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A B S T R A C T

By integrating the simple deterministic Paris’ law from a distribution of initial defects, in the form of a
Frechet extreme value distribution, it was known that a distribution of Weibull distribution of fatigue
lives follows exactly. However, it had escaped previous researchers that the shape parameter of this
distribution tends to very high values (meaning the scatter is extremely reduced) when Paris’ exponent
m approaches 2, leading to the exponential growth of cracks with number of cycles. In view of the fact
that values close to m=2 are of great importance in materials for example used for primary aircraft
structures as recognized by some certification requirements (and the so-called “lead crack” metho-
dology), we believe this conclusion may have some immediate relevance for damage tolerance pro-
cedures, or certification methods where accurate description of scatter is required. Indeed, we extend
the result also to the case when Paris’ constant C is distributed, and give also an estimate of the level of
scatter expected in propagation life in the most general case when C, m are both random variate
alongwith the defect size distribution, based on first transforming them to uncorrelated form C0,m, and
validate this with the famous Virkler set of data. We finally discuss that from known typical values of
fatigue life scatter of aeronautical alloys, it is very likely that an important contribution comes from
short crack growth.

1. Introduction

The scatter of fatigue properties has been studied for long time but maintains a vivid interest because of the enormous techno-
logical implications of maintaining safety in critical applications. Today, design and life management approaches for materials in
safety-critical applications typically rely on large testing programs which produce extensive databases of fatigue data: improved
understanding of the underlying statistics would help materials engineer to improve materials, testing and certification procedures to
become quicker and less expensive, and engineering applications to become more performant, cheaper and lighter because of the
extensive use of more advanced probabilistic design. The statistical behavior of fatigue lifetimes has strong similarities with the
statistics of brittle materials, and indeed Weibull’s distribution was developed by Weibull exactly to describe the scatter of the
strength in brittle materials, for which often Weibull shape parameter is considered a “material constant” [1, and references therein].
The classical interpretation of Weibull modulus in terms of a result of possible brittle fracture of the cracks, and the Weakest Link
Theory (WLT), connected brittle failure to the theory of extremes values. One example of physically significant distribution functions
of extreme values (here, the largest cracks) bears the name of Frechet, having Cumulative Distribution Function (CDF)
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where αa is a shape parameter, and βa a scale parameter. By using Griffith equation, such a distribution of crack sizes, under remote
uniform tension (assuming no interaction between cracks), can be converted into a distribution of strength which follows the Weibull
distribution
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where W α β( , ) stands for the Weibull 2-parameter CDF distribution of shape parameter α and scale parameter β. In other words, the
obtained Weibull has shape parameter equal to double of the shape parameter of the original Frechet distribution. We mention these
results despite we shall only deal with fatigue, just for introducing the concept of how the “scatter” in defects distribution affects the
scatter in strength,1 although an interesting theory which connects static failure to fatigue, simplifying fatigue as a repeated attempt
to cause static failure, has been proposed [2]. Murakami [3] has a very significant amount of work showing mainly the role of size
and geometry of small defects on the fatigue limit, in particular with simple equations relating the hardness HV and size of defects, or
nonmetallic inclusions – whereas our attention will be driven to scatter in fatigue lives far from the fatigue limit. Murakami [3]
largely used the Frechet distribution for his rating of (non-metallic) inclusions in steels and in particular in most cases he seems to
suggest =α 1a , whereas Wallin [4] collects a few data from the literature in bearing steels or Q&T steels where =α 4–5a . Wang et al.
[5] show some support to the fact that the fatigue lives of cast aluminum alloys do follow the “Paris law” prediction for the largest
defect size.

Wallin [4] discusses statistical aspects of both the fatigue life distribution, and the endurance limit. However, the emphasis of that
paper is on size effects. In particular, he suggests that, using the WLT, high statistical uncertainty or physically non-realistic size
effects result from the Gumbel and the Weibull distributions, so he is strongly in favor of the Frechet distribution. For the latter, he
derives approximately that the fatigue life, using a Paris’ law for the crack growth, will be described by a Weibull distribution, namely

=P W α β( , )N L Lf (3)

where “L” stands for Life, and he seems to suggest two different results for αL (his eqt. 43 and eqt. 50, neither of which we agree with,
and with an important qualitative difference), although we are not able to follow the reason behind this double possibility. Ref. [4]
discusses experimental data, but collects data either for scatter of fatigue lives, or for inclusion measurements, and not both data from
the same case, so we are unable to judge the validity of this result for the scatter of fatigue lives quantitatively, and unfortunately
there is no independent numerical validation. The reason why this is not a minor detail but will turn out quite important is that
Wallin’s result does not give any special significance to the limit case of Paris’ constant =m 2, or the values close to this, which are
extremely important for “damage tolerant” materials in use especially in aerospace applications. We shall derive Wallin’s result
differently and find asignificant discrepancy, namely that the coefficient αL tends to infinity when =m 2 and hence leads to extremely
small scatter expected in fatigue lives. In other words, the statistics seems to suggest that, no matter how large is the dispersion of the
distribution of largest defects in the material, the fatigue life will be almost deterministic. We shall also find the value of βL, and then
we move to generalize the results in the much more general case when Paris’ constants are themselves random variate, as it is
important to consider especially for short crack growth.

We find in particular that by transforming the distribution of Paris’ constants C m, to an uncorrelated form C m,0 a very good and
analytical estimate of fatigue life scatter can be done by neglecting the variation in m and validate this result by means of the
extensive set of data known in the Literature. We finally discuss some significance of these results, in view of possible deviations from
the simple crack growth considerations made here, and we make also general comments about Damage Tolerance and Lead Crack
general philosophies.

2. Propagation of cracks with deterministic Paris law

Paris’ law [6] relates the crack advancement per cycle to the range of Irwin’s stress intensity factors as

=da
dN

C KΔ m
(4)

where C m, are Paris’ “material constants”. For many structural materials, m lies in the range from 1.8 to 4, but the value =m 2
(which leads to an exponential growth of the crack) which was incidentally suggested in proposals before that of Paris, is attracting
more and more interest, especially for lead cracks in aircraft primary structures (Lo et al. [7] and many references therein, [8–10]), so
that the United States Air Force (USAF) certification requirement approach to assessing the risk of failure by fracture, makes extensive
use of exponential crack growth.2 We will obtain results both for =m 2 or a general >m 2, but the significant new results will be

1 In reality, there are three types of possible distributions of extremes: starting as a parent distribution from the exponential, normal and lognormal distributions, the
distribution of largest values will be Gumbel. Starting from power-law tails, we obtain Frechet or Weibull itself.
2 Certification for damage tolerance requires considering crack growth due to spectrum loading which may involve complex accounts of crack closure which induces

generally growth retardation.
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relevant for the case near =m 2. Deviations near a “threshold” KΔ th or near the critical condition of static failure have been observed
quite early. Then, with improvements of measuring techniques, and interest in long lives, a different behavior for short cracks
emerged, showing not only they can propagate, but actually quite fast, belowthe (long crack) threshold KΔ th. However, these authors
[8,9, and many references therein] are suggesting more recently that the “lead” short cracks may propagate with an equation very
close to the long crack Paris law (often in the form of Hartman—Schijve one, see more details in the following paragraph “The Virkler
“old” data, and a new analysis”), except for a reduced threshold KΔ thr , which is close to zero (ASTM E647-13a, [11]), has little or no
load ratio dependence and hence plasticity-induced crack closure effects (see more details in [8,9]). In this sense, there is even more
scope to examine the consequences of the simplest form of Paris’ law in terms of scatter of fatigue lives, although we shall return to
the issue of short cracks later on.

Integration of the standard Paris’ law (4), neglecting the change of geometric factors g with crack size, gives for a constant stress
range, the number of cycles to failure as for >m 2
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where a a, ,i f are initial and final length of the crack. In the second step, we have neglected the final size of crack af , which is
reasonable for conditions not too close to static failure (i.e. for a given sufficiently large number of cycles), and for >m 2.

Hence, having an initial distribution of defect sizes, results in a transformed distribution of fatigue lives Nf . Ref. [4] suggests using
a Frechet initial distribution of defect sizes (1) because “it cannot have negative particle sizes” and that other distributions “lead to
high statistical uncertainty or physically non-realistic size effects”. We shall follow his suggestion, also because we are not much
interested in small details which may result from different choices of initial distribution of defects, as we want to point to some
important qualitative effects. Obviously, following Wallin in his paper [4], we are implicitly assuming that defects have a shape that
can be approximate with that of a true defect for which a form of Paris’ law can be applied.

By making the power law transformation (5) of the distribution (1), we simply obtain for >m 2 the CDF of the fatigue lives as
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a . This result (6) is in contrast with what suggested by Ref. [4] (3), because Ref. [4]’s Eqs. (43) seems to suggest =αL
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a although we are not able to follow the reason behind this further result. The difference is of course very
significant for low values of m. Indeed, in principle there would be infinite shape parameter with =m 2 which is a case of particular
interest. Naturally, we have obtained this result for >m 2 and hence we need to check the validity of the approximation. This will
require considering also the final size of the crack in (5) and hence introducing a dependence on the final size of the crack and hence
on toughness. Numerical experiments in the following paragraph will show that, despite the “deterministic limit” of = → ∞−αL

α
m
2

2
a

will not be realistic (as expected), nevertheless the trend towards very high values is confirmed, and a special paragraph will consider
in details the limit case =m 2. Indeed, on reflection we should not be too surprised by this result. For <m 2 integration of Paris’ law
simply becomes dominated by the final size of the crack, which in turn depends on the toughness, and this is in our discussion a
deterministic variable. In more elaborate treatments of course also the toughness would be a random variable.

Unfortunately, it is difficult to find data in the literature to directly support the finding of (6). Indeed, also Ref. [4] show only
limited data. There are some examples of inclusions measurements in bearing steels or Q&T steel, having Frechet shape parameter

=α 4–5a whereas other data show Weibull fatigue lives =α 6–10; considering the data in Fig. 8 in Ref. [4] for example, S45C steel in
3%NaCl solution with lack of threshold, from the SN curve we gather =m 4.2, while =α 9, and we obtain according to (6),

= − =α (4.2 2) 9.9a
9
2 which seems too high compared to the measurement of Frechet shape =α 4–5a in the rest of the paper (although

unfortunately they are not from the same material). This is also possibly related to the very important aspect that we have neglected
the initiation and short-crack phases which introduce additional scatter, and don’t permit to capture obviously the entire fatigue
behavior in SN curves of uncracked specimen with such simple estimates. We however move on to validate these results under the
ideal conditions of some numerical tests.

2.1. The special case =m 2

Integrating Paris’ law in the special case of =m 2 leads obviously to

=N
a a

πCg σ
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Δf
f i
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and where g is a geometrical factor which we take constant during the integration. Moving to random variables for ai we obtain
approximately
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where obviously the final size of the crack is given by a condition of meeting the toughness
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In other words, considering the ratio a β/f a as a given fixed quantity, and generally large one, changing the shape parameter of the
Frechet distribution has a linear effect on the shape parameter of the Weibull distribution of fatigue lives. Scatter in initial defects
leads to a much reduced scatter in fatigue lives, as it is not uncommon to think ≃a βlog( / ) 3f a , and if Frechet shape parameter is
indeed =α 4–5a as we discussed earlier, this would be an almost deterministic fatigue life, in contrast to common experience (and in
contrast with typical values known for metals, as we shall discuss later on). We conclude that this limit case elucidates well the effect
of too many simplifying assumptions in crack propagation. However, we shall discuss below that this is not very far from some recent
proposals.

Also, an overall increase of defect sizes, i.e. a shift of the Weibull distribution of initial defects with an increase of βa, leads to a
slow decrease of fatigue lives but also to an increase of the scatter (lower shape parameter α). This effect was instead not present in the

>m 2 case, where the size of defects was not affecting the shape parameter of the life distribution. Notice that incidentally this also
includes a small effect of stress level on af – for example, an increase of stress σmax decrease af and so is similar to what we just
described for the increase of βa: the decrease of fatigue lives is expected, but the increase of scatter for the increase of stress level less so.
To this, we would need to add the possible deviations due to interaction of mechanisms of fatigue with more extensive plasticity at
crack tip, particularly important for short cracks and uncracked specimens.

2.2. Numerical tests

In order to validate the result of (6), especially with regard to the limit =m 2 which doesn’t permit to make the approximation of
neglecting the final size of the crack, we generated some Frechet distributions of crack sizes, namely 104 specimen of a distribution
having = =α β5; 10 μma a . We introduced as material some reasonable values of material properties, but since we want to examine
the effect of m, regardless of any other change, we take the liberty to fix toughness to = = −K C80 MPa m , 10 [m/cycles MPa ]Ic

12 m ,
=σΔ 100 MPa and vary =m 2.25,2.5,2.75,3,4,6 (Fig. 1 from a to f). Using the full version of (5), we obtain the results shown in Fig. 1(a-

f) as histograms – which were best-fitted to Weibull distribution with the Mathematica function “EstimatedDistribution”, and the
resulting Weibull distribution is indistinguishable in the plots from the histograms. The results show clearly that Weibull distribution
is always a quite good approximation (that is, also with low m), and that the scatter increases with larger m. The approximate solution
(6) shown with (blue3) thin line, is extremely good, except at low m ( <m 2.5), where however it appears that the main discrepancy is
a shift in the distribution, rather than a change on the shape parameter. That average life decreases with larger m is obviously a
consequence of the fact that we have kept C to be constant.

The results can be summarized in Fig. 2(a, b), showing respectively that the average life decreases with larger m, which is
obviously a consequence of the fact that we have kept C to be constant. We have included also a numerical investigation using the
limit value =m 2, which results in a very high, but finite, Weibull shape parameter αL.

3. Scatter in Paris’ constants

So far, we have obtained results considering only a deterministic version of Paris’ law. However, especially when m is close to 2,
and as the analysis indicates, scatter would seem to reduce significantly even in the presence of large scatter in initial defects, it
becomes important to assess if Paris’ constants, or in general, crack growth, is really deterministic or not. Also, a more general much
debated question in fatigue is whether Paris law can be extended to cover also the case of “initiation” and “short crack” propagation
[12–15]. A full discussion of all these aspects is not obvious, but we shall attempt to make some progress by considering progressively
more complete cases, finally permitting to obtain some results for the general case of random distributions in initial defects size, and
both Paris’ constants.

3.1. Scatter in C

Recent models [16,17] seem to suggest that initiation in some important applications is practically negligible for lead cracks
emerging from natural discontinuities, so that one should only consider the short crack propagation, by means of Paris’ type of laws.
In turn, this is treated with equations very close to the original long crack Paris’ law, except for a threshold correction, which is
different for long and short cracks, being almost zero for the latter. However, it seems that these models suggest one important effect
is that the Paris constant C is itself a random variable (see Fig. 12 of [16]) which varies almost an order of magnitude. More in
general, scatter is expected in Paris’ curves even in the long crack regime. We first consider the case when only C is a random variate,
to introduce gradual level of complexity.

We therefore attempted to make a further experiment, by taking C to be itself a Frechet distribution with shape parameter
= × −β 0.821 10 [m/cycles MPa ]C

12 m , and scale parameter =α 4C , which results in a mean value = × −C 1.01 10 [m/cycles MPa ]12 m ,
very close to the value of the “deterministic” model described in the earlier paragraph ( = −C 10 [m/cycles MPa ]12 m ), and in practise
less than an order of magnitude but rather a factor 2 variation (more precisely, =SD mean/ 0.41). The resulting distribution of fatigue

3 For interpretation of color in Fig. 1, the reader is referred to the web version of this article.

M. Ciavarella, A. Papangelo Engineering Fracture Mechanics 191 (2018) 111–124

114



lives is shown in Fig. 3, for the same conditions of Fig. 1c, namely =σΔ 100 MPa and =m 2.75. It obviously gives a lot more scatter,
given it results from an additional variability in the Paris coefficient, but interestingly it gives to a very good approximation again a
Weibull distribution (of shape parameter 3.43). Repeating the experiments for other values of the stress, the Weibull distribution
remains of similar shape (except when we move to very high stresses where the final value of the crack size counts more), and hence
this itself doesn’t lead to different slope in the SN curve, unless we take into account of plasticity effects at crack tip.

This led us therefore step back, and investigate the case when we neglect initial crack size distribution, and take instead C to be a
Frechet random variate: it is easy to show that this leads exactly to a Weibull distribution4 for >m 2

⎜ ⎟= ⎛
⎝ −

⎞
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−
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π m g σ β
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N C

i
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which suggests further investigations. Indeed, we obtained a Weibull distribution of shape parameter 3.6, i.e. very close to the Weibull
scale parameter =α 4C , of the C Paris’ constant in our experiment. In other words, we expect that for m near 2 like in most “damage
tolerant” materials, the scatter is rather associated to the Paris’ law constants, than to the initial crack size distribution.

We have not been able to find a general solution with both initial crack sizes and Paris’ constant C distributed as Frechet
distribution, but with extensive testing with the function “EstimatedDistribution” and educated guesses, the result is indeed very
close to a Weibull distribution with scale parameter approximately equal to

Fig. 1. Distribution of fatigue lives in the example for various Paris’ law exponents =m 2.25,2.5,2.75,3,4,6 (a-f). Histograms are numerical experiments, best-fit Weibull
distribution are almost indistinguishable from the numerical data including at very low m, while the approximate solution (6) is separate from them at very low m (a,
b).

4 It is also true the converse: a Weibull distribution for C leads to a Frechet for life

⎜ ⎟= ⎛

⎝ −
⎞

⎠

−
P F α

a
π m g σ β

,
( /2 1) Δ

1
Nf C

i
m

m m m
C

1 /2

/2 (9)

M. Ciavarella, A. Papangelo Engineering Fracture Mechanics 191 (2018) 111–124

115



= +
−( )

α
α

1 1 1

2
L

C α
m

2

2

2a
(11)

and this is confirmed in Fig. 4 where we generated 60 cases with each a Frechet distribution of αa increasing from 1/3 to 20, while αC decreased from 10 to 1/3. The
Paris constant was =m 3.5 so that the analytical results in the limit of either large αa or large αC correspond to our analytical determinations (reported as asymptotic
lines in Fig. 4a), while the empirical fit (11) is given as solid line, very close to the experimental best-fit points. It is clear that this formula, for m near 2, this tends to

= − −
→α α m

α α
| ( 2)

8( / )
L m C

a C
2

2

2 3 (12)

and therefore the contribution of the scatter of initial defects is extremely modest and quadratically so, except of course that the formula becomes strictly invalid in the
limit of =m 2 and we expect residual scatter coming logarithmically from the initial size defect population, as we have discussed in the previous paragraph.

To complete the solution, for the scale parameter, the obvious choice is

Fig. 2. Results of best-fitting Weibull distribution to fatigue lives of the numerical experiments (also described in Fig. 1), in terms of αL and βL.
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and this indeed proves to be extremely good in other 60 tests (Fig. 4b) where we now fixed = =α α 6a C (so a quite general case with
“interaction” between the two distributions) and varied β increasing = × ( )β β . .200

1
3 and =β 4 μm0 while βC decreased as

= ×β β (10. .1/3)C C0 , where = × −β 0.821 10 [m/cycles MPa ]C0
12 m – these choices are to make values similar to the simpler analysis in

previous paragraphs.
So far we are not distinguishing if scatter in C is coming from a short crack or a long crack regime, as we are using a pure power

law Paris curve. But the reasoning so far may help find out where the scatter originates. Goto [18] has a very interesting set of results
for an annealed carbon steel, which studies the scatter in lives to initiate a crack up to 0.1 mm, propagate it from 0.1 to 0.3 mm, and
finally to rupture (cracks were divided into two categories: the major crack which led to the final fracture of a specimen – similarly to
what the USAF calls “lead cracks”, and other large cracks called sub-cracks, but which still were larger than 1mm at the final
measurement just before fracture). The scatter tends to increase with a decrease in the stress range, a result which is expected if we
consider materials having a fatigue limit knee. Further, there is large scatter in both the initiation and propagation phases of lifetime,
but the scatter in the number of cycles required to reach 0.3mm, is particularly large, whereas is lower (although not dramatically
lower) for propagation of long cracks up to failure. Notice that all Weibull life shape parameters (our αL) are between 0.8 and 3 i.e.
quite low, and growth is very close to exponential ( =m 2) as seen from the log-linear plots of the crack growth. However, Goto [18]
also shows very clearly why a lot of the scatter in the final life occurs during the short crack propagation – some cracks show some
periods of arrest before continuing to propagate (and we are talking of what Goto calls “major cracks”), which is in contrast with the
simple idea that short cracks could be modelled with a variant of the Paris’ equation, perhaps with a reduced threshold, or even with a
variability in the constant C. We shall comment further on these findings later, in comparison with other data.

3.2. The most general case

The well known The United States Air Force (USAF) Damage Tolerance (DT) methodology [19] effectively eliminates some source
of scatter (and a lot of uncertainty about the short crack growth problem) by assuming that cracks of certain (quite conservative)
deterministic size are present after pre-service (of the order of 1mm) or in service inspection techniques (up to 12mm) at critical
conditions, and therefore requiring that crack propagation should not make the structure at risk before the next inspection – in
practice, designing therefore the intervals of inspections. In an attempt to make precise crack growth analysis, very sophisticated
codes (NASGRO, AFGROW) exist which make use of various variants of the “long crack” Paris’ type of crack growth equations, take
into account of crack closure, crack retardation during spectrum loading and so on. This perhaps is the best solution at present until
we don’t develop even more accurate inspection techniques and learn how to deal with accuracy with short crack propagation, and
we hope this doesn’t stop manufacturers to search for the best possible materials, just because cracks of given sizes have to be
assumed. But recently there is some degree of consensus that this DT requirements may be too strict and lead to too conservatives FCG
(Fatigue Crack Growth) lives, so that the Australian DSTO (Defence Science and Technology Organization) is suggesting an alter-
native philosophy [20], based on the concept that “lead cracks” basically propagate exponentially with number of service hours,

Fig. 3. Distribution of fatigue lives for a Frechet distribution of Paris constant C, compared to the case of deterministic C. Weibull distributions are excellent results in
both cases.

M. Ciavarella, A. Papangelo Engineering Fracture Mechanics 191 (2018) 111–124

117



irrespective of loading types and component type. In this approach, initial discontinuities correspond to much smaller fatigue cracks
of the order of just 10 microns, which in turn is ∼1000 times smaller than the critical crack depths of high performance aircraft (even
considering highly stressed areas), which is about 10mm. It is way beyond the scope of the present paper to fully assess the lead crack
methodology, but clearly it would be an ambitious goal for the future to start from small natural discontinuities and continuing up to
crack sizes (thus encompassing short-to-long crack growth) that just meet the residual strength requirements.

To introduce the most general case, and actual realistic scatter in crack growth (limited to long cracks in this case), it is useful to
consider the seminal paper by Virkler et al. [21] who prepared sixty-eight replicate constant amplitude crack propagation tests on
2024-T3 aluminum alloy, which is still an alloy of great aeronautical interest. In our numerical tests so far, we only varied C, but
really also m varies which complicates significantly the analysis. Indeed, it is often forgotten in MonteCarlo simulations that C m, are
correlated quantities, and this makes use constants of inconsistent dimensional values, and largely overestimates the resulting scatter.
Annis [22] finds for the original Virkler data an increase of scatter, measured in terms of standard deviations, results in making the
classical four “errors” in assuming (1) C m, independent, (2) m fixed (3) C fixed and finally (4) = +C b b m0 1 which assumes a linear

Fig. 4. The fatigue live shape parameter (a) and scale parameter (b) of Weibull distribution for a Frechet distribution of initial crack sizes, and of Paris constant C,
compared with limit analytical results given in the paper, and with empirical fit for the general case.
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correlation. All errors largely overestimate the scatter, up to factor 7×, except error 4 obviously which assuming too strict corre-
lation, underestimates it. However, while Annis [22] suggests a Markov Chain Monte Carlo simulation using the joint density of C m,
to solve the problem, we suggest here a perhaps more elegant way to solve this aspect and the dimensional inconsistency. We start
from the idea by Bergner & Zouhar [23] who observed that, scaling Paris law so that the Irwin stress intensity factor is divided by a
constant value,

⎜ ⎟= ⎛
⎝

⎞
⎠

da
dN

C K
K

Δ
Δ

m

0
0 (14)

where C0 in principle is arbitrary, =C C KΔ m
0 0 , there is a specific value for which the quantities C m,0 become uncorrelated. This is

defined by the condition
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−

∑ −

∑ −
=

=KΔ 10

m m C C

m m
0

( )log( / )

( )
j k j j g

j k j

1,

1,
2

(15)

where in the equations the dash on top of a term denotes the arithmetic average with respect to j.
Hence, considering the Virkler data, let us first examine the distribution of lives (Fig. 5a) – it is unclear if a Frechet distribution or

a Weibull (or a LogNormal, for that matter) is best, but it is important to note that the shape parameters of the life distributions are
respectively =α 12.1L (Weibull) and =α 17.5L (Frechet), i.e. rather high. Viceversa, comparing what is the level of scatter in the C
constant (whose distribution again doesn’t fit perfectly neither form), the shape parameters are respectively =α 1.65C (Weibull) and

=α 2.38C (Frechet), i.e. rather low – 2.38 and 12.1 are certainly not equal as our analytically exact estimate (10) would suggest. What
is happening is simply that we are making one of Annis’ [22] mistakes, in that we are assuming m to be constant in the Paris’ law,
which for Annis’ tests corresponds to Mistake #2, giving predicted scatter increased for a factor 5.087, and indeed we are finding an
increased scatter of a factor 4.11. We are also obviously making a dimensional mistake of plotting random values of C which are of
different dimensions in Fig. 5b.

However, if we estimate the distribution of C0 for the uncorrelated choice ( =KΔ 10.60 MPa m0 ), we obtain a distribution (see
Fig. 5d) with shape parameter =α 14.9C (Frechet), i.e. rather close to 12.1 of our analytically exact estimate (10) – given we have
obtained this close result by means of various numerical operations (differentiation of the crack growth curve, Paris’ power law best
fit, transformation to the non-correlated version), we can be relatively satisfied of the result. Also, notice that we have neglected the
effect of geometrical factors, which can result in a completely closed form analytical study.

Virkler’s data scatter comes uniquely from scatter in Paris’ law curves, given the initial crack size was set by the experiment to the
same identical value, 9 mm (and belongs well in the long-crack regime). Hence, from Virkler data, we conclude that the amount of
scatter expected in life from scatter in Paris constant is quite small. Instead, if we consider large reports showing [24] data on
spectrum loading of aeronautical aluminum parts, αL is found to vary between 3 and 12, with a most typical value near value at

=α 6–8L very similar to what we reported in the introduction for Wallin’s data on other metals.5 This calls for alternative sources of
scatter, initial defect sizes, and short crack propagation.

Since the integration of Paris’ law in the uncorrelated form becomes

≃
−

−
N

a K
g π m C σ

Δ
( /2 1) Δf

i
m m

m m m

1 /2
0

/2
0 (16)

our suggestion for the most general combination of initial flaw size distribution, and scatter in Paris’ constants, is to obtain the
uncorrelated form C m,0 , consider the mean value of m m, and estimate the life distribution as
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An alternative also closed form result is obtained in Appendix starting from LogNormal distributions in initial defects, and of Paris
constant C, leading to a LogNormal distribution of lives. It is interesting to recall that both Weibull and LogNormal distributions are
typically used in SN curve assessments, also according to standards.

3.2.1. Alternative fitting of Virkler data
As one of the motivating factors for the present note was the interest in the limit case =m 2 and therefore we should not avoid

some comments about the fact that the fans of exponential crack growth contributions like Ref. [9] suggest the interesting view that
instead of using Paris’ power law type of equations, one could fit the crack growth data with a deterministic C but in a NASGRO
(specifically, Hartman–Schijve variant) equation, which in general reads

=
−

−
da
dN

D
K K

K A
(Δ Δ )

(1 / )
eff eff thr

p

p
,

max
/2 (18)

5 This Navy report [25] highligths the difference in the statistics of composite where a generally accepted approximation is to take =α 1.25L . This is also the reason
why in full fatigue testing for certification purposes, life enhancement factors which is used sometimes for metals structures, becomes impractical for composite
structures, and load enhancement factors are rather used.
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where KΔ eff corrects KΔ for crack closure (but Ref. [9] further suggests that lead cracks see very little crack closure and one can
further simplify =K KΔ Δeff ), A D p, , are deterministic constants and Ref. [9] suggests p very near 2, as we have discussed. Indeed,
Virkler data were reinterpreted with this equation in Ref. [9], so this reduces to the form (see Fig. 6)

= × −
−

−da
dN

K K
K A

[mm/cycle] 1.2 10 (Δ Δ )
1 /

thr6
2

max (19)

where =A 70 MPa m and it was suggested in Ref. [9] to take a range of =KΔ 2.9,3.2,3.4,3.6,3.8,4,4.2thr MPa m (more rigorously, we
should consider taking a random variate form). Here, as = = = −R K K K K R/ 0.2, Δ /(1 )min max max . Notice that we have used mm/cycles
and adjusted accordingly the coefficients. It is seen in Fig. 7 however that having forced the exponent to be 2 gives some poor
prediction at intermediate KΔ and we are not sure if the fit is as good as permitting the variation of m which indeed as we have seen
in Fig. 5c rather has a mean value =m 3.7.

In the particular case of the Virkler data also, we don’t find much advantage in using the (19) representation, as we are not able to
find analytically estimates of the scatter of resulting lives, even if we could make some estimates of the distribution of KΔ thr .

It is claimed that one advantage of this NASGRO Hartman–Schijve representation is that it should permit fitting both short crack

Fig. 5. Distributions from Virkler’s data. (a) Distribution of lives, (b) of Paris constant C. (c) Of Paris’ constant m and finally of (d) the adimensional and uncorrelated
Paris constant C0, using ( =KΔ 10.60 MPa m0 ).
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and long crack data, but for short cracks really being KΔ thr very close to zero, even Ref. [9] concludes that “small crack curves
generally have a Paris like shape with no clear threshold” for which no need for the NASGRO Hartman–Schijve variants is found, and
similarly Appendix X3 of ASTM E647-13a remarks: “It is not clear if a measurable threshold exists for the growth of small fatigue
cracks”. Since most of the scatter in fatigue life should come from short crack propagation and in this case we would be returning very
close to our simple power-law form – the question would be reduced to a better representation of the near-threshold crack growth for
long cracks. We cannot discuss this in details here.

However, there are a number of open problems and certainly the conclusion that a simple Paris law with =m 2 could explain
most of the scatter in life would be rather strong. However, if this were the case, in view of the finding of the present paper, it would
mean that scatter in fatigue life could be estimated pretty easily, depending on scatter of initial defect sizes, and scatter in C0. Perhaps
these findings also suggests a new perspective from which it is useful to look at, when discussing these open problems, and these
attempts of very simple formulations.

Fig. 5. (continued)
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Fig. 6. Distribution of Weibull shape parameter for fatigue life αL where data on spectrum loading for aircraft quality aluminum parts is found to vary between 3 and
12 in a large database (and compared to much lower values for composite parts) [24].

Fig. 7. Fit of Virkler’s da/dN data using (a) Paris’ type of power laws, and (b) NASGRO Hartman–Schijve equation further simplified according to Ref. [9].
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4. Discussion

In earlier studies [12–15], we have shown that, in order to permit Paris’ law to include also the behavior of SN curves for
uncracked materials, one could in principle modify it so as to include also the “material properties” of (for example) Basquin law
(which is the power law form of SN curves =σ N constΔ k ). In principle, we would be happy to have a model containing the two
constants of Paris law and the 2 constants of Basquin law, together with the two fatigue “thresholds” – which amounts to six constants
in total. Adding to this, we would need a full statistical framework to be able to assess the scatter in fatigue life. Such a simple model
at present does not exist. Particularly when Paris law constant m is low, one finds that the SN curve for the material (when uncracked)
generally is much less steep than the integrated form of Paris law suggests, that is ≫k m. Indeed, in medium life fatigue elastic
analysis is not sufficient and particularly for short cracks, in the transition range from low-cycle fatigue and high-cycle fatigue, plastic
deformation effects cannot be ignored: they may be taken into account approximately with an increase of the effective crack size with
a plasticity correction [25], a proposal which is not too different from previous approaches to [12–15] insert SN curves of uncracked
specimen in Paris’ crack growth curves. We therefore find quite optimistic that short crack propagation should simply obey an even
simpler form of Paris’ law than long-crack propagation, independent on stress level.

The small amount of scatter in long crack propagation data may explain the success of mainly deterministic DT procedures used in
the world, in the best of the authors’ knowledge. Further, if DT were really too conservative, as some people are claiming, there would
be not much sense to further investigate in this direction, if we are discussing structure which require this certification. But aircraft
availability has fallen to less than 50% in many countries,6 and helicopters in particular even less than 25%. Therefore, situations do
occur when cracks are detected in one aircraft and maintenance services want to know if they have to investigate, and perhaps
reschedule all inspection intervals. The lead crack approach would be more prone to a statistical framework, but clearly insisting on
the exponential crack growth has serious implications that we discussed in the present paper, and further work should examine these
implications.

5. Conclusions

We have shown that, as it was not noticed in previous studies (in the best of the author’s knowledge), the case of =m 2 is a limit
case in which the variability of fatigue lives becomes extremely small, i.e. independent on the distribution and scatter of initial
defects. In retrospects, this was to be expected, since =m 2 is the transition between the case when the life depends mostly on the
final size of the crack ( <m 2), and when, as more common, the life depends mostly on the initial crack size. We have given the
correct dependence for the special but important case of Frechet initial defect distribution, which results in a Weibull distribution of
lives. We have then generalized the results in the case when Paris’ constant C is also a Frechet distribution, which may be of interest
particularly for some short crack law suggested recently. Finally, we have generalized the results by obtaining simple estimates in the
most general case, when defect size and Paris’ constants are all random variate: in this case we have suggested to transform first C m,
to the uncorrelated form C m,0 , and then considering the mean value of m, quite good estimates are possible without elaborated
multivariate MonteCarlo simulations suggested previously. The final equations obtained in the Weibull form (17), and in the Log-
Normal form (6). An alternative derivation of statistical distributions for LogNormal initial crack size and Paris’ constant C0 are
presented in Appendix, which however lead to similar conclusion, in perhaps less clear form.
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Appendix A. Lognormal distributions of C0 and initial crack size

In the following, we shall intend for the Paris multiplier C the distribution obtained with zero correlation with the m constant, C0 –
as otherwise using this approach is not recommended as it would greatly overestimate scatter. Integration of the Paris’ law (14),
considering >m 2 is given by (16), which we could take in the log form (here for m we shall in general intend the mean value m)

≃ + − − − − −N m K m a C m gπ σ mlog logΔ (1 /2)log log log( Δ ) log( /2 1)f i0 0
1/2 (20)

Hence, it is easy to get the transformed distribution of fatigue lives Nlog f , starting from a lognormal distribution for both initial
distribution of defect sizes ai and of Paris constant C0,

=P LN μ σ( , )a a ai i i (21)

6 https://www.defensenews.com/air/2017/12/12/france-creates-office-to-improve-military-aircraft-readiness/.
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=P LN μ σ( , )C C C0 0 (22)

as alog i and Clog 0 will both be normal distributed, and where notice we use the notation μ σ,a ai i for the mean and the SD of the normal
distribution from which the LN is based: in other words, the mean and SD of the distribution when the quantities are in log scale (this
is the notation of Mathematica). The sum of normal distributions follows simple rules, permitting to get

= − − − + − − + −P N m gπ σ m m μ μ σ σ m( log( Δ ) log( /2 1) (1 /2) , (1 /2) )N a C C alog
1/2 2 2 2

f i i0 0 (23)

i.e. the life is a log normal distribution, in agreement with many technical standards who suggest to take this distribution, alternative
to the Weibull form (17), which we have described in the main parts of the paper.

It is remarkable to observe in this result that in the limit case of → +m 2 , it seems both the mean and the variance of the
distribution tend to become unaffected by the distribution of initial defect sizes, as we have found already in the main part of the
paper. This result is valid only approximately in this limit, since we have neglected the final size of the crack.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.engfracmech.
2018.01.019.
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