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The fundamental problem of adhesion in the presence
of surface roughness and its effect on the prediction
of friction has been a hot topic for decades in
numerous areas of science and engineering, attracting
even more attention in recent years in areas such
as geotechnics and tectonics, nanotechnology, high-
value manufacturing and biomechanics. In this paper
a new model for deterministic calculation of the
contact mechanics for rough surfaces in the presence
of adhesion is presented. The contact solver is an in-
house boundary element method that incorporates
fast Fourier transform for numerical efficiency. The
adhesive contact model considers full Lennard-Jones
potentials and surface integration at the asperity level
and is validated against models in the literature.
Finally, the effect of surface roughness on the adhesion
between surfaces was studied, and it was shown that
the root mean square gradient of surface roughness
can change the adhesive pressures irrespective of
the root mean square surface roughness. We have
tested two adhesion parameters based on Johnson’s
modified criteria and Ciavarella’s model. We showed
that Civarella’s model introduces the most reasonable
criteria suggesting that the RMS roughness and large
wavelength of surfaces roughness are the important
parameters of adhesion between rough surfaces.

1. Introduction

Adhesion is the term used when two surfaces are
attracted to each other due to different forces such
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as inter-atomic Van Der Waals forces, electrostatic and capillary forces. The magnitude of this force
is often correlated to the nature of the molecules and the distance of separation between them
[1]. Often in engineering, in particular solid mechanics, adhesion is referred to as the attractive
forces between non-bonding atoms or molecules of surfaces and the Lennard-Jones is often used
as a model potential providing a qualitative description of intermolecular forces to describe the
attraction/repulsion as a function of their separation. When two real engineering bodies come
into contact, there will be areas of surfaces which are in physical contact and the contact pressure
is compressive. Depending on the topography of the surfaces, there will be a distribution of
surface separations across the nominal contact area. These separations, if small enough (with
respect to atomic distances), can lead to attractive forces between surface points.

In contact mechanics, there are numerous models of adhesive contact [2]. In particular,
there are two widely used analytical adhesive models both developed for smooth surfaces,
namely, Johnson-Kendall-Roberts (JKR) [3] and Derjaguin-Muller-Toporov (DMT) [4]. In JKR,
it is assumed that there is no adhesion outside the contact area and infinitely large pressures
are present at the border and inside the contact area. By contrast, DMT assumes a Hertzian
contact area with consideration of adhesion and adhesion forces do not contribute to surface
deformations. Both models have their limitations in the application, which makes JKR valid
for the case of soft materials and large radius of curvature and DMT valid for stiffer materials
with small curvatures. There is a wealth of engineering problems that would sit outside these
constraints and also a high proportion of engineering contact problems involves rough surfaces.
David Tabor showed that the validity of the JKR and DMT models can be assessed by the
Tabor parameter (1) [5] where JKR can effectively predict adhesion at large values of (1) and
DMT at smaller values. Maugis [6] developed a model based on the Dugdale approximation
using Lennard-Jones potentials and bridged the transition gap between DMT and JKR which,
to date, remains a more complete description of the adhesive contact model for smooth surfaces.
Muller et al. [7] and later Greenwood [8] developed a complete numerical solution for the contact
with adhesion by applying Lennard-Jones potential and elastic deformation of solid surfaces.
Greenwood has shown that the load-displacement curve becomes S-shaped at Tabor values of
more than one.

A great challenge in modelling the contact of engineering surfaces with adhesion is the
irregular nature of the surface topography, which makes the application of analytical models
almost impossible. The pioneering work of Fuller & Tabor [9] shed light on the effect of roughness
on adhesion by the development of an asperity-based adhesion model. Other significant
contributions in the field were reported by Persson & Tosatti [10] who used the self-affine fractal
properties of the surfaces and showed the dependency of adhesion on the fractal dimensions.

All the above-mentioned theoretical works have led to significantly increased understanding
of the nature of adhesive forces on the contact of surfaces. However, they lack deterministic
capabilities to account for the interactions of real surface topographies. In recent years, an increase
in computational power has resulted in the development of advanced numerical models that
can calculate the adhesive contact of deterministic surface topographies. In a recent contact
mechanics challenge, Miiser et al. [11] presented and compared the results of different numerical
approaches for calculation of the adhesive contact of a pre-defined experimentally measured
surface roughness. They have shown that numerical approaches such as the boundary element
method (BEM) [12], all-atom molecular dynamics (MD) [13] and boundary value methods (BVM)
[14] can successfully calculate the contact problem with adhesion. In recent years, there have
been numerous works considering the contact of rough surfaces with adhesion. Rey et al.
[15] developed a BEM-based contact mechanics model based on fast Fourier transforms (FFT)
by minimizing the potential energy that is the sum of elastic energy and adhesive energy.
Solhjoo & Vakis [13] have developed an MD model using the embedded atom method (EAM) that
simulates surface roughness with atoms and gives a high accuracy in contact area calculations and
surface pressure, although time-consuming and limited with the number of atoms considered for
simulations. Pastewka & Robbins [16] developed a Green’s function MD simulation to calculate
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the non-adhesive contact of rough surfaces and proposed a criterion for macroscopic adhesion
based on the geometry and material.

Other significant contributions were made by Ciavarella ef al. in a series of articles [2,17,18].
They correlated the bearing area model (BAM) and geometrical intersections to adhesion via a
simple mathematical description [19]. The model was reported to be valid for an intermediate
range of Tabor parameters. Pohrt et al. [20-22] developed a BEM contact mechanics model that
used a mesh-dependant detachment criteria for adhesive contact of rough surfaces that was
based on the solution of non-adhesive contacts. Ghanbarzadeh et al. [23] used the same model
and predicted the bouncing behaviour of elasto-plastic and adhesive solids and showed the
significance of the effect of roughness in increasing energy dissipation. Bazrafshan et al. [24]
developed a BEM-based contact mechanics model and incorporated adhesive interactions by
means of Dugdale approximation and later studied the effect of roughness and adhesion on the
stick/slip of dissimilar materials [25]. Medina & Dini [12] developed a deterministic adhesive
contact model using multi-level-multi-integration (MLMI) and implemented adhesion by directly
using Lennard-Jones potentials and integrating that over the length of computational nodes
to better represent adhesive pressures and to avoid convergence issues due to the nonlinear
behaviour of the Lennard-Jones potential.

As discussed, the literature contains extensive and continuously evolving research in the
mechanics of contacts in the presence of surface roughness and adhesion. Computational models
are becoming increasingly more efficient such that it is now possible using a desktop PC to
solve a contact problem in a reasonable time. This paper represents an advancement in the
fully deterministic calculation of normal contact of rough surfaces with adhesion by directly
using Lennard-Jones potential fields and integration methods over a surface area around the
computational nodes to offer an efficient and highly accurate computational model for contact
mechanics with adhesion. The model is an advancement to the line integral model developed
by Medina & Dini [12] that considered the integration in one dimension. The main aim of the
paper is to present this new mathematical model and to show the capabilities of the model by
comparing the results with already existing literature. The validity of the model is tested for
the case of smooth surfaces and results are compared with the results of Greenwood [8]. The
strength of the model to capture the rough surface adhesive contact is also tested by reproducing
the results of the contact mechanics challenge reported by Miiser et al. [11]. Also the idea that
the RMS slope of surface roughness is important in determining the adhesion force has been
highlighted by the model and a recent theory proposed by Li et al. [22] based on a modified
Johnson parameter has been tested. Furthermore, a comparison with the model of Ciavarella
[26] is made. The method presented here can also be applied to cases where surface geometries
are given by analytic functions such as the case of parabolic or spherical geometries by only
integrating the height functions with respect to X and Y lateral dimensions. The theory of the
model is presented in §2 followed by results and discussion in §3.

2. Theory

(@) Non-adhesive normal contact

The model uses a contact mechanics solver developed previously for non-adhesive contact of
rough surfaces using a BEM approach and incorporating FFT for numerical efficiency. When two
engineering surfaces with roughness come into contact, due to the inhomogenous nature of the
surface roughness, a small proportion of the nominal contact area will sustain the load, known as
the real area of contact.

The composite deformation of the surfaces u.(X, Y) due to the applied load of p(X, Y) can be

calculated by the linear convolution according to Boussinesq—Cerruti theory:
+00 p+00
we=Kepa=| | KO- &Y - mpe,mae dn 1)

—00 J—00
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rigid plane

roughness mean plane

Figure 1. Schematic of the contact of rough surfaces.

in which x and y are two-dimensional coordinates, K is the convolution kernel and can be
calculated from the half-space approximation as the following;:

1 1
B x4+ (v — 2

where E* is the composite elastic modulus of both materials (1/E* = (1 — v12)/E1 + (1 — v22)/Ey).
Here, vy, vz, E1 and E; are the Poisson’s ratio and Elastic Moduli of materials 1 and 2, respectively.
For the contact of two rough surfaces, one can consider the composite roughness of the two
contacting surfaces and a rigid plane to calculate the contacting points [27]. By movement of
the rigid body in the normal direction, the interference (i) between the contacting surfaces can be
obtained (figure 1). For the nodes experiencing contact, the elastic deformation must be equal
to the body interference and the pressure is generated at the asperity. The summation of the
pressures on the nodes must also be equal to the applied load. Therefore, the set of equations
for the contact of rough surfaces is as follows:

K(X—§,Y —n)

, 2.2)

u(X,V)=i(X,Y)=H(X,Y)-D(X,Y) V(XY)eA, (2.3a)
pX,Y)>0 VX, Y)eA, (2.3b)
and W= ﬂp(X, Y)dXdy, (2.3¢c)

where i is the asperity interference, H is the composite surface roughness height, D is the distance
between the reference plane and the rigid plane and W is the total applied load. The separation
of asperities can be defined by ¢(X, Y)=D(X, Y) —H(X, Y) + u(X, Y).

(b) Adhesion model

In this paper, adhesive pressures are calculated at the areas of asperity separation by means of
direct implementation of the Lennard-Jones potential. The potential was first defined by John
Lennard-Jones in the following format:

e[

where v is the inter-atomic potential, ¢ is the depth of the potential wall, o is the distance between
particles at which the potential becomes zero and r is the finite separation of the two particles.
Differentiation of equation (2.4) with respect to r (separation) results in the determination of the
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force applied on the particles. Similarly, if potential energy per unit area is differentiated with
respect to r, an expression for pressure is determined as in the following;:

p(z) = S {(Z—O)9 - (2—0)3}, (2.5)

3z9 z z

where wg is the work of adhesion and can be measured experimentally or is calculated by
integration of pressure with respect to separation from z =z to z=oo:

wo = l[oo p(z) dz, (2.6)

20

where z is the equilibrium separation when the potential is at its maximum and the adhesive
force (pressure) is zero and z is the separation distance between two planes.

Equation (2.5) is valid for the case of two parallel planes with a separation distance z. In order
to be able to use the above formulation in a discretized boundary element formulation, there is
a need to approximate the adhesive pressure over the area around a computational node. This
is not a straightforward task and a proposed way to approach this is presented in the following
paragraph.

To facilitate the approximation of the adhesive pressures, it is necessary to consider the
configuration of the computational nodes in BEM. Figure 1 represents the cross section of the
roughness profile only in one dimension. The real surface topography is a two-dimensional
matrix with every element representing the surface height of a computational node. Figure 2
shows a discretized surface with point 1 being the point where surface tensions are being
calculated with respect to equation (2.5). Substituting the separation value (z) of the node 1
in equation (2.5) results in a value of pressure (two black squares in figure 2), which is not
representative of the pressure in the computational domain for point 1 (dashed square around
point 1). The dashed square in figure 2 represents the BEM domain for one computational node
at which the pressure is assumed to be constant. Points A, B, C and D (shown by blue dots) are
the points of interest at which the separation will largely affect the tensile pressure at point 1. A
significant amount of information is missed (if only the pressure at point 1 is taken into account)
at the edges of the computational node (points A, B, C and D) due to the shape of the Lennard-
Jones potential. Figure 2 shows how separation values at points A, B, C and D affect the integral
value of tensile stress over the line integrals moving in X and Y directions.

This problem is valid for movements in both X and Y directions on the surface. In order to
overcome this issue, an approximation is needed to integrate the profile of the Lennard-Jones
potential in both X and Y directions and calculate the two-dimensional average of the pressure.
The Lennard-Jones pressure formulation of equation (2.5) is dependant only on the separation of
surfaces in the normal direction and the integration should be carried out in X and Y directions
as a surface integral. Therefore, the following formulation is proposed:

po== [reras @7)

where a is the length of the computational elements in X and Y directions, and ds is the differential
of the surface representing the surface heights. For the BEM calculations, the surface integral
needs to be carried out with respect to X and Y with the following integration:

o1 3z \2 3z \?
p(z):;H f(X,Y,z(X,Y))\/ (aT() +<3T/> +1%d4, 2.8)

where f is a function that we need to integrate on the surface (in this case, the adhesive pressure
function), z(X, Y) is the separation function with respect to X and Y coordinates and dA is the
differential of the projection area on the XY plane as shown in figure 3. Equation (2.8) considers
the changes in the mean value of the adhesive pressure function by the increment of surface
area due to roughness. It should be noted that the shape of the surface nodes (in terms of their
sharpness, etc.) affect the intensity of the average separation and therefore the average adhesive
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Figure 2. Discretization of the surface in BEM. Point 1 represents the computational node that adhesion pressure is going to be
calculated at. (Online version in colour.)
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Figure 3. Representation of surface separation and its projection on the XY plane. Points shown are the same as the ones
in figure 2. (Online version in colour.)

pressure. We are only able to integrate the separations from point 1 to point 2 in the X direction
and from point 1 to point 3 in the Y direction. Ideally, we should integrate from point A to point
B in the X and from point C to point D in the Y direction. This is impossible since we do not have
information regarding the heights for points A, B, C and D.

Ideally, having a surface integral on the area A would enable calculation of the pressure. That
needs the equation of z as a function of X and Y to be determined. This is possible using the
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bilinear interpolation technique. However, this will give a nonlinear function of z based on X
and Y and the integrating equation (2.8) will be impossible analytically. Instead, by substituting
equation (2.5) into equation (2.8) and writing dA = dXdY, and knowing that dX = (dX/dz) dz and
dY =(dY/dz) dz, the integration can take the form:

o1 (VX2 | 8wy (/2009 /z0)\3 3z \2 3z \ 2 dx dy
0=z, |, {3 - () 1 (Ee) (Ee) e
in which X and Y stand for the position of points in the X and Y direction and the subscripts

represent the nodes of interest. Solving the integral of equation (2.9) results in the adhesive
pressure formula for each node to be calculated by

h= |2 z-z )\ -2\ Xp—X1\[(Ys—"1
- ((E) () ) (222 (2=2)
Z3 (22 8wy 20 9 20 3
XL le {%{(?) - (;) }}dZdZ- (2.10)

Knowing that X, — X1 =Y3 — Y1 =a and solving the double integration, the final equation is
solved as

pli) = ((\/(?_2 )2+<;3_‘§1 >2+1) ( ! )wo) (428—42#2‘2—425)). (2.11)
2= X1 53— "1 z—21)320 )\ z5 2z 2z 7

In order to solve the adhesive problem using equation (2.11), information from the adjacent

nodes in X and Y directions (2 and 3) is needed. Therefore the BEM algorithm should start

calculating the adhesive pressures from one row (in either X or Y direction) and complete the

pressure profile by moving across the columns one by one. It should be noted that equation (2.9)

can be used when H or z is represented as a function of X and Y (e.g. for the case of parabolic or

spherical smooth contacts an analytical model of adhesive pressures can be developed). This will
be the subject of future investigations and is not within the scope of the present paper.

(c) Numerical approach

The non-adhesive contact model explained in §2a should now be modified to account for the
adhesive pressures calculated at separated computational nodes using equation (2.11). This needs
a careful definition of surface separations between all computational nodes since separation g
defined after equation (2.3) has now to accommodate atomic separation z in equation (2.11). Due
to the shape of Lennard-Jones potentials, separation less than zy will result in high compressive
pressures. Since compressive pressures are already calculated using the non-adhesive algorithm
of §2a, positive pressures should be truncated out of adhesive calculations. In order to overcome
this, a relationship between atomic separation (z) and continuum separation (g) is used as the
following [12]:

g+zo=2z (2.12)

This new separation (z) will be used in equation (2.11) to calculate the adhesive pressures.
Although this will shift the profile of Lennard-Jones for zj to the left, Medina & Dini [12] showed
this can be tolerated due to the sharp slope of the shape of the pressure profile. The non-adhesive
formulation of equation (2.3) is now converted to an adhesive problem as the following:

pi>0 8i=0
pi <0 based on equation (2.11) g; > 0.
W= [[pX, Y)dXdY

This new set of equations needs to be solved in an iterative process. Previously, for a non-
adhesive contact, pressures less than zero could be simply truncated out of simulation by
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replacing them with zero pressures. For adhesive contact, the negative pressures will be present
and they disturb the gap and elastic deformation balance. Solving the new contact problem
with adhesion needs a robust numerical algorithm since the introduction of negative (adhesive)
pressures can easily lead to difficulty in convergence. A new numerical algorithm is presented
here that was shown to work for all contact cases including low and large Tabor parameters for
both smooth and rough surfaces. The detailed description of the algorithm is given below:

— An initial contact pressure distribution is assumed on the entire surface that is a
combination of the positive (p.- compressive) and the negative (p,- adhesive) pressures.
Ptotal = Pc + Pa. Selection of a suitable initial adhesive pressure is critical in our algorithm
and defines how quickly the final solution is converged. It was shown that a constant
negative pressure of p; = —(16wy /9+/3zp) will result in the quickest and most efficient
computation for unloading of contact. For loading (jumping into contact), we start from
zero adhesion.

— Calculate the positive pressures using equation (2.3) and replacing negative pressures by
zero. The total pressure pyot,1 is used to calculate the surface deformations in this stage.
The relaxation in this stage updates the positive pressures with the following process:
Pe=pPc —ke_relax X § Where kc_,elax is the relaxation factor for positive pressures and g
is the separation at each node. Values in the range of 0.00000001 and 0.01 were used
depending on the elastic properties of surfaces. This relaxation factor was optimized
independently only for positive pressures.

— The separation at points of zero pressure was calculated and adhesive pressures (p;—new)
were calculated at every node using equation (2.11).

— The residuals of surface points were calculated in a new iteration loop where only
adhesive pressures p, were relaxed using a new relaxation coefficient as the following;:
Pa=pa~+ (ka_relax X §) X (Pa—new — Pa) Where k;_relax is the relaxation factor for adhesive
pressures and is independent of k;_relax. This coefficient is in the range of 0.0000001
and 0.1 and dependant on the local Tabor parameter. Here, we used the inverse root
mean square curvature, which can be interpreted as the local radius of curvature to
identify the local Tabor parameter in the presence of roughness. The residuals and surface
deformations were calculated by the total pressure pioto being updated as piota] = pc + Pa
and new surface deformations were calculated.

— This process was undertaken until a convergence was achieved between p,; and p;—new-
It should be noted that the relaxation of positive and negative pressure was carried
out independently in two interconnected loops. The loop for the positive pressure
calculations was done prior to the calculation of negative pressures and was carried out
in every adhesive pressure loop.

The convergence criteria in this model were set as the average of the residuals for positive
pressures to be less than zg x107°.
A schematic of the algorithm is represented in figure 4.

3. Results

(a) Simulation of smooth surfaces

For the sake of model validation, the case of smooth spheres with a range of Tabor parameters has
been studied and the results of dimensionless load (W/27 R*wy) versus dimensionless approach
(e¢/zp) were compared with the existing theories. It is tricky to capture the adhesive contact
behaviour of surfaces for Tabor parameters ranging from 0.1 < p < 3 since they are describing the
transition from DMT to JKR theories. In this case, a comparison with the model of Greenwood
[8] is represented. The Tabor parameter is defined as w=R+Y/ 3w5/ S/E*z/ 320 where R* is the
equivalent radius of curvature and for the case of a sphere on a flat surface is the radius of
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Figure 4. Schematic of the numerical algorithm.

the curvature of the sphere. Figure 5 shows the comparison of our model with the model of
Greenwood at values of 1 =0.1,0.2 and 0.3, and figure 6 shows the comparison for © =1,2 and 3
where a good agreement is observed. The simulations can capture the adhesive pressures for
negative values of separation. For the case of higher Tabor parameters (figure 6), Greenwood
has shown an S-shape behaviour in the loading-unloading curve. These phenomena can be
captured by the current numerical model if two different simulations (loading and unloading) are
conducted. However, the simulation cannot capture some part of the adhesive pressure between
loading and unloading. This is due to the nature of these numerical models that need a certain
value of separation as input to the model (displacement controlled) and the model cannot give
two values of pressure for the same separation (inevitable in S-shape profile). This would become
possible by a force-controlled numerical approach. Greenwood has used a solution by fixing the
displacement at the centre of the contact. The arrows on the load-separation curve in figure 6 show
if the data have been obtained in loading or unloading cycles. It should be noted that convergence
time increased as the Tabor parameter increased and it is due to higher adhesive pressures and
higher disturbance of the deformations of positive pressures (non-adhesive case). An example of
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Figure 5. Comparison between the current model and Greenwood's model for small values of Tabor parameters. Dimensionless
load is plotted against dimensionless approach. (Online version in colour.)
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&
20

Figure 6. Comparison between the BEM model and the Greenwood model for Tabor parameters of =1, 2 and 3.
Dimensionless load is plotted against dimensionless approach. (Online version in colour.)

the contour of contact pressure as well as cross section of the total pressure in the middle plain is
reported in figure 7.

(b) The contact mechanics challenge

In December 2015, Martin Miiser introduced a contact mechanics challenge where a pre-defined
self-affined surface was created, and scientists were asked to use their own in-house numerical
techniques to calculate the contact between the surface and a rigid flat surface. The results
presented in a published paper [11] show a reasonable agreement between numerical results (e.g.
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Figure 7. Representation of (a) the contour of contact pressure and (b) cross section of the pressure profile for the case of a
smooth plane in contact with a rigid indenter. (Online version in colour.)

Green function molecular dynamics [GFMD], all-atom MD, FFT-BVM, etc). The purpose of this
section is to use the same surface used in [11] and to reproduce the results with the numerical
model presented in this paper for comparison. Initially, the parameters used in the challenge
will be summarized here. The surface was normalized to have a root mean square gradient of
g =1, minimum height of zero and a maximum of 5.642 um, and the surface was representing
an area of 0.1 mm x 0.1 mm. The inverse root mean square of the curvature which can be used
as a typical local radius of curvature was defined as R*=60nm. In addition, the equivalent
elastic modulus was set as E* =25MPa, the work of adhesion was set as wy=50mJm—2 and
the equilibrium separation was zg =2.071 nm. The simulations were carried out using the current
BEM model and adopting the parameters in the challenge. The results for the relative contact
area against normalized pressure and the gap distribution in the middle plane of the contact
have been reproduced. Figure 8 shows the comparison of the current model (BEM) with two
selected numerical results (i.e. GFMD and FFT-BVM from the challenge). The result shows good
quantitative agreement between BEM and the result of the challenge. The x-axis represents the
average of contact pressure across the whole nominal area normalized by the E*g, and the y-axis is
the ratio of contacting areas with the total nominal area. Figure 9 presents the profile of the gap in
a cross section in the middle of contact (x =50 pm) and compares the results of the current model
with GFMD simulations presented in [11] and a good agreement is found. The small discrepancy
in the results could be due to the differences in the resolution of the simulations. The simulations
carried out in this model use a discretization of 4096 x 4096.

(c) Effect of roughness

Numerical methods such as the one developed in this paper are ideal for studying the contact
behaviour of deterministic rough surfaces. Here, we have generated rough surfaces with self-
affine properties to examine the effect of different surface characteristics on the real area of
contact and stickiness of surfaces. The pull-off force (the force needed to completely separate
the surfaces) and the contact area ratio were also plotted for different surfaces at different Tabor
parameters. Surfaces are generated using the power spectrum density as reported by Persson
[28]. Random numbers were used along with Fourier transforms of the height function (fz(q)). The
height spectrum C(g) was defined as
1 Ay < 2—n <L

—2(1+H)

C(q) = C(gr) x (1) < o 3.1)
ar T q

0
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Figure 8. The relative contact area (a,) against normalized average pressure (p/E*g) and the comparison with the contact
mechanics challenge [11]. GFMD and FFT-BVM have been chosen for comparison. (Online version in colour.)
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Figure 9. Gap distribution of deformed surfaces (g) at a cross section in the middle of contact (X = 50 um in the contact
mechanics challenge problem definition). The results of BEM in this work are compared with the GFMD results from [11]. (Online
version in colour.)

In which %, is the roll-off wavelength, X; is the short wavelength cut-off, L is the length of
the surface in each dimension, g, =27 /4, and H is the Hurst parameter, which is calculated by
H=3-Dy where Dy is the fractal dimension. All the surfaces generated with this method have a
mean of zero.
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Miiser [29] has shown that the formula for relative contact area first introduced by Pastewka &
Robbins [30] can accurately capture the non-adhesive contact behaviour of rough surfaces and
introduced a new formula by improving the Pastewka and Robbins criteria using a new equation
for contact area by eliminating the mean-field approximation.

252
ar (k) = ra? (1 - ﬁ) erf(kp) + %. (3.2)
In equation (3.2), a, is the relative real contact area, k is a number that is often two for real
engineering surfaces, p is calculated by p =3L/4/7. E*ga% and is a physical representation of the
average contact pressures, L is the total applied load on the nominal area, g is the root mean
square gradient of surface roughness and ay is the radius of the nominal contact area. Equation
(3.2) is used in this work to analytically predict the contact area in the case of adhesion-less
contact and the BEM is used to predict the contact area for adhesive contact. The aim of this
section is then to see the effect of adhesion on the real contact area for rough surfaces. Figure 10
shows the comparison between the adhesive model (u = 3) presented in this paper and the non-
adhesive theory of Miiser [29]. The discrepancy of adhesive and non-adhesive contacts is more
significant for higher values of the Tabor parameter. Results clearly show that adhesion is playing
an important role in increasing the relative contact area as expected. The other point to highlight is
that the model—with a very good quantitative agreement—can follow the trend of area of contact
in the presence and absence of adhesion. This interesting numerical finding is valid for both
values of root mean square gradient of surface roughness. This means that for cases with a larger
radius and softer materials the real contact area is significantly affected by adhesion. Physical
problems such as contact and friction of rubbers, contact of biomaterials, cartilages and cells and
contact of viscoelastic solids can be largely dependent on adhesion. Ignoring surface roughness
and adhesion in such areas will considerably misrepresent the contact mechanics and evaluation
of the corresponding friction and wear. For instance, for small values of average pressure (p), real
area for the case of adhesive contact is larger than the area of non-adhesive contact by a factor
of 2 or 3. This is a large underestimation of the contact area, which can eventually underpredict
friction and wear by the same factor. This highlights the importance of models such as the one
developed in this work to deterministically calculate real contact area and pressure distribution
in the presence of adhesion.

(d) Effect of roughness on the pull-off force

In the adhesive contact of surfaces, when the approach of the bodies is negative, adhesive forces
will deform the surfaces, and there may be body interference between solid surfaces, which
in turn causes compressive pressures. The area, in which the compressive pressures still exists
is the contact area. The minimum negative force in the process of separating the surfaces is
called the pull-off force. This is the minimum negative force required to completely separate the
surfaces. In this section, the effect of surface roughness and the Tabor parameter on the pull-off
force calculated by BEM is presented. The results are then compared with the numerical results
produced by Medina & Dini [12] to see how results from a more complete surface integral method
will differ from a line integral approach. The simulation parameters are set as (R*=100pm,
E*=50GPa, zp = 0.3nm, wy =0.29]/m~2 and wy =0.075]/ m_z) in order to get Tabor parameters
5 and 2, respectively, and the results are plotted in figure 11.

It should be noted that the main part of the results section of this paper looks at validation
of the new mathematical model and the algorithm proposed, with the existing theories in the
literature for both smooth and rough surfaces. This is to show how effectively Lennard-Jones
potentials could be applied on a rough surface in BEM to predict adhesion in contact mechanics.
In order to further study the effect of roughness parameters on adhesion, we have extended our
study to investigate the effect of RMS slope ¢ on the adhesion. Simulations are carried out with
the same root mean square roughness (R;) of 2zg but different g values and the effect of g on the
pull-off force were investigated.
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Figure 10. Comparison between the theory of Miiser [29] for non-adhesive contact of rough surfaces and the BEM for adhesive
contacts. Relative contact area is plotted against pressure (p) for two values of g. (Online version in colour.)
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Figure 11. Effect of R, on the pull-off force for randomly rough surfaces and the comparison with the results of Medina &
Dini [12]. (Online version in colour.)

Figure 12 represents the results when the root mean square roughness of the surface is constant
and only the mean square gradient of roughness () is altered to see the effect on the force needed
to separate surfaces. The results clearly show that increasing the g will result in decreasing the
pull-off force and this is independent of the R; value of the surface roughness. The value of g
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Figure 12. Effect of root mean square gradient of surface roughness on the magnitude of pull-off force for the case of © =5
and p =7, Ry = 2z;. (Online version in colour.)

represents how sharp or blunt the surface asperities (at least at the resolution that topography is
defined) are, which in turn affects the separation of surfaces near the edge of contact.

The simulations presented in this paper study the effect of surface topography on the adhesive
pressures in the contact of nominally flat surfaces. The effect of adhesion is shown to be important
in determination of real contact area. Results of figure 10 show the difference of the relative
contact area in the case of adhesive contact with the case of non-adhesive contact reported by
Miiser. It also proves the fact that adhesion increases the real area of contact as expected. It
was shown previously that increasing the root mean square of surface roughness will reduce the
effect of adhesive pressures on the surfaces in contact. This is due to higher separation of surface
points. In addition, rougher surfaces will experience higher compressive pressures at the point of
higher topography peaks and the small adhesive pressures will be negligible compared with the
compressive ones. The pull-off force needed to separate surfaces generally decreases as the root
mean square roughness increases.

It should be highlighted that we have investigated the effect of these parameters (R; and g) and
have numerically shown the importance of both. The recent theoretical works of Ciavarella et al.
[2,26,31] have highlighted alternative surface and material parameters responsible for the area
of contact and discussion around stickiness criteria was made. They used different independent
theories (BAM, Persson & Tosatti [10]) along with DMT theories previously reported by Persson &
Scaraggi [32]. They have shown that macroscopic features of surface roughness such as R; and the
low wavevector cut-off of surface roughness and the ratio of work of adhesion and the equivalent
Young’s modulus are important parameters for stickiness. This is interesting and we believe
our results do not contradict with the criteria of Ciavarella. We have therefore carried out an
investigation to include the effect of both RMS and RMS slope on the adhesive force calculations
of rough surfaces. Recently, Li et al. [22] have demonstrated the effect of the Johnson parameter
[33] in the adhesive contact of wavy surfaces. They have introduced a modified version of the
Johnson parameter that considers the fractal properties of rough surfaces and argued that the
adhesion between rough surfaces is dependent on this new parameter for larger values of Tabor
parameter (JKR-limit). The modified version of the Johnson parameter («*) was formulated as

0.8H-1\ 2
" dwoqy )
7
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Figure 13. The effect of the modified Johnson parameter on the pull-off force for three values of Tabor parameter (1« =2, 5
and?7). (Online version in colour.)

in which H is the Hurst exponent of the fractal surface, / is the RMS roughness and qg and g;are
the smallest and largest wavevectors, respectively. We have plotted the pull-off force with respect
to the modified Johnson parameter («*) for three values of Tabor parameter (u =2, 5 and 7) and the
results are presented in figure 13. Results indicate that normalizing our pull-off force calculations
with respect to the modified Johnson parameter results in very similar values of the pull-off force.
It should be noted that Persson & Scaraggi [32] and Ciavarella [19] have shown that the pull-
off force is almost independent of the large wavevector component. Our results show that for
this new modified dimensionless parameter that includes both RMS and RMS slope, small and
large wavevectors could be a reasonable but not fully comprehensive stickiness criteria for the
adhesion of rough surfaces with fractal properties in JKR-limit. This is because our results show
small discrepancies at different Tabor parameters (JKR-limit), which suggests that the parameter
could somehow be modified. Our simulation data are also in line with the results of Li et al. [22],
which showed the same dependency.

In order to test the numerical model with other stickiness criteria, we have used the theory of
Ciavarella [26], which was based on the BAM model. In his model, Ciavarella introduced new
adhesion criteria along with those of Persson & Tosatti [10] and has shown that both models
although from completely different origins, predict very similar stickiness criteria. The stickiness
criteria of Ciavarella was reported as the following;:

Ry < /Bl (3.4)

in which g is 0.6 in his theory, A is the large wavelength of the surface roughness and I, is
(wp/E*). These criteria suggest that only RMS roughness and the large wavelength of roughness
(small wavevector) are responsible for stickiness. In order to compare our results with this theory,
we have plotted our pull-off force calculations against (RﬁE* /Apwp) for different cases at Tabor
parameters of =2, 5 and 7 and the results are plotted in figure 14. It is interesting to see that
the new parameter is a good stickiness criteria for this range of Tabor parameter since the results
of pull-off force against this stickiness parameter matches almost perfectly for all three values
of Tabor parameter. This suggests that equation (3.4) (Ciavarella’s stickiness model) is the most
accurate and reasonable stickiness criteria based on our simulations.
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Figure 14. Pull-off force against the stickiness criteria of Ciavarella [26] for .« =2, 5and 7. (Online version in colour.)

We believe our model could be a platform for the future development of adhesion models for
real rough surfaces and more robust stickiness criteria for a wider range of materials could be
achieved.

4. Conclusion

This paper presents the development of a BEM model for contact mechanics of rough surfaces.
Adhesion is considered by means of inter-atomic Lennar-Jones potential and a new surface
integration approach is incorporated. The model extends the model of Medina and Dini where
a line integration of the Lennard-Jones potential was developed. The model shows very good
quantitative agreement with the model of Greenwood for medium range Tabor parameters
and reproduces exact solutions of the contact mechanics challenge introduced by Miiser. The
deterministic nature of the model enables us to analyse the adhesive contact of surfaces with any
complex geometry and investigate the local pressures and deformations at micron- and nano-
scales. Therefore the effect of roughness on the adhesion is studied with a focus on the root mean
square gradient of roughness and the following conclusions are drawn:

— A new mathematical equation is developed in this work to evaluate adhesion of rough
surfaces and can be used in BEM simulations. The incorporation of the mathematical
equation is simple and the algorithm used in this work is very efficient.

— It was numerically shown that inclusion of adhesion in the deterministic contact
calculations of rough surfaces affects the real contact area ratio. This was shown by
comparing the numerical results of BEM developed in this paper with those of the
analytical model developed by Miiser. It was revealed that the root mean square gradient
of roughness not only affects the real area of contact in the non-adhesive case, but also
affects the area of contact in the case of adhesive contact.

— We have presented that not only the R; value can significantly reduce the adhesion effect,
but also the root mean square gradient of surface roughness can significantly affect the
adhesive forces. Higher root mean square gradient results in lower adhesive force and
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lower pull-off force are needed to separate surfaces. This is believed to be due to the
difference in the real area of contact caused by the shape of asperities.

— We have investigated the effect of the modified Johnson parameters (that include both
fractal properties and RMS) on the stickiness of rough surfaces and have shown that this
dimensionless parameter could be a reasonable but not fully comprehensive stickiness
criteria for the contact of rough surfaces.

— Furthermore, we have shown that the criteria introduced by Ciavarella almost perfectly
matches our simulation results and by far is the best stickiness criteria based on our
simulations.

Ethics. There are no ethical considerations required for this research.

Data accessibility. The data published in this paper including the contact mechanics code are accessible upon
request from the corresponding author.

Authors’ contributions. A.G. developed the numerical model, ran the simulations, analysed and interpreted the
data and drafted the paper, approved the final version and is accountable for the paper. A.N. analysed and
interpreted the data, contributed to the discussion and revision of the article and gave final approval. M.E.
carried out simulations and contributed towards the final discussion.

Competing interests. We declare we have no competing interests.

Funding. This work is supported by the Engineering and Physical Sciences Research Council (grant no.
EP/001766/1) as a part of ‘Friction: The Tribology Enigma’ Programme Grant (www.friction.org.uk), a
collaboration between the Universities of Leeds and Sheffield.

Acknowledgements. The authors are grateful to Dr Mark Wilson from the University of Leeds for kindly sharing
his thoughts on the mathematical rigour of the developed model. The authors are also thankful to Professor
Martin Miiser from Saarland University for kindly sharing the raw data reported in the contact mechanics
challenge paper.

References

1. Israelachvili JN. 2015 Intermolecular and surface forces. New York, NY: Academic Press.

2. Ciavarella M, Joe J, Papangelo A, Barber J. 2019 The role of adhesion in contact mechanics.
J. R. Soc. Interface 16, 20180738. (d0i:10.1098 /rsif.2018.0738)

3. Johnson KL, Kendall K, Roberts A. 1971 Surface energy and the contact of elastic solids. Proc.
R. Soc. Lond. A 324, 301-313. (d0i:10.1098 /rspa.1971.0141)

4. Derjaguin BV, Muller VM, Toporov YP. 1975 Effect of contact deformations on the adhesion
of particles. J. Colloid Interface Sci. 53, 314-326. (doi:10.1016,/0021-9797(75)90018-1)

5. Tabor D. 1977 Surface forces and surface interactions. Plenary and invited lectures, pp. 3-14.
New York, NY: Academic Press.

6. Maugis D. 1992 Adhesion of spheres: the JKR-DMT transition using a Dugdale model.
J. Colloid Interface Sci. 150, 243-269. (doi:10.1016/0021-9797(92)90285-T)

7. Muller V, Yushchenko V, Derjaguin B. 1980 On the influence of molecular forces on the
deformation of an elastic sphere and its sticking to a rigid plane. J. Colloid Interface Sci. 77,
91-101. (doi:10.1016/0021-9797(80)90419-1)

8. Greenwood J. 1997 Adhesion of elastic spheres. Proc. R. Soc. Lond. A 453, 1277-1297.
(doi:10.1098 /rspa.1997.0070)

9. Fuller K, Tabor D. 1975 The effect of surface roughness on the adhesion of elastic solids. Proc.
R. Soc. Lond. A 345, 327-342. (d0i:10.1098 /rspa.1975.0138)

10. Persson B, Tosatti E. 2001 The effect of surface roughness on the adhesion of elastic solids.
J. Chem. Phys. 115, 5597-5610. (d0i:10.1063/1.1398300)

11. Miiser MH, Dapp WB, Bugnicourt R, Sainsot P, Lesaffre N, Lubrecht TA et al. 2017 Meeting
the contact-mechanics challenge. Tribol. Lett. 65, 118. (doi:10.1007 /s11249-017-0900-2)

12. Medina S, Dini D. 2014 A numerical model for the deterministic analysis of
adhesive rough contacts down to the nano-scale. Int. |. Solids Struct. 51, 2620-2632.
(doi:10.1016/j.ijsolstr.2014.03.033)

13. Solhjoo S, Vakis Al 2016 Continuum mechanics at the atomic scale: Insights into non-
adhesive contacts using molecular dynamics simulations. |. Appl. Phys. 120, 215102.
(doi:10.1063/1.4967795)

14. Wriggers P, Zavarise G. 2004 Computational contact mechanics. Encyclopedia of
computational mechanics.

18700202 :9Lp ¥ 705y 0igedsy/jewnof/BioBuiysiqndiraposiefos


www.friction.org.uk
http://dx.doi.org/10.1098/rsif.2018.0738
http://dx.doi.org/10.1098/rspa.1971.0141
http://dx.doi.org/10.1016/0021-9797(75)90018-1
http://dx.doi.org/10.1016/0021-9797(92)90285-T
http://dx.doi.org/10.1016/0021-9797(80)90419-1
http://dx.doi.org/10.1098/rspa.1997.0070
http://dx.doi.org/10.1098/rspa.1975.0138
http://dx.doi.org/10.1063/1.1398300
http://dx.doi.org/10.1007/s11249-017-0900-2
http://dx.doi.org/10.1016/j.ijsolstr.2014.03.033
http://dx.doi.org/10.1063/1.4967795

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Rey V, Anciaux G, Molinari J-F. 2017 Normal adhesive contact on rough surfaces:
efficient algorithm for FFIT-based BEM resolution. Comp. Mech. 60, 69-81. (doi:10.1007/
s00466-017-1392-5)

Pastewka L, Robbins MO. 2014 Contact between rough surfaces and a criterion
for macroscopic adhesion. Proc. Natl Acad. Sci. USA 111, 3298-3303. (doi:10.1073/
pnas.1320846111)

Afferrante L, Ciavarella M, Demelio G. 2015 Adhesive contact of the Weierstrass profile. Proc.
R. Soc. A 471, 20150248. (doi:10.1098 /rspa.2015.0248)

Ciavarella M. 2015 Adhesive rough contacts near complete contact. Int. . Mech. Sci. 104,
104-111. (doi:10.1016/j.ijmecsci.2015.10.005)

Ciavarella M. 2018 A very simple estimate of adhesion of hard solids with rough surfaces
based on a bearing area model. Meccanica. 53, 241-250. (d0i:10.1007 /s11012-017-0701-6)
Pohrt R, Popov VL. 2015 Adhesive contact simulation of elastic solids using local mesh-
dependent detachment criterion in boundary elements method. Facta Universitatis. Ser. Mech.
Eng. 13, 3-10.

Popov VL, Pohrt R, Li Q. 2017 Strength of adhesive contacts: influence of contact geometry
and material gradients. Friction. 5, 308-325. (d0i:10.1007 /s40544-017-0177-3)

Li Q, Pohrt R, Popov VL. 2019 Adhesive strength of contacts of rough spheres. Front. Mech.
Eng. 5,7. (doi:10.3389/fmech.2019.00007)

Ghanbarzadeh A, Hassanpour A, Neville A. 2019 A numerical model for calculation of the
restitution coefficient of elastic-perfectly plastic and adhesive bodies with rough surfaces.
Powder Technol. 345, 203-212. (d0i:10.1016/j.powtec.2018.12.079)

Bazrafshan M, De Rooij M, Valefi M, Schipper D. 2017 Numerical method for the adhesive
normal contact analysis based on a Dugdale approximation. Tribol. Int. 112, 117-128.
(doi:10.1016/j.triboint.2017.04.001)

Bazrafshan M, de Rooij M, Schipper D. 2018 On the role of adhesion and roughness in
stick-slip transition at the contact of two bodies: A numerical study. Tribol. Int. 121, 381-388.
(doi:10.1016/j.triboint.2018.02.004)

Ciavarella M. 2019 Universal features in ‘stickiness’ criteria for soft adhesion with rough
surfaces. Tribol. Int. 146, 106031. (d0i:10.1016/j.triboint.2019.106031)

Bhushan B, Majumdar A. 1992 Elastic-plastic contact model for bifractal surfaces. Wear. 153,
53-64. (doi:10.1016/0043-1648(92)90260-F)

Persson B. 2014 On the fractal dimension of rough surfaces. Tribol. Lett. 54, 99-106.
(doi:10.1007 /s11249-014-0313-4)

Miiser MH. 2016 On the contact area of nominally flat hertzian contacts. Tribol. Lett. 64, 14.
(doi:10.1007 /s11249-016-0750-3)

Pastewka L, Robbins MO. 2016 Contact area of rough spheres: Large scale simulations and
simple scaling laws. Appl. Phys. Lett. 108, 221601. (d0i:10.1063 /1.4950802)

Ciavarella M, Papangelo A. 2018 A modified form of Pastewka-Robbins criterion for
adhesion. J. Adhesion. 94, 155-165. (d0i:10.1080/00218464.2017.1292139)

Persson BN, Scaraggi M. 2014 Theory of adhesion: role of surface roughness. J. Chem. Phys.
141, 124701. (d0i:10.1063 /1.4895789)

Johnson K. 1995 The adhesion of two elastic bodies with slightly wavy surfaces. Int. J. Solids
Struct. 32, 423-430. (doi:10.1016/0020-7683(94)00111-9)

18700202 :9Lp ¥ 705y 0igedsy/jewnof/BioBuiysiqndiraposiefos


http://dx.doi.org/10.1007/s00466-017-1392-5
http://dx.doi.org/10.1007/s00466-017-1392-5
http://dx.doi.org/10.1073/pnas.1320846111
http://dx.doi.org/10.1073/pnas.1320846111
http://dx.doi.org/10.1098/rspa.2015.0248
http://dx.doi.org/10.1016/j.ijmecsci.2015.10.005
http://dx.doi.org/10.1007/s11012-017-0701-6
http://dx.doi.org/10.1007/s40544-017-0177-3
http://dx.doi.org/10.3389/fmech.2019.00007
http://dx.doi.org/10.1016/j.powtec.2018.12.079
http://dx.doi.org/10.1016/j.triboint.2017.04.001
http://dx.doi.org/10.1016/j.triboint.2018.02.004
http://dx.doi.org/10.1016/j.triboint.2019.106031
http://dx.doi.org/10.1016/0043-1648(92)90260-F
http://dx.doi.org/10.1007/s11249-014-0313-4
http://dx.doi.org/10.1007/s11249-016-0750-3
http://dx.doi.org/10.1063/1.4950802
http://dx.doi.org/10.1080/00218464.2017.1292139
http://dx.doi.org/10.1063/1.4895789
http://dx.doi.org/10.1016/0020-7683(94)00111-9

	Introduction
	Theory
	Non-adhesive normal contact
	Adhesion model
	Numerical approach

	Results
	Simulation of smooth surfaces
	The contact mechanics challenge
	Effect of roughness
	Effect of roughness on the pull-off force

	Conclusion
	References

