

ME 7953: Simulations in Materials
Fall 2002

Problem Set 5 (Friday, 10/18/2002)

Problems are due at the beginning of the class, Friday, 10/25/2002.
Material Point Method (MPM) simulation is the focus of this week's problems. MPM utilizes two representations of the continuum - one based on a collection of material points and the other based on a computational grid. In the method, the material is discretized into a finite collection of material points. The material points are followed throughout the deformation of the material and provide a Lagrangian description that is not subject to mesh tangling. Information from the material points is projected onto a background computational grid, where evolution equations are solved. The solution on the grid is then used to update the material points.

1) Shape function

Consider a one-dimensional MPM problem with background grid at $\mathrm{x} _\mathrm{g}$:
x_g=[0.0, 1.0, 2.0, 3.0, 4.0, 5.0];

The body is divided into 8 particles. The coordinates of particles are in $\mathrm{x} _\mathrm{p}$:

$$
\mathrm{x} _p=[1.24,1.7,2.2,2.6,3.4,3.8,4.5,4.9] ;
$$

Answer following questions:
(A) Write a MATLAB function to calculate $N^{(n)}(x)$.

```
function [N] = shape(n,x)
```

(B) Write a MATLAB function to calculate $\frac{d}{d x} N^{(n)}(x)$.
function [dN] = dshape(n, x)
(C) Calculate the value of $N^{(3,2)}$, which means a shape function between node 3 (coordinate is 2.0) and particle 2 (coordinate is 1.7)?
(D) For each particle p, calculate all the shape function between particle p and grid nodes. Show that $\sum_{n} N^{(n, p)}=1$ for $p=1, \ldots, 8$.

2) Mass matrix

For the above grid and particles, assume all the particle masses are the same to be 1 . The mass-matrix on the grid is defined as

$$
\bar{m}^{\left(n, n^{\prime}\right)}=\sum_{p} N^{\left(n^{\prime}, p\right)} N^{(n, p)} m^{(p)}, \quad n, n^{\prime}=1, \ldots, 6, \quad p=1, \ldots, 8
$$

where $m^{(p)}$ is the mass of particle p, and $N^{(n, p)}=N^{(n)}\left(x^{(p)}\right)$ is the shape function of node n at the location of particle p.

Answer the following questions with the help of MATLAB.
(A) Compute the details of the 6 by 6 mass-matrix.
(B) Compute the lumped mass $\bar{M}^{(n)}$ at each node n. Lumped mass is defined as

$$
\bar{M}^{(n)}=\sum_{p} N^{(n, p)} m^{(p)} .
$$

(C) Show that $\bar{M}^{(n)}=\sum_{n^{\prime}} \bar{m}^{\left(n, n^{\prime}\right)}$ for every grid node n.

3) Solving dynamic equations

For the above problem, assume the current stresses developed in particles $\sigma^{(p)}$ are

$$
\text { sig_p }=[-5.1,-4.7,-4.1,-3.5,-2.9,-2.4,-1.95,-1.45] ;
$$

The body-force densities for all particles are the same, $b^{(p)}=10, p=1, \ldots, 8$.
Answer the following questions with the help of MATLAB.
(A) Compute the external force $\bar{F}^{(n)}$ at each node $n . \bar{F}^{(n)}$ is defined as

$$
\bar{F}^{(n)}=\sum_{p} N^{(n, p)} m^{(p)} b^{(p)}
$$

(B) Compute the internal force $\dot{f}^{(n)}$ at each node $n . \dot{f}^{(n)}$ is defined as

$$
\dot{f}^{(n)}=-\sum_{p} V^{(p)} \frac{d N^{(n, p)}}{d x} \sigma^{(p)} .
$$

Assume the volume of all the particles are the same, $V^{(p)}=2$, for all p.
(C) Using the lumped mass, calculate the acceleration $\bar{a}^{(n)}$ at each node.

$$
\bar{a}^{(n)}=\frac{\bar{F}^{(n)}+\dot{f}^{(n)}}{\bar{M}^{(n)}}
$$

3) System updating

For the above problem, the initial particle velocities $v^{(p)}$ are

$$
\mathrm{v} _\mathrm{p}=[1.25,1.1,0.9,0.8,0.45,0.1,-0.9,-0.7] ;
$$

Answer the following questions with the help of MATLAB. Take time step $\Delta t=0.01$.
(A)Map the velocities from particles to grid. Compute the grid velocity $\bar{v}^{(n)}$ at each node $n . \bar{v}^{(n)}$ is defined as $\bar{v}^{(n)}=\frac{1}{\bar{M}^{(n)}} \sum_{p} N^{(n, p)} m^{(p)} v^{(p)}$.
(B) Update the grid velocities using $\bar{v}^{(n)} \leftarrow \bar{v}^{(n)}+\bar{a}^{(n)} \Delta t$.
(C) Update the particle velocities using $\bar{v}^{(p)} \leftarrow \bar{v}^{(p)}+\Delta \sum_{n} \bar{a}^{(n)} N^{(n, p)}$.
(D) Update the particle positions using $\bar{x}^{(p)} \leftarrow \bar{x}^{(p)}+\frac{\Delta t}{2}\left(v^{(p)}+\sum_{n} \bar{v}^{(n)} N^{(n, p)}\right)$.
(E) Calculate the strain rate at particles using $\dot{\varepsilon}^{(p)}=\sum_{n} \bar{v}^{(n)} \frac{d N^{(n, p)}}{d x}$.
(F) Update the particle stresses using $\sigma^{(p)} \leftarrow \sigma^{(p)}+E \Delta t \dot{\varepsilon}$. Take Young's modulus to be $E=100$.

