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1 Introduction

The bending of thin elastic sheets is an old problem, dating back several cen-
turies, to the Bernoullis and Euler, among other mechanicians of note from the
17th century. A thorough account of the history of the problem can be found
in Levian. Though the problem is well understood, evaluation of the problem
in light of modern applications of shell elasticity can sometimes yield interest-
ing results. Zhiyan’s presentation on how iso-strain leads to buckling in thin
sheets (e.g. leaves, etc.) is a nice example of how rich the buckling behavior
in thin sheets can be. Mahadevan’s unpublished work on the development of a
boundary layer for the curvature in a draping sheet, as will be discussed herein,
provides a compelling theory, and suggests a method for the computation of
the elastica curve in the cantilevered sheet problem. The problem becomes
very interesting when one considers it as an optimization problem: leaves are
essentially cantilevered beams, and plants wish to maximize their exposure to
sunlight. What shape is the optimal shape for them to select, in order for the
exposed area to be maximized? Do we observe such a geometry in nature?

The answer to this question arises from an extension of my study of elastica.
The model problem I analyze is a first step in completing the story of how plants
optimize their exposed surface area to obtain a competitive advantage in the
jungle. The geometric non-linearity of the problem makes its study particularly
interesting.

2 Problem Formulation

The formulation of the elastica problem can be found online in notes prepared
by Prof. Suo. The equilibrium equations are solved for an incremental element
in the sheet. The balance of moments and forces in the sheet gives rise to three
coupled equations:

∂n1

∂s
= 0

∂n2

∂s
= ρg
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Figure 1: The free-body diagram for the forces and moments an elastic sheet
with thickness, t, linear density, ρ, and flexural stiffness, B = EI.

∂m

∂s
= t(n1sin(φ) − n2cos(φ))

.
Our material law is from the Bernoulli-Euler beam theory:

m(s) = B
∂φ

∂s

.
Geometry relates the angle, φ, to the coordinate directions x and y:

∂x

∂s
= cos(φ)

∂y

∂s
= sin(φ)

.
These equations will can be solved with a shooting method; this is an alter-

native numerical method to the FEM solution, and could be used to verify the
FEM output.

2



3 Computational Modeling and Numerical Re-
sults

I attempted to solve the problem with a variety of numerical methods after
performing experiments.

3.1 ABAQUS

I naively thought the problem would be simple to solve in ABAQUS using a
shell element with non-linear geometry (nlgeom) selected in the solver options.
I set up the problem with quadratic interpolation functions, and used varying
numbers of elements. I used values of density and Young’s modulus for paper.
Each time I attempted to run the solution, ABAQUS would respond by saying
that the solution couldn’t be reached due to deformations becoming too large
for a single step. I proceeded to try COMSOL at this point, after asking Yuhang
for help.

3.2 COMSOL Solver Set-Up

I built a three-dimensional thin model of a strip of paper in a similar manner to
the model I constructed in ABAQUS, and used identical values for the material
parameters. The sheet was made with length = 19 cm, width = 1 cm, and
thickness = 0.01 cm. I selected non-linear elements, and solved the equations
with the non-linear single-step solver option in COMSOL. The solution ran to
completion, and offered output that stretched significantly, and is equivalent to
the linear beam theory solution for similar geometry. For comparison, I include
both plots in line.

3.3 Interpretation of Numerical Results

I encountered much difficulty in trying to simulate large deformations of thin
elastic sheets with FEM. Though I don’t consider myself to be a proficient FEM
user, I attempted to solve the problem many ways, and have come to the con-
clusion that either a semi-analytical approach or the solutions from Elastica
theory are the most appropriate to solve this particular problem. The experi-
mental results are also interesting. I think my result highlights the importance
of verification of solutions obtained with computation.

4 Experimental Verification

Experiments on the drape of two elastic materials were carried out. Care was
taken to ensure that the sheets don’t have an intrinsic curvature. The materials
tested are paper and latex. In order to compare the results, the elastic-gravity
length, λg = ( B

ρgt
)

1

3 is calculated, and all lengths are normalized by the elastic-
gravity length for each material.
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Figure 2: The output from COMSOL, showing the beam’s deflection as a func-
tion of distance along the beam. Note that the horizontal extension as large as
19 cm is not experimentally attainable: the drape of the sheet begins to domi-
nate before the sheet will extend this far over the edge horizontally; therefore I
interpret the solution as unphysical. It should be noted that the sheet extends
a great deal, and its arc-length is not conserved. Perhaps if I had penalized the
stretching of the sheet correctly, the solution would have been accurate.
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Figure 3: The calculated deflection using linear beam theory for a variety of
lengths of beams, including the largest, at 19 cm. Compare this displacement
curve with the COMSOL curve, and one sees immediately that they are nearly
identical.
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Figure 4: Here, we see two draping sheets of different materials. The arc-length
allowed to drape is vastly different (on the left is latex, arc-length = 11 cm,
whereas on the right is paper, arc-length = 25 cm), but the shapes exhibit
qualitative similarity in that they can be broken up into two regimes: a regime
with condensation of curvature (which I call a boundary layer), and a regime
with vertical drape.
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Figure 5: The curve of horizontally projected extension, h, as a function of
arc-length, D. Note the reversal of h as D continues to increase.

4.1 Procedure

The sheets were allowed to extend over the edge with a fixed and measured
arc-length. The sheet is cantilevered by a heavy, flat weight at the corner of a
steel table. Photos are taken from the side-on view. The length is incremented,
the cantilevering weight replaced, and another photo is taken. From the photos,
the horizontally projected extension data is measured.

4.2 Results

The results show a non-linear dependence of horizontally projected extension, h,
on the arc-length, D: In fact, the horizontally projected extension is two-valued
for a given arc-length. We see this behavior in the graph of h vs. D normalized
by λg. A fitting constant F = 2.66 is needed for the data from the paper to
collapse onto the seemingly universal curve in Fig. 5.

4.3 Interpretation of Results

The experimental results show some surprising behavior of the horizontally pro-
jected extension, which becomes intuitive after one thinks about the effect of the
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added weight of the residual draping material. The result suggests a boundary
layer where curvature is localized for large arc-lengths, and encourages semi-
analytical development of a theory to describe the curve.

5 (Semi)-Analytical Solution

At an arc-length large relative to the elastic-gravity length, we expect more and
more of the sheet to remain unbent, and to approach vertical in the limit of
infinite sheet length. Experimentally, we see that the latex is able to acheive
verticality in draping almost immediately, with an arc-length of ≃ 11 cm. In
order to describe this system, we look to boundary layer theory. We anticipate
that in the length of the draping sheet near the cantilever, the behavior is
exactly that of a cantilevered beam, with a load yet to be determined. In the
draping regime (the arc-length far from the cantilever), we expect the sheet to
act as a point load on the end of a cantilvered beam of length ǫ, where ǫ is the
thickness of the boundary layer. We anticipate that ǫ is related inversely to the
arc-length, D, and directly to its elastic-gravity length. Since ǫ has dimensions

of length, a natural scaling arises: ǫ = λ
3

2

D
1

2

. This boundary layer analysis was

constructed in a private communication with Mahadevan.
We proceed to use this ǫ to predict behavior of our h vs. D curve. We

anticipate that the behavior of the sheet after it has begun to move back toward
the wall at which it is cantilevered will go as a h ∝ D−

1

2 power law. Indeed,
we observe in Fig. 6 something quite close, and expect that if we tested longer
sheets, that our approximation would grow closer and closer to this behavior.

6 Conclusion

Though the FEM calculation didn’t predict the non-linear behavior I anticipated
based on the experimental results, I’m sure it is only due to the stretching of the
sheet, which is non-physical. The experimental verification suggests a natural
interpretation of the localization of curvature as a boundary layer in the limit
as the sheet is allowed more and more drape. The semi-analytical boundary
layer agrees fairly well with the limited set of experimental data taken.

References

[1] Raph Levien. The elastica: a mathematical history. Technical Report
UCB/EECS-2008-103, EECS Department, University of California, Berke-
ley, Aug 2008.

[2] L Mahadevan. Personal communication. 2008.

[3] Zhigang Suo. String and elastica, 2008.

8



Figure 6: We observe the behavior of the sheet in bending after the turning
point from our boundary layer theory, wherein we predict h ∝ D−

1

2 behavior.
D−

1

2 is plotted in the black line for reference.

9


