larger contact area and a lower mean separation.
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Figure 6: An example of four loading cycles obtained with k = 0.1, ζ = 103, H = 0.8,
p̃0 = 0.05, α = 0, Tload/T =

[
10−3, 10−1, 100, 103

]
. Blue and red curves refer respectively

to the time intervals when the contact area is increasing or decreasing. The area enclosed
in the hysteresis loop is proportional to the dissipated energy in the first loading cycle.
For the case Tload/T = 10−1 it is shaded in yellow. One sees that both cases of high and
low loading period lead to a vanishing dissipation.

for high mean load and in the range 10−2 ≲ Tload/T ≲ 100.

5. Conclusions

In this manuscript, the Persson elastic theories for the contact of nomi-
nally flat bodies with randomly rough surfaces have been extended to the case
of viscoelasticity by using the correspondence principle of Lee and Radok [59]
and the following extensions by Ting [60] and Greenwood [61]. The case of a
rigid rough surface that indents a standard linear viscoelastic substrate has
been considered in detail, although the equations are written in general form
and the same procedure can be applied to any linear viscoelastic material
once the creep compliance and the relaxation functions are known.

We have considered both the cases of pressure and displacement step
loading. It has been shown that for step pressure loading the real contact
area A creeps in time. For low squeezing pressure, the ratio A(t = 0+)/A(t →
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Figure 7: Dimensionless dissipated energy versus Tload/T for (a) E0/E∞ =
[10−3, 10−2, 10−1], and α = 0 and (b) E0/E∞ = 10−1, and α = [−0.5, 0, 0.5, 1]. The
dissipated energy in the first loading cycle increases by increasing α and by decreasing the
ratio between the moduli k. In both panels ζ = 103, H = 0.8, and p̃0 = 0.05.
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+∞) is equal to the ratio of the moduli k = E0/E∞. For step displacement
loading the average squeezing pressure p relaxes (diminishes) in time with
the ratio p(t → +∞)/p(t = 0+) = k.

Exploiting Ting’s extension of Lee and Radok’s method, we have consid-
ered a full cycle of harmonic loading and unloading, with differing squeezing
pressure mean value. This was particularly interesting to determine the vis-
coelastic bulk dissipation, i.e the energy that gets dissipated per unit nominal
area per loading cycle. It has been shown that the maximum dissipation is
obtained when the loading period is close to the relaxation time of the mate-
rial and is increased by increasing the mean normal pressure and decreasing
the ratio between the relaxed and instantaneous moduli of the viscoelastic
material E0/E∞.
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