1 Derivative $\frac{\partial J_{\mathbf{m}}(\sigma)}{\partial \underline{\sigma}}$

Here I am going to describe the possible problem with the derivation of the aforementioned derivative $\frac{\partial J_{\mathrm{m}}(\sigma)}{\partial \sigma}$ in the paper by Masatsugu Yaguchi and Yukio Takahashi "Ratchetting of viscoplastic material with cyclic softening, part 2: application of constitutive models", International Journal of Plasticity 21 (2005) 835-860, when taking into account the tension-compression asymmetry. It is also possible though that it is just my misunderstanding of the derivation. If it is the later, could you please give some details on where a flaw might be in my derivations?
The term that takes into account the tension=-compression asymmetry is

$$
\begin{equation*}
J_{\mathrm{m}}(\underline{\sigma})=\eta|\operatorname{tr} \underline{\sigma}|^{l} \operatorname{sgn}(\operatorname{tr} \underline{\sigma}) \tag{1}
\end{equation*}
$$

where η and l are constants.
Then later in the paper its derivative with respect to $\underline{\sigma}$ is taken:

$$
\begin{equation*}
\dot{\epsilon}_{\mathrm{in}[\mathrm{~m}]}=\dot{p} \frac{l J_{\mathrm{m}}(\underline{\sigma})}{|\operatorname{tr} \underline{\sigma}|} \underline{I}=\dot{p} \frac{\partial J_{\mathrm{m}}(\underline{\sigma})}{\partial \underline{\sigma}}=\dot{p} l \eta|\operatorname{tr} \underline{\sigma}|^{l-1} \operatorname{sgn}(\operatorname{tr} \underline{\sigma}) \underline{I} . \tag{2}
\end{equation*}
$$

So according to the paper

$$
\begin{equation*}
\frac{\partial J_{\mathrm{m}}(\underline{\sigma})}{\partial \underline{\sigma}}=\operatorname{l\eta }|\operatorname{tr} \underline{\sigma}|^{l-1} \operatorname{sgn}(\operatorname{tr} \underline{\sigma}) \underline{I} \tag{3}
\end{equation*}
$$

When I tried to repeat the derivation, I came up with

$$
\begin{equation*}
\frac{\partial J_{\mathrm{m}}(\underline{\sigma})}{\partial \underline{\sigma}}=\frac{\partial}{\partial \underline{\sigma}}\left[\eta|\operatorname{tr} \underline{\sigma}|^{l} \operatorname{sgn}(\operatorname{tr} \underline{\sigma})\right]=\eta\left[\frac{\partial}{\partial \underline{\sigma}}\left(|\operatorname{tr} \underline{\sigma}|^{l}\right) \operatorname{sgn}(\operatorname{tr} \underline{\sigma})+|\operatorname{tr} \underline{\sigma}|^{l} \frac{\partial}{\partial \underline{\sigma}}(\operatorname{sgn}(\operatorname{tr} \underline{\sigma}))\right] . \tag{4}
\end{equation*}
$$

Where

$$
\begin{equation*}
\frac{\partial}{\partial \underline{\sigma}}\left(|\operatorname{tr} \underline{\sigma}|^{l}\right)=l|\operatorname{tr} \underline{\sigma}|^{l-1} \operatorname{sgn}(\operatorname{tr} \underline{\sigma}) \underline{I} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\frac{\partial}{\partial \underline{\sigma}}(\operatorname{sgn}(\operatorname{tr} \underline{\sigma}))=2 \delta(\operatorname{tr} \underline{\sigma})\right) \underline{I} \tag{6}
\end{equation*}
$$

where δ is the Dirac delta function. Alternatively, we can say that $\frac{\partial}{\partial \underline{\sigma}}(\operatorname{sgn}(\operatorname{tr} \underline{\sigma}))$ is $\underline{0}$ (tensor with all components equal to zero) everywhere where ($\operatorname{tr} \underline{\sigma}$) is non-zero.
Combining (4), (5) and (6) we get

$$
\begin{equation*}
\left.\frac{\partial J_{\mathrm{m}}(\underline{\sigma})}{\partial \underline{\sigma}}=\eta l\left|\operatorname{tr} \underline{\sigma}^{l-1} \operatorname{sgn}(\operatorname{tr} \underline{\sigma}) \underline{I} \operatorname{sgn}(\operatorname{tr} \underline{\sigma})+\eta\right| \operatorname{tr} \underline{\sigma}^{l} 2 \delta(\operatorname{tr} \underline{\sigma})\right) \underline{I} . \tag{7}
\end{equation*}
$$

Taking into account the relationship $(\operatorname{tr} x)^{2}=1$ (for any $x \neq 0$) and the fact that $\delta(x)=0$, for $x \neq 0$ we can simplify (7) to

$$
\begin{equation*}
\frac{\partial J_{\mathrm{m}}(\underline{\sigma})}{\partial \underline{\sigma}}=\eta l|\operatorname{tr} \underline{\sigma}|^{l-1} \underline{I} . \tag{8}
\end{equation*}
$$

As you can see, the derivative (3) obtained in the paper differ from the derivative (8) obtained here.
Is the derivation correct?

