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Abstract

The duality between terminating discontinuities of fields and the in-
compatibilities of their gradients is used to define a coupled dynamics
of the discontinuities of the elastic displacement field and its gradient.
The theory goes beyond standard translational and rotational Volterra
defects (dislocations and disclinations) by introducing and physically
grounding the concept of generalized disclinations in solids without a
fundamental rotational kinematic degree of freedom (e.g. directors).
All considered incompatibilities have the geometric meaning of a den-
sity of lines carrying appropriate topological charge, and a conserva-
tion argument provides for natural physical laws for their dynamics.
Thermodynamic guidance provides the driving forces conjugate to the
kinematic objects characterizing the defect motions, as well as admis-
sible constitutive relations for stress and couple stress. We show that
even though higher-order kinematic objects are involved in the spe-
cific free energy, couple stresses may not be required in the mechanical
description in particular cases. The resulting models are capable of ad-
dressing the evolution of defect microstructures under stress with the
intent of understanding dislocation plasticity in the presence of phase
transformation and grain boundary dynamics.
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1 Introduction

The dynamic response of solids to mechanical and thermal loading involves
material-physics phenomena that are manifested over multiple length and
time scales. The material responds to load through atomic level processes
involving crystal defects that mediate plasticity, phase transformations and
damage. These processes, however, generally occur in materials whose in-
trinsic microstructure affects bulk properties like strength, ductility, and
fracture toughness. Although relevant dimensions and time span for the nu-
cleation of the individual defects can be A and picoseconds, their collective
interaction, evolution and relaxation occur at larger time scales (us). The
objective of the program on which this paper is based is the development of
a kinematically rigorous continuum mechanics model to serve as the basis
for a simulation framework; the goal is to predict deformation-induced mi-
crostructure evolution and its effects on macroscopic properties in materials
that undergo coupled plasticity and phase transformation. The kinematic
ingredients of the model naturally include structural defects representative
of grain boundaries. Such inelastic deformation is complex because of the
essentially collective character of the dynamical behavior of structural de-
fects over engineering time and length scales; nevertheless, understanding
the underlying dynamics of defects is essential for predicting flow and failure
at meso- and macroscopic scales. Due to space limitations, in this paper we
outline only the small deformation kinematics and thermodynamics of our
model.

This paper may be considered as an extension of the pioneering work of
deWit [deW70] on dislocation-disclination statics that was generalized by
Fressengeas et al. [FTC11] to account for disclination-dislocation dynam-
ics; our work describes the dynamics of a more general class of defects than
dislocations and disclinations. It also has broad philosophical similarities
with the work of [Kle08]. Here, the whole elastic distortion ‘gradient’ can
be incompatible in order to represent terminating/kinking elastic distortion
discontinuities as may arise, e.g., in a martensitic needle or a facet of a
phase-transforming inclusion. Through the connection to the kinematics of
phase transformations, our work provides an unambiguous physical basis to
the notion of generalized disclinations (g-disclinations) even in solids with-
out any director degrees of freedom. It is also motivated by that of [AK90]
on dynamic phase transformations that allows for full freedom in specifying
kinetics of phase front motion, and generalizes it to account for geomet-
ric singularities in the surfaces of discontinuity. In this last context, there
appear to be connections between our model and the fundamental work of



[SB98], and through that, to the configurational force framework of [Gur00].
However, we believe that the details of generating approximate solutions to
our theory based on nonlinear partial differential equations (PDE), while
non-trivial, are going to be much simpler!' than the complications involved
in the configurational force setup that, to our knowledge, has not been
solved in full 3-d generality as yet. As we understand, these difficulties stem
from applying boundary conditions for the field equations on the (solution-
dependent) moving boundaries of the cylinders representing the cores of the
phase-transformation singularities. A primary future goal of our program is
to make contact with the Topological Model put forward by [HP11] in the
modeling of displacive phase transformations.

Phase field methodology has been used to study phase transformations
and plasticity [LLZF09], but the governing dynamical principle there is of
finding local minima of energy. In contrast, the dynamics we propose is
based on geometrically rigorous conservation laws for line-defect densities
carrying appropriate topological charge (much like vortices in fluids and
superconductivity) and we have shown, in simple but exact realizations of
sub-parts of our model, that the class of equilibria of such conservation laws
contains that of phase field models but is strictly larger, while in dynamic
behavior it allows defect motion as wave propagation that simply cannot
be predicted by phase field models ([AMZ10],[AT11]). Also, generalizing
the standard formalism for describing stress (arising from elastic straining)
in phase field methodology to the finite deformation setting to incorporate
elastic response developed from atomistic considerations appears to be an
as yet unsettled matter.

We use more-or-less standard notation. All tensor indices are written
with respect to the basis e;,7 = 1to 3 of a rectangular Cartesian coordinate
system. The symbol e;;;, represents the components of the alternating tensor
X. Vertical arrays of two or three dots represent contraction of the respective
number of ‘adjacent’ indices on two immediately neighboring symbols (in
standard fashion). Also,

(C’Ufl”l A)ij orikj — ejrsarAis oriks
(divA)iorik = OrAirorikr for A a 2™ or 3" order tensor
(A X V)Z] orikj — ejrs‘/;Airorikr

'Indeed, Fressengeas et al. [FTC11] have already developed and demonstrated a finite-
element implementation of the pure disclination-dislocation dynamics case. An attractive
feature is the coherence of the algorithm with that of the pure field dislocation dynamics
case first introduced in [RA05].
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Figure 1: Discontinuity of a discontinuity; cross-section view of straight
defect lines terminating displacement/distortion discontinuities.

2 The physical idea

The fundamental theoretical concern is the modeling of the dynamics of the
relevant defects that may be viewed as discontinuities in the elastic dis-
placement, rotation and distortion fields (slip, grain and phase boundaries,
respectively) across surfaces, terminating in line singularities (dislocation,
standard disclination and generalized disclination, respectively) as sketched
in Fig. 1. It is well known that when defects are viewed at sufficiently small
scales there are no discontinuities and singularities but only appropriately
localized smooth fields. Moreover, for the purpose of understanding the
nonlinear dynamics of such defects and their collective effects, in particular
in the context of nonlinear PDESs, such smooth localized representations of
the physical reality of defects are essential from the point of view of mathe-
matical analysis and numerical computation. There is a significant duality
between the terminating curves of discontinuities of fields on 2-d surfaces
and the smooth incompatibilities of the ‘gradients’ of such fields. The es-
sential idea is that the geometrically defined incompatibilities model defect
curves. Each (often closed) curve separates two disjoint pieces of a 2-d sur-



face. The field in question is discontinuous by different amounts across the
two 2-d pieces, and the advance of the curve represents the spreading of
one piece at the expense of the other. The incompatibilities have the rigor-
ous geometric meaning of a density of lines carrying appropriate topological
charge, so that a tautological conservation argument provides most of the
structural elements of a natural physical law for the dynamics of the field?.
We exploit this feature to define coupled PDE-dynamics of the discontinu-
ities of the elastic displacement field and its gradient. When restricted to
the elastic displacement, a nonlinear theory for the dynamics of dislocation
and slip results. When applied to the elastic distortion, the theory provides
for the dynamics of g-disclinations, going beyond the Volterra construct by
including elastic strain discontinuities, and allows dealing with phase and
grain boundaries. Unlike the Volterra concept, our continuously distributed
approach seamlessly models single defects up to a continuously distributed
field in the entire body, as might be encountered in the transition of a
solid to a liquid-like state under strong shock loading. These models are
capable of addressing phase transformation and dislocation motion-related
microstructure evolution under stress. While being based on PDEs in the
set of variables involved, they are non-local models in space and time in
the standard variables of conventional continuum mechanics, thus providing
geometrically rigorous, physics-based, nonlocal generalization of the latter,
and leading to well-set models of post-initiation defect mechanics.

3 DMotivating kinematical notions

As is well-known, a classical, singular dislocation line in a simply-connected
body has a smooth elastic (1-)distortion (strain 4 rotation) field in the non
simply-connected, punctured domain represented by the region excluding
its core, even though the elastic displacement field it is considered to arise
from has a discontinuity across a (non-unique) 2-d smooth slip surface in
the same region. The geometry of any such 2-d surface is arbitrary, except
that it terminates along the curve representing the core of the dislocation.
Additionally, the important topological fact about such a field is that a line
integral of the elastic distortion along any curve encircling the core is non-
vanishing and constant over all such curves. This constant represents the
strength of the dislocation, i.e., the Burgers vector. Thus, as concerns a clas-
sical dislocation, it is only its elastic distortion field that one can precisely

2This is in contrast to dynamics based on the local “principle of virtual power” whose
validity has recently been questioned [Fosl1].



discuss, and not the displacement field. The continuously distributed dislo-
cations setting eases this classical description by considering smooth elastic
distortion fields on simply connected domains in which they are pointwise ir-
rotational outside the core cylinder (possibly of non-zero volume), and their
curl equals the corresponding Nye dislocation density tensor fields inside
the cylinder. The distribution of the elastic distortion and the dislocation
density tensor fields on the body are set up such that the Burgers vector of
the dislocation being modeled is obtained on integration of the fields along
appropriate surface patches and/or closed curves.

Once understood, this fact enables the definition of a phase boundary,
i.e., a 2-d surface of elastic distortion discontinuity (which includes the case
of a grain boundary), terminating on a g-disclination curve. In this case, we
assume the continuous elastic 2-distortion field (i.e., the incompatible elastic
distortion ‘gradient’ field) to be irrotational outside the g-disclination core,
and the g-disclination strength to be the second-order tensor obtained by
integrating the 2-distortion field along a closed curve encircling the core. In
the pure disclination case, this second-order tensor is a skew-tensor whose
axial vector is called the Frank vector of the disclination. In the non-singular,
continuously distributed setting, one way of setting up the 3rd order, g-
disclination density field for a straight g-disclination would be to assign the
tensor product of the 2nd order, strength tensor and the core line direction
divided by the core cross-sectional area as a constant distribution within the
core cylinder and zero outside it. Considered from the dual viewpoint of a
discontinuous elastic distortion field with discontinuity terminating at a core
singularity, the strength tensor is simply the jump in the elastic distortion
across the surface of discontinuity.

It is important to note explicitly that, in the continuously distributed
setting, the elastic distortions are no longer gradients but have incompatible
parts that may be defined through a Helmholtz decomposition. We would
now like to set up a dynamical theory of such dislocation and g-disclination
defect curves and (meta)slipped regions, taking into account forces, moments
and dissipation.

4 Mechanical structure

Let T be the (generally unsymmetric) stress tensor, A the couple stress
tensor, X the alternating tensor, u the material displacement vector, v the
material velocity vector, D and ) the symmetric and skew-symmetric parts
of the velocity gradient, and w = —(1/2) X : Q = curl v the vorticity vector.



Let U¢€ be the elastic 1-distortion tensor and G€ the elastic 2-distortion tensor
(in gradient elasticity these would be gradu and gradgradu, respectively).
We define

G° —gradU°® =: P? (1)
-G X = a° (2)
curl G¢ = curl P° = II°, (3)

where o® is the dislocation density (2"¢-order) tensor and IT® is the g-
disclination density (3"¢-order) tensor. Both the dislocation density and the
g-disclination density tensors are ‘vector(tensor)-valued axial vector’ fields
representing third (fourth) order tensor fields that are skew in their last two
indices. Thus, they form densities that can be integrated over area elements.
Physically, such fields represent densities of lines carrying appropriate ten-
sorial attributes.

It is helpful for physical interpretation to invoke a Stokes-Helmholtz-like
orthogonal decomposition of the field P° into compatible and incompatible
parts:

Ps = Pt 4 gradz®
div P = 0 (4)
with Ptn = 0 on boundary of the body B.

It is clear from (3) and (4) that when IT® = 0 then P** = 0. Thus, refer-
ring back to our physical picture of a single terminating elastic distortion
discontinuity, the expression

G¢ = Pt 4 gradU® + grad Z° (5)

implies that a smooth representation of elastic distortion discontinuities
across surfaces that do not terminate or have discontinuities in their tangent
plane orientation field is embodied in the compatible part of G¢, character-
ized by gradU¢€ + grad Z°. Thus, the compatible part of G¢ characterizes
smoothed phase/grain boundaries without kinks or corners. P*L, on the
other hand, characterizes phase/grain boundaries with kinks or corners.
Also, recognizing curlU¢ = —gradU® : X as representative of slip dislo-
cations arising from slip discontinuities, the expression

o =—-G*: X =—P . X —gradU®: X —grad Z°* : X

implies that —grad Z° : X is representative of pure transformation disloca-
tions, while —P*+ : X is representative of g-disclination-induced transfor-
mation dislocations. Thus, it becomes clear why an infinite grain bound-
ary /incoherent phase boundary can often be represented by slip dislocations.



In addition, (5) also makes clear what parts of the structure of a general
grain/phase boundary cannot be represented by slip dislocations.

We now assume that the dislocation and the g-disclination densities rep-
resenting line-like objects have velocity fields, V¢ and V™, associated with
them. In situations when these fields represent individual defects through
non-singular localization in core cylinders, the corresponding local value of
the velocity field represents the velocity of the movement of the core cylin-
ders. Furthermore, because these defect fields are line densities, conservation
laws for their evolution are an immediate consequence [Achll]. The local
form of the conservation law for II° is given by

I = —curl (IT* x V™). (6)
As for the evolution of the line density field curl U¢, we note from (5) that
o + Ps: X = curl Ue (7)

which we set equal to —curl (a® x V) from the kinematics of flux of lines
moving into an area patch through its bounding curve® to obtain

o8 = —curl (o® x V) — Ps: X, (8)

which implies
divos = I : 1.

Physically, this means that in contrast to the pure dislocation case, disloca-
tion lines can terminate within the body on phase/grain boundaries, but the
locations at which they do so necessarily involve a variation in the strength
of the elastic distortion discontinuity along the phase/grain boundary.

The statements (3) and (6) imply

Ps = —II°* x V™ + grad K*, (9)

where K® is a strain rate (2"-order tensor) and grad K® is a compati-
ble contribution to the elastic 2-distortion rate associated with the trans-
verse motion of (physically identifiable) phase/grain boundaries. K*® requires
specification based on geometric and constitutive considerations.

We now introduce the definition

UP = gradu — U°. (10)

3an equally plausible expression would be to set —curl (curlU® x V), but the one we

choose appears to have a definite advantage for the modeling of disclination and dislocation
free phase transformations.



Then, (7,8,10) imply ‘
UrP=a°x Ve, (11)

where, unlike the 2-distortion case, we do not include the free gradient (rep-
resenting an inelastic strain rate) that arises in deducing (11) due to the
assumption that slip-boundaries are often not physically identifiable. Even
when they are, as in the case of stacking faults, their evolution typically
consists of expansion or shrinkage in the slip plane governed by the motion
of their bounding dislocation curve(s), so that no generation of independent
inelastic strain rate may be assigned to this evolution.

Summarizing, one minimal representation of the field equations of the
model consist of equations (1,2,3,9,11) along with

divT =0 (12)
divA—X:T=0 (13)

representing balance of linear momentum and angular momentum, ignoring
body forces and couples and inertia terms (without loss of essential gener-
ality for the present purpose). The last two equations serve to determine
the displacement field, when appended with constitutive equations for the
stress and couple stress tensors. In addition, constitutive equations are also
required for the dislocation and g-disclination velocities as well as the po-
tential K* for the compatible part of the elastic 2-distortion rate, G€.

5 Constitutive guidance from thermodynamics

Following [MT62], we consider the following statement to characterize the
work of external agents on the body:

/ (Tn)-vdv+ [ (An)-w dv,
oB oB

where B is the body, 0B its boundary and n the outward unit normal to the
boundary. Denoting by % the free energy per unit volume field on the body,
we define the (mechanical) dissipation to be

D = /aB(Tn)-vdv—{—/aB(/ln)-wdv—/Blj}dv
= /BTsym:de—;/B/l:grad(X:Q)dv—/lgz/}dv. (14)

We now consider three possible constitutive dependencies for ¢ and show
that even though ‘higher-order’ kinematic objects are involved in the specific



free energy, in two of these cases no couple stress is required, at least based
on thermodynamic considerations. We also derive the driving forces for
the dissipative mechanisms of dislocation motion (characterized by V<), g-
disclination motion (characterized by V™) and phase/grain boundary motion
(characterized by K*, up to further future geometric refinement to go from
a strain-rate to a phase-front velocity).

By substituting these constitutive hypotheses into (14) we identify the
dissipative power-conjugates to the defect motion variables as driving forces.
We also identify constitutive equations for the stress and couple stress ten-
sors by requiring that D = 0 for all possible motions of the body in the
absence of the dissipative mechanisms.

5.1 =1 (U¢, P?, II°) implies no couple stress

The considered constitutive class is one that contains elastic 2-distortion
contributions in the specific free energy arising only from disclination and
phase/grain boundary-induced fields, but none from the gradient of the elas-
tic 1-distortion. We require that

~ A~

Y (U, P3IT%) = (U + W, P* II°) ¥V W skew,
which implies that dye1 has to be symmetric (and more). Also,

)= (BUeqﬂ)sym s gradv — (Gyezﬁ) UP + Opst)p - PS + Oppsth : 118

sym

which, along with (11,9,6) and (14) implies,

D — /B [Tsym—(aUey})sym} . D dv (15)

1
—f//l:g'rad(X:Q) dv
2)B

—I—/ {X (aUe@@) ozs} -V dv
B sym
+[ |x (aps¢+curz ansq/})” Ife; @ep v | - V™ dv
5 ijl ijk
+ / div (apsz;) CKS dv
B
—/ (Kszapsqz))ndaJr/ (HSXV’T)E(ansqzjxn) da.
oB oB
Thus we conclude that

T = (8[,@1;) (16)

sym

10



A=0 (17)

X (T"a*) < V* in bulk (18)

X {(apszﬁ + curl 31751]1)”[ II5ke ® ek} — VT (19)
ij

K*® < div (apsq/}) in bulk, (20)

form a consistent set of constitutive guidelines that satisfies balance of angu-
lar momentum identically. Here < is used as shorthand for “is the driving
force for.” In addition, the last line of (15) may be interpreted as providing
driving forces for K® and V™ on the boundary of the body.

The driving ‘force’ in (18) is the analog of the Peach-Koehler force of
classical dislocation theory; it has physical units of force/volume, to be in-
terpreted as the force acting on unit volume of the dislocation core cylinders.
The driving force in (19) is the corresponding thermodynamic force on unit
volume along the length of a g-disclination cylinder; this is a new construct
whose analog for the pure disclination case arises in [FTC11]. Finally, (20)
shows the driving force for the inelastic strain-gradient rate produced due
to the motion of phase/grain boundaries.

5.2 Y= @&(UE,PS, II*, curl U¢) implies no couple stress
Define & = curl U¢. Then, an additional term to the dissipation (15) is
—/&ﬂﬂ cq dv = /8&@2 ceurl (o x V) do.

B B

The results (16,17,19) remain unchanged and (18) changes to
N\T

X (T + curl adzp) a® < V in bulk,

with an additional boundary term in the dissipation (15) given by

- ds1h : [(a® x V) x n] da.
oB
It is interesting to note that the presence of a special combination of
gradU*€, i.e., the part only related to slip dislocation content, allows a the-
ory without couple stress and a symmetric stress tensor on thermodynamic
grounds. A special case of the constitutive class considered here was treated,
with similar results, in [Ach10].

11



53 1= QZJ(UG, Ps 11%, grad U¢) implies model with couple stress

We use the notation gradU¢ =: VU€® and observe that a functional de-
pendence of the specific free energy on the whole elastic 2-distortion, i.e.,
P = &(U € G¢, II®) is a special case of the constitutive class being considered
for which

Ovuep (U, P*,11°,VU®) = 0getp (U, G, II°).
In this case, the additional terms in the dissipation (15) are
—/ vyt : gradgradv dv + /aVUel; s grad(a® x V) dv.
B B

Noting that
A grad (XQ) = —emnidijvmng,

(17) is replaced by the relation
mniij + mzAzn:_|:a eA + (0 eA },
€ J Emg ( vu w)mn] ( vu w)m]n
(18) is replaced by
T
X (T — div aVer) af < V in bulk,
with an additional boundary term in the dissipation (15) given by
/ [(ozs x V). GVUeﬂ n da.
oB

Thermodynamical considerations leave the following parts of the stress and
couple stress tensors,
Tij —Tji
emni/lij - 6mjiAin’

constitutively unspecified. Balance of linear momentum (12) and angular
momentum (13) along with boundary conditions serve as two constraints for
their determination.

6 Concluding remarks

A ‘small-deformation’ theory of coupled plasticity and phase transforma-
tion accounting for the dynamics of generalized defects, i.e., dislocations
and g-disclinations, has been proposed. When the elastic strain-gradient is

12



compatible, the present theory reduces to that of [FTC11], which involves
only dislocations and pure disclinations.

A fundamental premise of our work is that it is not necessary, neither
efficient, to resolve atomic level vibrations to model defect dynamics leading
to inelasticity at meso- and macroscopic scales. Our PDE-based modeling
paradigm is to account for the defects in atomic configurations in (material-
specific) nonlinear elastic media, focusing on the dynamics of distributions
of defects in such configurations, rather than the dynamics of the atoms
themselves. This requires minimal, but essential, input on the mobility
of single defects and nonlinear (and non-monotone) elastic behavior from
MD/Quantum mechanics. Such transfer of information has the potential
for computational efficiency because one does not have to resolve atomic vi-
brations anymore. Our general philosophy is motivated by the great success
of the Peierls model in elucidating basic dislocation physics, and is a gener-
alization of that approach to deal with unrestricted geometric nonlinearity,
full-fledged non-monotone bulk elasticity and inertia. Moreover, the most
noteworthy merit of such a PDE-based approach is that it suggests rational
and natural ways for developing coarse-grained meso/macroscale models of
averaged defect densities interacting with stress and leading to inelastic flow
and failure, a subject of great current interest.
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