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Abaqus/Explicit Smoothed Particle Hydrodynamics
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Summary

Durability is a key measurement of prosthetic heart valve
function. Assessment of fatigue life requires accurate es-
timates of the stresses induced during the cardiac cycle.
Finite element (FE) studies have been used to estimate
peak stresses in valves [1], and computational fluid dy-
namics (CFD) studies have been used to model blood flow
around valves [2]. Fluid-structure interaction (FSI) studies
are less common, in part because the closure of the valve
creates CFD domain pinching.

The smoothed particle hydrodynamic (SPH) analusis
method in Abaqus/Explicit overcomes this difficulty. In
this Technology Brief, the SPH technique will be used to
determine the FSI response of a generic prosthetic heart
valve.

Background

There are two principal modes of aortic valve disease: aor-
tic stenosis, in which the valve no longer fully opens, and
aortic regurgitation, in which the valve no longer fully
closes. Either condition can eventually require the im-
plantation of a prosthetic valve to replace the underper-
forming original.

Surgically implanted or transcatheter-delivered biopros-
thetic aortic valve leaflets undergo dynamic cyclic loading
and large deformation during the cardiac cycle. This can
cause fatigue failure of the leaflets, compromising valve
function and potentially affecting the patient. Accurate
stress analysis of the valve during operation is therefore
essential for designing durable aortic valves and improv-
ing patient outcomes.

The operating conditions of the aortic valve are complex.
The pressure on the aorta side of the leaflets is lower
than that on the ventricular side when the ventricle is
pumping oxygenated blood into the aorta, and the pres-
sure on both sides varies depending on the stage of the
cardiac cycle. This can be modeled by applying dynamic
pressure loads (corresponding to loads measured in the
aorta and left ventricle) directly onto the leaflets, which is
an improvement in accuracy compared to previous analy-
ses that used only static load conditions.

Even this method, however, does not account for the in-
ertial and viscous effects of blood contacting the leaflets
during flow. CFD can model the behavior of the blood,

Abaqus Technology Brief

Key Abaqus Features and Benefits

Abaqus/Explicit Smoothed Particle Hydrodu-
namics capability for analyses involving ex-
treme deformation

Robust hyperelastic material modeling

General contact capability for simplified defini-
tion of contact interactions

and a coupled fluid-structure interaction (FSI) analysis
can capture the effect of the blood on the valve during
the cardiac cycle.

There is a final condition during the cucle that presents a
challenge to coupled FSI: the fluid domain pinches during
valve closure, which is a condition most CFD packages
cannot handle. The Smoothed Particle Hydrodynamics
(SPH) analusis technique, available in Abaqus/Explicit
6.11-1, addresses this challenge and makes modeling
heart valves for the entire cardiac cycle possible, thus in-
creasing the accuracy of prosthetic valve stress analysis.

Analysis Approach
Smoothed Particle Hydrodynamics

SPH offers several advantages over CFD and coupled Eul-
erian-Lagrangian methods in tracking free surface
boundaries, handling small material-to-void ratios, and
modeling extreme deformation with fragmentation. The
latter capability makes it ideal for simulating the behavior
of blood during valve closure and pressure changes.


u48
Typewritten Text
Visit the Resource Center for more SIMULIA customer papers

http://www.3ds.com/products/simulia/resource-center/

SPH is part of a larger family of meshless numerical
methods that define a body by a collection of points, in-
stead of using nodes and elements. The SPH method im-
plemented in Abaqus 6.11-1 uses a cubic spline kernel
for interpolation, applying either a fixed or a variable
“smoothing” length to particles. Internally, particle con-
nectivity is determined based on smoothing length. The
particles can contact Lagrangian bodies (in this case, the
valve leaflets) through the Abaqus/Explicit general con-
tact feature. In addition, particles can be “glued” to La-
grangian bodies through *TIE constraints. SPH supports
an extensive library of solid and fluid materials, including
user materials.

For this particular simulation, a finite volume of blood
near the aortic valve was modeled with one-node PC3D
elements. All particles had the same volume initially.
There were 4956 particles, each with a radius of T mm.

Material Modeling

A generic aortic valve was meshed with shell (S4) ele-
ments. The valve had a diameter of 26mm and a thick-
ness of 0.5mm. The junction between the aorta and the
left ventricle was represented with a rigid tube, and two
rigid plates were used to apply pressure on either side of
the fluid particles (Figure 1).

The material for the valve was modeled with the Marlow
isotropic hyperelastic representation, the general first-
invariant huyperelastic material model in Abaqus. This
model can exactly duplicate phusical test data from one
of several standard modes of loading (uniaxial, biaxial, or
planar). It works well in situations where extensive data
for one of the test modes is available. For the present
analysis, uniaxial tensile test was used. (Figure 2).

Boundary and Loading Conditions

Translational degrees of freedom were fixed for the valve
edges. Left ventricle and aorta pressure profiles were ap-
plied to the end plates (Figure 3) [1]. The pressure profiles
start from the point at which the pressure inside the left
ventricle and the aorta are the same since the initial con-
dition of the valve was stress-free. The same pressure
was applied to the fluid as an initial condition. The end
plates were not allowed to rotate, and because the finite
volume of fluid is incompressible, the two rigid plates
were constrained to have the same displacement along
the axial direction using an equation constraint.

As a reference model, a second analysis was run with the
same (uniform) pressure profiles directly applied on the
valve leaflets without the fluid. All other conditions were
the same as the FSI model.
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Figure 1: Aortic valve model with SPH particles
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Figure 2: Leaflet material test data and Marlow model repre
sentation
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Figure 3: Pressure load profiles [1]
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Figure 4: Mises stress on the leaflets during diastolic phase, SPH model (left) and reference model (right)

Results and Conclusions

Peak stress in the valve leaflets occurs during the diastolic
phase, when the valve leaflets are closed. Higher stresses
are observed in the FSI analysis using SPH than the refer-
ence model (Figure 4). In addition, the distribution of
stresses is also different. Stress hot spots are observed in
the middle of the leaflets as well as near the corners
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where two leaflets meet. This shows that, in addition to
the pressure loads, the inertia effect of the fluid also in-
fluences the stress analysis results.

The present SPH simulation capability is an important
step toward providing prosthetic valve designers with
increased simulation accuracy and the data needed to
design more durable valves.
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