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Abstract

A new stickiness criterion for solids having random fractal roughness is derived using Persson’s

theory with DMT-type adhesion. As expected, we find stickiness, i.e., the possibility to sustain

macroscopic tensile pressures or else non-zero contact area without load, is not affected by the

truncation of the PSD spectrum of roughness at short wavelengths and can persist up to roughness

amplitudes orders of magnitude larger than the range of attractive forces. With typical nanometer

values of the latter, the criterion gives justification to the well-known empirical Dalhquist criterion

for stickiness that demands adhesives to have elastic modulus lower than about 1 MPa.

Keywords: stickiness criterion, adhesion, Dalhquist criterion, DMT model
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I. INTRODUCTION

Contact mechanics with roughness has made tremendous progress in recent years (for

two recent reviews, see Ref. [1, 2]), and adhesion has become increasingly relevant with

the interest on soft materials [3], nano-systems [4, 5] and the analysis of bio-attachments

[6, 7]. Contact between solids occurs via large van der Waals forces, usually represented,

for example, by the well known Lennard-Jones force-separation law. These forces give rise

to a theoretical strength much higher than the typical values to break bulk materials apart.

Hence, the ”adhesion paradox” [8] states that all objects in the Universe should stick to

each other. This does not happen due to inevitable surface roughness at the interface, and

Nature has developed different strategies to achieve stickiness, including contact splitting

and hierarchical structures [9–11]. At macroscale and for nominally flat bulk solids, it

appears that the only solution to maintain stickiness is to reduce the elastic modulus. This

is well known in the world of Pressure-Sensitive Adhesives (PSA), soft polymers showing

instantaneous adhesion on most surfaces, upon application of just a light pressure [12, 13].

Dahlquist [14, 15] proposed that to achieve a universal stickiness, the elastic Young modulus

should be smaller than about 1 MPa (at 1 Hz, as adhesive are strongly viscoelastic their

modulus depends on frequency). This criterion has no scientific validation, but appears to

be largely used in the world of adhesives.

There have been various attempts to study the problem of elastic contact with roughness

and adhesion. Fuller and Tabor (FT, [16]) used the Greenwood and Williamson [17] concept

of describing a rough surface with a statistical distribution of identical asperities of radius

R, together with JKR theory for the sphere contact [18]. FT found that adhesion was easily

destroyed with root mean square (RMS) amplitude of roughness hrms of a few micrometers in

spherical rubber bodies against rough hard Perspex surfaces. Their theory depends only on a

single dimensionless parameter θFT = h
3/2
rms∆γ/

(
R1/2E∗

)
where E∗ is the plane strain elastic

modulus, ∆γ is the interface energy. The choice of R seems critical in view of its sensitivity

to ”resolution” or ”magnification” [19], i.e., to the shortest wavelength in the roughness

spectrum. In the ”fractal limit”, i.e., for an infinite number of scales, R → 0, there would

be no stickiness for any surface, in the sense that the solution would be identical to that

without adhesion, irrespective of the geometrical characteristics, like fractal dimension, or

RMS amplitude of roughness. Hence, FT apparent good correlation with the theory despite

2



the many limitations (see [20]), may have been due to a fortuitous choice of R at a relatively

coarse scale where measurements were made at that time.

The JKR theory is inappropriate when contact spots become very small, and another

theory is more promising in this case, which takes the name of DMT, stemming for the

original case of the sphere [21]. Joe, Scaraggi and Barber [22] showed that the JKR approach

becomes questionable for contact problems involving fine-scale roughness; in such case a

solution based on the full Lennard-Jones traction law is more appropriate. Moreover, Violano

and Afferrante [23, 24] showed that DMT-type models are accurate in predicting the effective

interfacial binding energy, when compared with calculations including the ”exact” Lennard-

Jones law. DMT makes possible to solve contact problems with adhesion using results from

the adhesionless problem, by assuming that the adhesive stresses do not alter the pressure

in the contact area (which therefore remains purely under compression, and remains defined

in the same way as ”repulsive”) nor the gaps outside the contact. The external pressure is

therefore the difference of the repulsive and an adhesive pressure pext = prep − pad.

Pastewka & Robbins ([25]) presented a criterion for adhesion between randomly rough

surfaces after interpreting simulations of adhesive rough contact with fractal roughness,

which were obtained on spectra of roughness 3 orders of magnitude in wavelengths (from

nano to micrometer scale). They determined the surface ”stickiness” based on the slope

of the curve repulsive area vs external load (a definition which we shall also adopt here)

elaborating a simplified DMT-like model that uses only the asymptotic expression for gaps

at the edge of the repulsive contact regions, hence defining an ‘adhesive boundary layer’ that

surrounds the ‘repulsive’ contact zone. They obtained a criterion for stickiness that depends

mainly on small scale features of the rough surface, i.e., on local slopes and curvature, and

shows to be in agreement with their numerical calculations.

Recent theories by Ciavarella [26] with its BAM model (Bearing Area Model) and Joe,

Thouless and Barber (JTB, [27]), estimate the pressure at pull-off between surfaces does not

depend much on local slopes and curvature, and while the former theory is a very simple

model, the latter involves a full recursive solution using the Lennard-Jones potential. Similar

results are found in Ref. [28], where the effect of surface topograghy on the pull-off force is

investigated in the framework of a DMT theory. Also, Refs. [29, 30] using JKR framework,

suggest that the contact area reaches a constant value as the magnification is increased and

full contact occurs at the short length-scale structures of the surface.
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In this paper, we use the Persson and Scaraggi theory (PS theory, [31]) based on the DMT

assumption, with some refinements [32], to derive a ”stickiness” criterion for very broad

spectra, typical of real surfaces which can be expected to have features from millimeter (or

more) to nanometer scale.

II. METHODS

A. The rough contact model

In DMT theories, the adhesive pressure is computed by convolution of the elementary

tension-separation law σad (g) with the distribution of gaps P (g), obtained by a standard

non-adhesive contact solution. In general, the Lennard-Jones force-separation law is usually

represented as

σad(g) =
8∆γ

3ε

[
ε3

g3
− ε9

g9

]
(1)

where g is the local gap, ∆γ =
∫∞
ε
σ(g)dg is the interface energy or, by definition, the work

done per unit area of interface in separating two bodies from the equilibrium position g = ε,

at which σad = 0. The maximum tensile traction happens at a separation g = 31/6ε and

is σth = 16∆γ/
(
9
√

3
)
ε. A possible simplification, which will be adopted in the following

derivations, is to use a constant force-law [33]. Considering gaps from the equilibrium point

namely u = g − ε, imposing the same interface energy ∆γ,

σad (u) = σ0, u ≤ ε

σad (u) = 0, u > ε
(2)

where σ0 = 9
√

3σth/16 ' σth and ε is the same range of attraction, so obviously ∆γ = σ0ε.

Notice that if E∗ = E/ (1− ν2) is the plane strain elastic modulus (E is the Young’s

modulus and ν is the Poisson’s ratio), then la = ∆γ/E∗ defines a characteristic adhesion

length which can be used to quantify the relative strength of adhesion. The value of la/ε

is of the order of the fractional change in bond length needed to change the elastic energy

by the binding energy, and la/ε � 1. For example, the typical Lennard-Jones description

of an interface has la ' 0.05ε. The theoretical strength in this case, σ0 = laE
∗/ε = 0.05E∗

represents a very high value.
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In DMT convolution of the elementary tension-separation law σad (u) with the distribution

of gaps P (u), for the Maugis potential, simplifies therefore to

pad = σ0

∫ ε

0

duP (u) = σ0
Aad
Anom

(3)

where Aad is the ”adhesive” contact area, i.e. the region where tensile stresses are applied,

and Anom is the ”nominal” or ”apparent” contact area. An elaborate expression for P (u)

(for the purely repulsive problem, i.e. in the absence of any adhesion) is obtained in Persson’s

theory (see Appendix - A eq. (29) and [32, 34]).

FIG. 1: (A) Distribution of gaps P (u) (black, blue and red line respectively for ζ = 10,
100, 1000) as obtained by Persson’s theory. An asymptotic fit P (u) ∼ u−1/3 is also plotted
as guide to the eye (dashed black line). Results are obtained for a self-affine fractal surface
with a pure power law PSD, fractal dimension D = 2.2 (or Hurst exponent H = 0.8), and
interfacial mean separation u/hrms = 2. (B) Dependence of the P (u) on the magnification
ζ. Notice a convergence of P (u) with increasing magnifications for various values of the
local gap u/hrms. Results are obtained for a self-affine fractal surface with a pure power
law PSD, fractal dimension D = 2.2 (or Hurst exponent H = 0.8), and interfacial mean

separation u/hrms = 1.37.

Fig. 1A-B shows that there is a convergence in the distribution of P (u) for increasing

magnification ζ = q1/q0, being q1 and q0 respectively the high and low wavenumber cut-off

of the surface Power Spectral Density (PSD). Furthermore there is an asymptotic scaling at

low separations P (u) ∼ u−1/3. Results in Fig. 1A are given for pure power law PSD, fractal
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dimension D = 2.2 (i.e. Hurst exponent H = 3 −D = 0.8) and for a mean gap u equal to

twice the RMS amplitude of roughness, u/hrms = 2. We define a non-dimensional pressure

p̂rep = prep/ (E∗q0hrms) and we remark that, for typical real surfaces H & 0.6, in the limit of

relatively large ζ and small pressures, Persson’s theory reduces to p̂rep ' 3
4

exp (−2u/hrms)

[35, 36]. As we are essentially interested in the region of the area-load relationship near the

axes origin, we disregard u/hrms < 1, and also u/hrms > 3 where we are likely to have finite

effects due to poor statistics of the Gaussian surfaces and very few asperities in contact.

This corresponds therefore to the range p̂rep = 10−3 − 10−1.

Furthermore, within our DMT hypothesis, the range of attractive forces of interest is

ε << hrms, where we can assume that the main contribution to the gaps and hence to

adhesion comes from the asymptotic value of P (u) at low u, namely from the regions close

to the contact boundaries. We can obtain more understanding of this asymptotic form of

P (u) from standard contact mechanics theory, and from the asymptotic part of the original

Persson’s theory [37], whereas we shall use the full Persson and Scaraggi theory only for the

actual calculation of the prefactors. Notice that these asymptotic derivations are similar

to what suggested by Pastewka and Robbins [25], except that we shall not make their

assumptions, which lead to the different final results.

B. Asymptotic results

Here we derive an asymptotic theory for the attractive area Aad. It is well known that

the relationship between (repulsive) contact area ratio Arep/Anom and mean pressure prep

Arep
Anom

' κrep
prep

E∗
√

2m2

(4)

is linear for Arep/Anom up to almost 20% − 30% [37]. In the original Persson’s theory,

κrep = 2
√

2√
π

= 1.6, and we can also write V = 1
2
E∗2m2 as the variance of full contact

pressures. Here, m2 is the mean square profile slope along any direction (for a isotropic

surface). The distribution of pressures P (p) near the boundaries of contact (on the contact

side) is at low p [38]

P (p) ' p prep
V

√
2

πV
(5)

Suppose the perimeter of the actual contact area [not necessarily simply-connected] is Π.
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We define position on Π by a curvilinear coordinate s. In view of the asymptotic behaviour

at the edge of the contact area [39], we must have at every point on Π, pressure p and gap

u as

p (x) = B (s)x1/2; u (x) = C (s)x3/2; (6)

where x is a coordinate perpendicular to the boundary and C (s) = βd (s)−1/2 where β is a

geometrical prefactor of order 1, B (s) = 3E∗βd (s)−1/2 /4 and d (s) is a local characteristic

length scale.

It is clear that, as load is increased, existing contacts grow larger and new contacts form,

resulting in a very irregular shape. Already Greenwood and Williamson [17] in their simple

asperity theory suggested that the average radius of contact should remain constant with

load, as a result of competition between growing contacts and new contacts forming, and

this is correctly captured despite the strong approximations in the asperity model. In Ref.

[40] it was shown, again with a simple asperity model, but with an exponential distribution

of asperity heights, d seems indeed completely independent on load.

Hence, we shall leave the quantity d (s) to vary arbitrarily along the perimeter. For a

segment ds of Π, there exists a region dxds = 2pdpds

B(s)2
in which the pressure is in the range (p,

p+dp). It follows that the total area with the pressure is
∫
S

2pdpds

B(s)2
, and hence the probability

of an arbitrary point being in this range is P (p) dp and the PDF is

P (p) =
2p

Anom

∫
Π

ds

B (s)2 =
2pΠ

Anom
Ip (7)

where Ip =
∫ 1

0
dŝ/B (ŝ)2 = [4/ (3βE∗)]2 〈d〉, ŝ = s/Π is a normalized coordinate along the

perimeter, and 〈d〉 means the mean value of d. A similar argument with the gap expression

yields

P (u) =
1

Anom

(
4

9u

)1/3

ΠIu (8)

where Iu = β−2/3
∫ 1

0
d (ŝ)1/3 dŝ = β−2/3

〈
d1/3

〉
. Eliminating the perimeter from eqs. (7, 8)

and using eq. (5), we obtain Π = pAnom

2Ip

√
2

πV 3/2 and hence

P (u) =

(
4

9u

)1/3
Iu
2Ip

√
2

πV 3
prep (9)
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Upon integration of the distribution of gaps P (u), the attractive area can be given as

Aad
Anom

=
3

2
aV p̂rep

(
ε

hrms

)2/3

(10)

being the coefficient aV

aV =
3

2

(
4

9

)1/3
9

32β8/3

〈
d1/3

〉
〈d〉

E∗3
√

2

πV 3
q0h

5/3
rms (11)

Notice, in eq. (10), Aad/Anom is proportional to the external mean pressure if
〈
d1/3

〉
/ 〈d〉

does not depend on pressure.

III. RESULTS

We have obtained an expression for aV in eq. (10), but this was mainly for qualitative

purposes because of the problematic term
〈
d1/3

〉
/ 〈d〉. Hence, we fit the global Aad/Anom

vs. (ε/hrms)
2/3 curves obtained from numerical results of the adhesionless contact problem

with the full Persson-Scaraggi’s theory. The use of the Persson-Scaraggi’s theory allows us

to reach broad band of roughness, ζ ' 105. Fig. 2 shows that in terms of actual adhesive

area, the convergence with ζ is very rapid (Fig. 2A) and is not modified by the load (Fig.

2B). Accordingly, interpreting the results in terms of the prefactor aV , the solution rapidly

converges with magnification (Fig. 2C), and weakly depends on pressure at the smaller

values of p̂rep (Fig. 2D) or indeed on fractal dimension in the range D = 2.1 − 2.3, which

is the most interesting range [41]. We also show Pastewka and Robbins’ prediction for the

prefactor aV , which corresponds to aV,PR ∼ ζ1/3 for D = 2.2 (see Appendix B) and hence

may result in large error for large magnifications.

Starting again from eq. (10), we find that both repulsive mean pressure and adhesive

mean pressure are proportional to the repulsive contact area, which can therefore be grouped

as

pext
E∗

=
prep
E∗
− σ0

E∗
Aad
Anom

=
Arep
Anom

√
2m2

2

[
1− la

ε

3

2

aV
q0hrms

(
ε

hrms

)2/3
] (12)

8



FIG. 2: (A) Adhesive area Aad/Anom estimated by Persson’s theory (with
ζ = [10, 100, 500, 1000, 5000, 10000, 20000, 50000] , H = 0.8) . (B) Adhesive area Aad/Anom

estimated by Persson’s theory (with
prep = [6.5 ∗ 10−3, 0.03, 0.07, 0.13, 0.20, 0.26, 0.33, 0.39, 0.46, 0.52] and ζ = 1000). (C)

Estimates of the prefactor aV from Persson’s theory for H = [0.7− 0.8− 0.9] vs Pastewka
and Robbins’ estimate for H = 0.8 (black dashed line), [aV ]PR = 0.252ζ1/3 as obtained in

Appendix - B as a function of magnification ζ for p̂rep = 0.065. (D) Estimates of the
prefactor aV for ζ = 1000 from Persson’s theory as a function of for p̂rep.
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where we used the identity la/ε = σ0/E
∗ and the actual value of the factor κrep = 2 [42, 43]

instead of the factor of the original Persson’s theory.

Hence for the ”slope” κ we write

1

κ
=

1

κrep
− 1

κad
=

1

2
− 3aV

4q0hrms

la
ε

(
ε

hrms

)2/3

(13)

and then stickiness is obtained when 1/κ < 0 leading to the suggested criterion

ε

la

(
hrms
ε

)2/3

<
3

2

aV
q0hrms

(14)

In particular, neglecting the weak dependence on fractal dimension (see Fig. 2C), considering

we are interested in the asymptotic regime of low pressure (see Fig. 2D) and in the limit of

high magnification (see Fig. 2C), we can take aV ' 3 and rewrite the criterion given in eq.

(14) as

hrms
ε

<

(
9

4

la/ε

εq0

)3/5

(15)

As it can be seen eq. (15) depends only on RMS amplitude of roughness hrms and the largest

wavelength in the roughness spectrum q0.

The obtained criterion depends only on quantitative macroscopic entities, rather than

local, small-wavelength dependent ones. The small wavevector cutoff of roughness q0, could

in principle take arbitrarily low values for large surfaces, provided that for a given hrms/ε

the PSD components should be lowered over all the wavenumber q, which would result in

increasingly loose boundary of stickiness. For example, for a flat surface of mm size, we have

εq0 ∼ 10−6 and our criterion gives hrms/ε . 1000, so macroscopic stickiness could persist

even for roughness three orders of magnitude larger than the range of attraction, i.e. of the

order of nearly one micron. Of course these extrapolations will have some limitation on the

concept of the ideally flat surface with a pure power law PSD of roughness.

Sticky surfaces in Pastewka and Robbins’s simulations [25] have la/ε = 0.05, εq0 =

2π/4096, hence the right hand side of eq. (15) gives
(

9
4
la/ε
εq0

)3/5

' 13, while from [44, 45]

it is possible to estimate hrms/ε ' [5 − 10] which means our stickiness criterion (eq. (15))

was also satisfied for their “sticky surfaces”. Nevertheless the criterion we propose does not

depend on small scale features of the rough surface and coincides with that of Pastewka &
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Robbins [25] only for ζ ≈ 103 (see Fig. 2C and for a more detailed comparison see Appendix

- B).

Obviously, our criterion may suffer from the limitations and assumptions of Persson and

Scaraggi’s theory, in particular those of the DMT theory. Indeed, from JTB’s results [27], we

know that complex instabilities and patterns form at very low RMS amplitude of roughness,

and in particular that any DMT type of analysis, including the one presented here, can be

expected to hold only for approximately

hrms
ε

>
4

75

la/ε

εq0

(16)

It is also likely, from JTB predictions [27], that stickiness is lower if this condition is violated

and a more refined analysis is needed, which is outside the possibilities of both JTB and our

model. Fig. 3 shows the stickiness map obtained with the present criterion. The shaded

region in Fig. 3A identifies the couple ( εq0
la/ε

,hrms

ε
) which would give stickiness. Underneath

the dashed line (from eq. (16)) pattern formation is expected, and our DMT model may

not be accurate. In Fig. 3B the slope angle α = arctan (κ) is plotted as a function of hrms/ε

for varying εq0
la/ε

.

IV. DISCUSSION

Considering our result, it is clear that to improve stickiness, for a given range of attractive

forces ε, we need to make q0 as small as possible for the given hrms. For a power law PSD

C (q) = C0q
−2(H+1), we have hrms '

√
πC0/Hq

−H
0 . It may be useful to rewrite the criterion

(15) in terms of the PSD multiplier C0 (as usual, for H = 0.8)

C0 <
0.8

π
ε4/5q

2/5
0

(
9

4

la
ε

)6/5

(17)

It appears clear that we need as small roughness as possible, for a given q0 which is presum-

ably dictated by size of the specimen up to some extent, or by the process from which the

surface originates. Also, we need to have la/ε as high as possible, and this means obviously

high ∆γ and low E∗ (being la = ∆γ/E∗).

Given ∆γ is in practice strongly reduced by contaminants and various other effects to
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FIG. 3: (A) Adhesion map for multiscale rough surfaces according to the present criterion
(15). In the plane εq0

la/ε
vs hrms

ε
the sticky region is shaded. According to JTB analysis in the

region below the dashed black line pattern formation is expected with possible reduction of
stickiness. (B) The slope angle α = arctan (κ) is plotted as a function of hrms/ε for varying

εq0
la/ε

= [1, 3/4, 1/2, 1/4, 1/10] and aV = 3. The arrow denotes increasing values of εq0
la/ε

.

values of the order ∼ 50 mJ/m2, the only reliable way to have high stickiness is to have very

soft materials.

Specifically, we shall make some quantitative estimates based on real surfaces. As re-

ported by Persson [41], most polished steel surfaces for example, when measured on L ∼ 0.1

mm, show hrms ∼ 1 µm. This means q0hrms ∼ 0.1. This incidentally satisfies JTB condition

for ”DMT”-behaviour (eq. (16)). Contrary to the recent emphasys on measuring entire PSD

of surfaces, it seems therefore that for stickiness, the most important factors are well defined

macroscopic quantities, which are easy to measure. For a wide range of surfaces (asphalt,

sandblasted PMMA, polished steel, tape, glass) reported in [41], see Fig. 4, C0 is at most

5× 105 m0.4. Then, assuming ε = 0.2 nm and ∆γ = 50 mJ/m2 as a typical value, even with

the uncertainty in the choice of q0, in the range of q0 ∼ 103 [m−1], our criterion predicts

E∗ < 2.4 MPa. This is for asphalt which clearly is one of the most rough surface we can

consider, and indeed outside the normal application of PSA. Our result is therefore entirely

compatible with the empirical criterion by Carl Dahlquist [14] from 3M which suggests to

make tapes only with low modulus materials E∗ < 1 MPa, whose generality was so far still

12



scientifically unexplained.

FIG. 4: Experimentally measured PSD of typical real surfaces as taken from Ref. [41].
Notice they can be grouped in a fairly narrow band.

Recently, after a recent paper by Dalvi et al. [48], which has demonstrated that the simple

energy idea of Persson and Tosatti [49] works reasonably well, Ciavarella [50] compared the

present DMT criterion with other ideas, namely one coming from an energy balance due to

Persson and Tosatti [49], where the reduction in apparent work of adhesion equals the energy

required to achieve conformal contact, and another criterion derived from BAM (Bearing

Area Model) of Ref. [26]. It was found that the three criteria give very close results but the

present criterion contains a slightly different qualitative dependence on material properties

than others, since we can write it in the form

hrms < ε−1/5 (0.36laλL)3/5 (18)

being λL = 2π/q0. The above formula shows the product laλL, is raised to the power 3/5,

and there is a weak apparent dependence on the range of attractive forces ε.

13
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FIG. 5: A comparison of the derived stickiness criterion (red line), together with
Persson-Tosatti (black line), BAM (blue solid line) and that of Pastewka and Robbins [25]

(black dashed lines) which correlates well with ours only for ζ < 1000.

We can summarize the three criteria for H = 0.8 in the form

hrms
ε

<

√
0.24

la
ε

λL
ε

; Persson-Tosatti (19)

hrms
ε

<

√
0.6

la
ε

λL
ε

; BAM (20)

hrms
ε

<

(
0.358

la
ε

λL
ε

)3/5

; Violano et al. (21)

and a comparison is shown in Fig. 5, where Persson-Tosatti is reported in black solid line,

BAM as blue solid line, and Violano et al. as red solid line.

Clearly, the criterion obtained in the present paper deviates from the other two at high

la/ε, which corresponds to low elastic modulus, where indeed one expects that the DMT

assumptions may be violated. Notice that the PR criterion for H = 0.8 writes as

hrms
ε

<

(
0.06

la
ε

λL
ε

)3/5

ζ1/5 (22)

It is reported in Fig. 5 and shows similar behaviour from ours but only for low magnifi-
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cations

V. CONCLUSIONS

We have defined a new stickiness criterion, whose main factors are the low wavevector

cutoff of roughness, q0, the RMS amplitude of roughness hrms and the ratio between the work

of adhesion and the plain strain Young modulus. We find that, in principle, it is possible to

have effective stickiness even with quite large RMS amplitudes, orders of magnitude larger

than the range of attractive forces. For robust adhesion with different possible levels of

roughness, the main characteristic affecting stickiness is the elastic modulus, in qualitative

and quantitative agreement with Dahlquist criterion, well-known in the world of pressure-

sensitive adhesives. The proposed criterion is independent on small scale features of the

roughness, i.e. slopes and curvatures. According to our analysis stickiness may still depend

on the latter, but only for narrow PSD spectra. The result provides new insights on a very

debated question in the scientific community, and may serve as benchmark for the future

analysis with broad PSD spectra that are still beyond the present computational capabilities.
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Appendix - A

A brief outline of the Persson’s theory

We summarize the main results of Persson’s contact mechanics theory, as applied to

adhesive problem, in the variant suggested by Ref. [32]. The repulsive contact area relative

to the nominal contact area Arep (ζ) /Anom is related to the mean pressure prep (original

Persson’s theory, [37]) as

Arep (ζ)

Anom
= erf

(
prep

E∗
√
m2 (ζ)

)
(23)
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where E∗ is the elastic modulus in plane strain, and m2 (ζ) variance of profile slopes at the

magnification ζ = q1/q0, being q1 and q0 respectively the high and low wavenumber cut-off

of the surface Power Spectral Density (PSD). A better estimation of the contact area can

be obtained (see Ref. [46]) replacing in eq. (23) m2 with 〈∇h2〉/2, where for a given PSD

spectrum C (q) 〈
∇h2

〉
=

∫
D(ζ)

d2q q2C (q)S (q) , (24)

being D (ζ) = {q ∈ R2| q0 ≤ |q| ≤ ζq0}, which can be interpreted as the averaged square

slope of the deformed surface (with heights h), and S = γ + (1− γ) (A/A0)2, being γ an

empirical parameter which can be taken in the range 0.4− 0.5.

For small nominal squeezing pressure or, equivalently, very large magnifications, eq. (23)

reduces to eq. (4).

At the magnification ζ, in the apparent contact area Arep (ζ) /Anom, the root mean square

roughness amplitude of the rough surface is

h2
rms (ζ) =

∫
q>q0ζ

d2qC (q) = 2π

∫
q>q0ζ

dqqC (q) . (25)

The corresponding mean interfacial separation u (ζ) between the surfaces is related to

the pressure prep by (Ref. [47])

ū (ζ) =
1

2
√
π

∫
D(ζ)

d2qqC (q)w (q)

∫ ∞
prep

dp

p

×
[
γ + 3 (1− γ) erf2

(
w (q) p

E∗

)]
e−(w(q)p

E∗ )
2

(26)

where

w (q) =

(
1

2

∫
Dq

d2q′q′2C (q′)

)−1/2

(27)

being Dq = {q∈ R2| q0 ≤ |q| ≤ q}.

In the limit of vanishing pressure, one can show that eq. (26) simplifies as (Ref. [47])

prep ≈ β (ζ)E∗exp

(
− ū

u0 (ζ)

)
(28)

where u0 (ζ) is a characteristic length which is independent of the squeezing pressure and
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depends on the surface roughness (and, hence, on the magnification ζ).

The distribution of interfacial separations also depends on magnification, and is obtained

by a much more complex process of integration

P (u) ' 1

A0

∫
dζ [−A′ (ζ)]√

2πh2
rms (ζ)

[
exp

(
−(u− u1 (ζ))2

2h2
rms (ζ)

)

+ exp

(
−(u+ u1 (ζ))2

2h2
rms (ζ)

)]
(29)

where the apex symbol denotes differentiation by magnification.

Predictions of the above expression can be improved by substituting hrms(ζ) with (see

Ref. [32])

heff
rms(ζ) =

[
h−2

rms(ζ) + u−2
1 (ζ)

]−1/2
(30)

Finally, u1 (ζ) is the (average) height separating the surfaces which appear to come into

contact when the magnification decreases from ζ to ζ−∆ζ, where ∆ζ is a small (infinitesimal)

change in the magnification, and can be calculated from the average interfacial separation

u (ζ) between the surfaces in the (apparent) contact regions observed at the magnification ζ,

and the contact area A (ζ) as

u1 (ζ) = u (ζ) + u′ (ζ)A′ (ζ) /A (ζ) (31)

Appendix - B

Comparison with Pastewka and Robbins’ theory

The Pastewka and Robbins (PR) criterion [25] is summarized in the following equation

(eqt. 10 in their paper)

h′rms∆r

2la

(
h′rmsdrep

4∆r

)2/3

< π

(
3

16

)2/3

' 1 (32)

where drep is a characteristic diameter of repulsive contact areas, which they estimate as

drep = 4h′rms/h
′′
rms, and h′rms and h′′rms are the RMS slopes and curvature. Finally, ∆r is

the attractive range which is of the order of atomic spacing (∆r ' ε for the Lennard-Jones
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potential). When the condition given by eq. (32) is satisfied, the surfaces in mutual contact

are suggested to be ”sticky” and a finite value of the pull-off force should occur.

However, comparison with the PR results is best done considering the attractive area

(their eq. 6), reading

Aad = Arep

(
16

9π

)−1/3(
π∆r

h′rmsdrep

)2/3

(33)

= 2

(
16

9π

)−1/3

p
Anom
h′rmsE

∗

(
πa0

√
24la/εh

′′
rms

4h′2rms

)2/3

(34)

where we used their equation Arep = 2pAnom/ (h′rmsE
∗) and ∆r/ε =

√
24la/ε from Supple-

mentary Information of PR paper so that for la/ε = 0.05. Hence, it can be shown that,

compared to our eq. (10), their estimate corresponds to

[aV (ζ)]PR = 1.4622q0hrms

(
h′′2rms
h′7rms

)1/3

h2/3
rms (35)

Now for power law tail of the PSD C (q) = C0q
−2(H+1), estimating h′rms =

√
2m2, h

′′
rms =√

8m4/3 (see Appendix - C) we obtain as for H = 0.8

[aV (ζ)]PR = 0.252ζ1/3 (36)

which results in a magnification dependence much stronger than the dependence we find (see

Fig. 2C). Hence, we conclude PR criterion and the one proposed here agree for a narrow

range of ζ (' 103), but, at very high ζ (' 106, see [48]), the difference grow since in our

theory the adhesive contact area Aad/Anom converges with ζ (eq. 10) while PR estimate

continues to grow (eq. 36).
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Appendix - C

On random process theory

Assume the surface h (x, y) has a continuous noise spectrum in two dimensions and is

described by a Gaussian stationary process. In such case, we write

h (x, y) =
∑
n

Cn cos [qx,nx+ qy,ny + φn] (37)

where the wave-components qx,n and qy,n are supposed densely distributed throughout the

(qx, qy) plane. The random phases φn are uniformoly distributed in the interval [0, 2π).

The amplitudes Cn are also random variables such that in any element dqxdqy

∑
n

1

2
C2
n = C (qx, qy) dqxdqy. (38)

The function C (qx, qy) is the Power Spectral Density (PSD) of the surface h, whose

mean-square value can been calculated as

m00 =

∫ ∫ +∞

−∞
C (qx, qy) dqxdqy (39)

For isotropic roughness, using Nayak [52] definitions for the surface

mrs =

∫ ∫ ∞
−∞

C [qx, qy] q
r
xq
s
ydqxdqy (40)

where m00 is by definition h2
rms. It can be shown by defining the PSD and the ACF (auto-

correlation function) of the partial derivatives of h with respect to x and y coordinates, and

using a relationship with the PSD of the surface, that the above spectral moments are (see

[51])

〈(
∂r+sh

∂xr∂ys

)2
〉

= m2r,2s〈(
∂r+sh

∂xr∂ys

)2
〉

= (−1)
1
2

(r+s−r′−s′)mr+r′,s+s′ or 0,

(41)
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depending on (s+ r − r′ − s′) is even or odd.

Nayak [52] finds for isotropic surface,

m20 = m02 = m2; m11 = m13 = m31 = 0

m00 = m0; 3m22 = m40 = m04 = m4 (42)

meaning when there is no second subscript the profile statistics for isotropic surface, which

is independent on the direction chosen.

For slopes, with the common definition of their RMS value is (also used by PR [25])

h′rms =
√〈
|∇h|2

〉
=

√√√√〈(∂h
∂x

)2

+

(
∂h

∂y

)2
〉

=
√

2m2 (43)

where the equality depends on the result that, for an isotropic surface, the orthogonal

components ∂h
∂x

and ∂h
∂y

are uncorrelated.

The definition of RMS curvature h′′rms is less common, but we shall follow PR [25] in

defining

h′′rms =
√〈

(∇2h)2〉 =

√√√√〈(∂2h

∂x2

)2

+

(
∂2h

∂y2

)2

+ 2

(
∂2h

∂x2

)(
∂2h

∂y2

)〉

=
√
m40 +m04 + 2m22 =

√
8m4/3 (44)
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