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to meet the given conditions on stress at r = a and as r - 00, and to give single-valued

displacements, one solves for U and from it finds the stresses:

X2

arr = (aoo /2)[(1- a2 / ,2) - (1- 4a2 / ,2 + 3a4 / ,4)cos20]

are = -(aoo /2)(1 + 2a2 /,2 - 3a4 / r4)sin28

aee = (aoo /2)[(1 + a2 / ,2) + (1 + 3a4 / r4)cos20]

r

Figure 13. Stress components in polar coordinates.
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Holes and stress concentrations. Consider a circularhole of radius a in a plate whose

dimensions are much larger than a and can, for present purposes be taken as infinite (Figure 14).

The plate is under remotely uniform stress 000 in the 2 direction and the boundary of the hole is

free of loading. The same conditions, interpreted as a plane strain problem, describe a circular

tunnel in a large solid. Thus we wish to solve V2(V2U) = 0 subject to the requirements that the

stresses associated with U satisfy 022 - ~, 0]] -0 and 0]2 - 0 as r - 00,and that on- = °rO

=0 on r = a. To make the solution to this type of problem unique, we must also specify the value

of the integral of au/as with respect to arc length s around the hole, which is zero in the present case

for which we require a single-valued displacement field, but which would be non-zero if the hole

was to represent the core of a dislocation.

Figure 14. Circular hole on a large plate (or circular tunnel

in a solid) under remote tensile stress aoo.

The proper stress state as r - 00is given by writing U = aOO xl / 2 = aoo 1'2(1 + cos 20) / 4

and, while this does not meet the conditions on the boundary of the hole, it does encourage one to

seek solutions to V2(V2U) = 0, which is a partial differential equation, in the form U = g(r) +

h(r)cos28. The functions g(r) and h(r) must satisfy ordinary differential equations, which are

easier to solve. After solving for the most general fonns of g(r) and h(r) which, for example, for h

is h(r) =A r4 + B r2 + C + D r-2 where A, B, C and D are constants, and choosing all constants
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Thus, setting I' =a, aee = aoo (1 + 2cos20) is the stress created around the boundary of the

hole. This amounts at 8 = 0 and n, that is, at boundary points intersected by the X) axis, to a

concentration of stress 000 = 022 = 3 000. At 8 = n/2 and -n/2, points intersected by the X2 axis,

there is an oppositely signed stress 000 = 01] = - 000. Thus, when we consider a circular hole in a

brittle material which can support very little tensile stress, we expect failure to begin at 8 = 0 or n

under remote tensile loading, but at 8 = n/2 or -n/2, and at three times the load level, under remote

compressive loading.

As another problem showing an important aspect of stress concentration, consider the Kolosov-

Inglis problem of an elliptical hole (Figure 15, at left) in large plate under remotely uniform stress
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000 in the 2 direction as above. This also describes the tunnel cavity of elliptical cross section under

plane strain. Let a denote the semi-axis of the ellipse along the I direction and b denote that along

the 2 direction; the equation of the ellipse is X[ / a2 + xi / b2 = I. It is then found that the

concentration of stress at points of the hole boundary intersected by the X 1axis is 022 =

(1 + 2b/a) 000, which can be rewritten as a22 = (I + 2~a / Ptip )aoo. In the latter form, Ptip= b2/a

is the radius of curvature of the hole boundary, at the tip of the hole at Xl =:!:a. This illustrates a

result of general validity for notches with relatively small root radii compared to length: The

elevation of stress over the value (000) in absence of the notch is, very approximately, given by

2~a / ptipaoo in all cases, where a is the half length of an internal notch like the elliptical hole just

discussed, and is the length of a notch that has been cut in from the free surface of a solid. Thus

good engineering design is always sensitive to the stress concentrating effect of holes and,

especially, notches or other cut-outs of small root radius, avoiding them where possible. This is a

lesson reinforced by the bitter experience of many structural failures beginning at unrecognized

locations of stress concentration. In the particular case of the elliptical hole, the stress induced

along the hole boundary where it is intersected by the X2 axis is 011 = - 000 , independent of the b/a

ratio.

inclusion of another material, in this case a material with vanishing small elastic modulus compared

to that of the surrounding solid (so that the situation in the surrounding solid is indistinguishable

from that for the case of a hole), then that inclusion would undergo uniform strain, the strains E)t'

within it being given by rewriting the above equations as ul = E{leI Xl and u2 = E~1eIX2 and noting

that E{~c1 = O. A little reflection on this result will convince one that if an inclusion of arbitrary but

uniform and isotropic material properties (the stress-strain relation for the inclusion material need

not even be linear) were placed in the hole, then the inclusion would undergo a uniform stress and

strain that could be calculated from its material properties and the information given so far here.

t X2
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f X2 Xl

This discussion generalizes to an important three-dimensional result discovered by J. D.

Eshelby and which is this: Let a uniform, possibly anisotropic, linear elastic solid of infinite extent

be loaded by a remotely uniform stress tensor and let it contain an ellipsoidal inclusion of a material

of uniform but different mechanical properties. The inclusion material can even be such that, in its

stress-free state, it takes an ellipsoidal shape which differs finitely from the stress-free shape of the

ellipsoidal hole into which it is to be inserted. Eshelby's result is that, regardless of all these

factors, the inclusion undergoes a spatially unifonn stress and strain state. To develop that result,

Eshelby first solved the transformation problem of a misfitting linear elastic inclusion of identical

properties as those of the surrounding material. That involves taking an ellipsoidal region of a

uniform solid and, at least conceptually, transforming its stress-free state by a homogeneous

infinitesimal strain, without changing its elastic properties. A uniform stress field within the

transformed zone then suffices to deform it back to its original shape, and that stress field can be

maintained in-situ, without disturbance of the region outside the ellipsoid, by application of a

suitable layer of surface force. Since the actual transformation problem to be solved has no agent to

supply that layer of force, the strains everywhere can be calculated as those due to removing such a

layer (Le., applying a force layer of opposite sign) within an elastically uniform full space. One
calculates then that the stress and strain state induced within the inclusion is uniform, and the rest of

what is needed for arbitrary inclusions can be developed from there.

~ ~

1 2a I

Figure 15. Elliptical tunnel hole, and limit as a flat crack.

Inclusions. Points around the boundary of the elliptical hole just discussed are found to

displace according to the equations

ul = -(aoo / E')Xl, and U2 = (I + 2a / b)(aoo / E')X2

Crack as limit of elliptical/role. Consider again the two-dimensional problem of the elliptical

hole under remotely uniform tension, and let the semi-axis b go to zero (Figure 15, at right) so as to

define a flat Griffith crack lying along the X 1axis on - a < Xl < + a. In this case the stress

concentration at the hole becomes unbounded so that it can fairly be objected that the discussion

lies outside the proper realm of linear elasticity. However, as will be seen, it proves quite useful to

continue with the linear elastic model and to learn about its stress singularities. Letting

L1u2= U2 - Uz denote the crack opening gap (superscripts + and - denote the upper and lower

where X 1and X2 are coordinates of points on the boundary, and satisfy X[ / a2 + xi / b2 = I.

Also, E' = E for the plane stress model but E' = E / (1- v2) for plane strain. These results show

that if we had considered not a solid with an elliptical hole but rather a solid with a uniform elliptical
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