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Abstract

The genus Volvox is comprised of several species of communal multi-
cellular chlorophytes which exhibit a series of interesting morphogenetic
events during their developmental cycle. In Volvox carteri, the inversion
event is interesting in that after several rounds of cell division from a sin-
gle cell, the glycoprotein �lled, spheroidal plakea completely inverts itself
thorough of series of highly coordinated genetic, kinetic and mechanical
interactions[4, 3, 7, 5]. This dramatic coming of age of the adult colony
is beginning to be understood from a developmental viewpoint, with de-
scriptive data on the phenomena for both wild-type and mutants, as well
as the distribution of relevant gene products now available. Herein, I
examine the experimental data, and propose a mathematical model to
describe this process, taking into consideration both the chemical kinetics
and the tissue mechanics of the colony. The resulting system of coupled
equations is solved in an approximated geometry of the mature gonidia,
using the �nite element method (FEM). Results are compared with the
observed data, as well as exact solutions for idealized parametrization.

Background

The life cycle of Volvox carteri begins as single celled gonidia; a reproductive
cell that develops into a fully grown adult. These gonidia are the reproductive
cells produced and fostered to maturity by the adult. Even before being birthed
from the parent, the cell undergoes regular, but asymmetric divisions, resulting
in a 64-celled spheroidal mature gonidia, comprised of somatic, and its own
gonidial precursor cells (See Figure 1). In total, each individual goes through
11-12 rounds of volume increase and division during its lifetime. To further
convolute the line between individuality and community, an anterior/posterior
axis is formed by concentration gradients during development.
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Figure 1: Life cycle and 5 cleavage cycles

After 5th cleavage cycle, the individual has 32 cells. At this point, half of
the anterior 16 cells di�erentiate into gonidia precursors. The gonidia precursors
undergo 3 more rounds of division, resulting in 64 gonidia before the inversion
event occurs. The somatic cells divide 6-7 more times, depending on environ-
mental conditions, resulting in 3072 maximum cells pre-inversion. Somatic cells
are 1

10 th of the volume of the gonidia, and are connected via 25,000 cytoplasmic
bridges, forming a continuous epithelial sheet. The only unconnected region of
this network of cells is at the anterior end, where the phialopore forms. This
the swastika-shaped opening forms between the 3rd and 4th round of cleavage.
At this point, multiple contraction waves pass through the cell colony, from the
anterior to posterior ends, after which the phialopore (located at the anterior
end as well) breaks apart at four lips, and begins to curl outward. The genera-
tion of this negative curvature is caused by the change in form of the cells near
the philopore, as they change from spindle-shaped to �ask-shaped and back to
spindle-shaped. (See Figure 2).

As the wave change reaches the posterior half of the colony, the posterior end
snaps through the opening created, and the lips meet each other at what is now
the new posterior half and rejoin. During this process, the pre-gonidial cells,
which were once on the outside of the colony in the anterior half, are transported
to the posterior inside of the new adult spheroid. The �agellar extensions from
the somatic cells, which were pointed inward in the immature gonidia, are now
on the outside, allowing for locomotion of the adult spheroid. The entire process
takes approximately 45 minutes.
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Figure 2: Inversion, pictorial and actual (SEM)[8]

Several mutants, induced by genetic modi�cation, and/or chemical/mechanical
stimulation of the developing organism exist. One mutant form, induced by ap-
plication of cytochalasin, halts or terminates the inversion process, depending
on when the application is made during the process. This has been shown to be
due to the ability of cytochalasin to inhibit the movement of cytosolic bridges be-
tween cells; a process crucial for the transition from spindle- to �ask-shaped[8, 7]
described above. Another mutant caused by the creation of a second philopore
slit at the posterior half causes the inversion to begin from both ends, resulting
in a toroidal adult. These phenomena represent manipulation of the mechan-
ical and chemical interactions that are coordinated to complete inversion, and
are thus predictable by a model that correctly describes the wild-type inversion
process.

Volvox is useful as a model system for studying multicellular tissues and
epithelial sheet movements, which occur in processes such as gastrulation and
notochord formation in vertebrates, such as humans. There is rich quantitative
literature with genetic, developmental, and evolutionary data readily available,
and a small, but vibrant research community interested in it. As discussed
above, there are several developmental mutants and techniques are available for
experiment, and for hypothesis testing. Using this system, I can begin to answer
questions about the inversion process. Does the geometry change of the anterior
somatic cells account for the entire inversion? Does the posterior actomyosin
contraction account for the inversion? What role does geometry play in this
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process? What role do protein kinetics play in this process?

Mathematical Model

I begin by considering a single cell as it undergoes the contraction and elongation
process into a �ask-shaped cell. As these cells contract on one end, and expand
on the other, they apply force to each other where they meet, causing the
outward curling near the phialopore that is observed in �gure 2. Since we
know the exact sizes and deformations of these cells, this simulation helped me
�nd a reasonable Young's modulus and Poisson ratio for the next steps. The
geometry for this single ellipsoidal cell is shown in �gure 4a, and the standard
equations of solid mechanics, with a Hookean material model are used (�gure
5). While the cell is actually a �uid �lled, and matrix-rich, this is a reasonable
�rst approximation for understanding the beginning of the inversion process.

Next, I examine how a line and an arc of these cells undergoing a contractile
wave deforms. By treating the line/arc as a continuous piece of material, and
using the plane strain approximation, we can observe what a number of the
cells from the �rst part contracting as a wave passes through them does. The
geometry of this line and arc is seen in �gure 4b and 4c.

Now, I examine the three-dimensional geometry. Since it has been shown
that one can remove the entire anterior half and the posterior half still inverts,
I �rst consider the posterior half-sphere only. This is truly the novel part of
the project, and was the most interesting part to describe. As before, we use
the standard equations of solid mechanics, as shown in �gure 4. In order to
understand this aspect of the inversion process, I constructed rubber models of
various geometries and materials of half-spheres, as shown in �gure 3. While the
scale of the inversion of Volvox itself is much smaller and the time scale much
longer, I thought it crucial to correctly simulate an object I could repeatedly
observe. For this reason, this project could have been retitled �Inversion of
spherical membranes�.

For the FEM model, I consider 3 di�erent geometries that are exactly a
half-sphere, a half-sphere which has been truncated from the mid line towards
the apex by 0.005 m, and one that has been truncated by 0.025 m as shown in
�gure 4d, 4e, 4f.
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Figure 3: Rubber models: The full Volvox-like rubber model, the half-sphere,
and the half-half-sphere.
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(a) Single cell (b) Line of cells

(c) Arc of cells (d) Posterior half

(e) Truncated posterior half (f) Truncated posterior half (g) Truncated posterior half

Figure 4: Geometry and meshing of simulated experiments.

Contraction Functions

The contraction, as well as the material properties of the wall are controlled
by the concentration of various chemical factors within the organism[6, 5, 2, 1].
These range from simple ions, such as calcium, to large protein complexes,
which both either di�use or remain in a single cell. During the interim of this
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Momentum balance:
∂σij

∂xj
+ bj = ρ∂

2ui

∂t2

Strain-displacement∗: εij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
Hooke's law: εij = 1+ν

E σij − ν
Eσkkδij + α1∆ci

Reaction-di�usion: ∂c
∂t = D∇2c + fR(ci,x)

Young's modulus (E): 105Pa
Poisson ratio (ν): 0.49
Inner radius of spheroid (R): 4.5 · 10−6 m
Thickness of spheroidal shell (δ): 0.5 · 10−6 m
Contraction amplitude coe�cient (α1): −1
Contraction duration coe�cient (α2): 200
Contraction length in Z coe�cient (α3): 0.125
∗Large deformation was used in the �nal formulation.

Figure 5: Equations and parameters used

project, the details of the relevant kinetic components will be explored, likely
resulting in several species which interact with each other. This system of reac-
tions is modeled using Michaelis-Menten kinetics, and thus is represented by a
reaction-di�usion-advection system, where c is the vector of the chemical species
considered, D is the di�usion coe�cient, and fR(ci,x) is a per-species, location
speci�c, nonlinear reaction function. As the �nal result of this reaction-di�usion
system will be an exponential wave, I simply prescribe this wave function in some
of the simulations, as noted. I hope to actually fully couple the two in a future
work.

In order to model a wave of contraction, a component analogous to thermal
expansion of the stress-strain relation was used. For the two-dimensional sim-
ulations above, in which cellular elongation played a role, and a sheet of cells
curled, I used the following travelling modulated wave

α1 · sin (α2 ·X · π) · e−α2·Y · e−(t−1+α3·X)

For the three dimensional half-sphere, I modeled a contraction of the material
as a exponentially decaying wave as follows:
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Figure 6: The construction of the contraction function: c(x, y, z, t) = e−α3(x+R)∗
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Figure 7: The contraction function: a two-dimensional version of c(x, y, z, t) =
e−α3(x+R) ∗ e−(−π+α2πt)

2 ∗ e−((R+δ−r)/δ)2 at various times.
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Results

Cell elongation via contraction

Figure 8: The contraction of a single cell on the left side caused a bulge on the
right side. When a number of these cells are near each other, they exert forces
on each other where the bulges meet.

Contraction of anterior line/arc of cells

Figure 9: Putting a number of these elongating cells together in a line or an
arc, and applying a contraction gives us a deformation above.

This test showed that the deformation could occur by this mechanism with the
known material parameters. Using the plane strain approximation, a slice of
a long arc of cells was subjected to a contraction function in 2D. The result-
ing deformation was useful in understanding the method for inversion, but the
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true snap-through instability could only be realized in the three-dimensional
geometry.

Inversion of a half sphere

As described above, the problem of the inverting Volvox was generalized to that
of a inverting rubber half-sphere, in order to understand more about the de-
formation involved. Figure 10 shows the strains realized in all three directions
during the maximum of the contraction function on the full half sphere. These
values are within a valid range, and are as expected for this type of contraction.
Figure 11 examines the stresses at the same time point in the simulation. Again
these values are in a valid range, and they begin to tell us a bit about the non-
linear nature of stress in the deforming sphere. Figure 12 plots the deformation
of the arc shown in red at the height of the contraction function. This curve
is well known and is observed in processes that are opposite to contraction,
such as outgrowth as well. Lastly, the deformation of several nodal points was
plotted in Figure 13, and from this we can observe the expected curling of the
membrane at the membrane as the contraction reaches its height at the apex.

Based on the initial experiments performed, especially what was learned
from the plane strain approximation results in the line and arc of cells, the full
3D geometry was absolutely necessary to capture the e�ects of the geometry on
the snap-through instability. Using a perfect half-sphere, I was unable to obtain
a convergent solution due to a particularly sti� problem. After examining the
stress, strain and displacements observed in these experiments, it was hypothe-
sized that there is either a singularity reached at the apical node, or along the
circumferential ring at the A/P mid-line. Several more experiments were done
to test this theory, including the use of higher order elements and customized,
high-resolution meshing in these regions.

As simulation progressed on the 3D geometry, I continually ran into conver-
gence problems at the point at which the bi-stability arose. To see if there was
error creeping into the solution due to low-order interpolation. Consequently, I
used linear, quadratic, cubic, and even quartic elements and compared the re-
sults. While the di�erence between the curvature obtained between linear and
quadratic elements was obvious, the di�erence between the solution using cubic
and quartic elements was only slight, thus quadratic shape function were used
in all results.

Regardless of the order of the shape functions used or the mesh type, the
solution failed to converge due to the nonlinear solver. By examining the time-
stepping algorithm in Comsol, I was able make the stepping more strict, in
the sense that large jumps were not made between steps in the solution. This
is important, due to the sensitive dynamic nature of the problem. Prior to
making this modi�cation to the solver algorithm, the solver may jump up to 10
time steps between linear system solution. basically, it was jumping over the
bifurcation point.

After consulting the rubber models again, several more simulations were
done using the most easily inverted geometry, the half-half-sphere. As shown in
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Figure 10: Strains caused by the contraction function
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Figure 11: Stresses caused by the contraction function. Stresses in X,Y are
exactly the same, and thus only X is shown.
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Figure 12: Displacement along the arc length of the hemisphere (red) plotted
over time

�gure 14, by (i) slowing the contraction function down to occur over a longer
period, (ii) forcing the time-step to be small, and (iii) using a geometry that does
not create a bifurcation point, I was able to arrive at an inverting membrane.

Figure 15 details the apical and circumferential nodal displacements, and we
can see nicely see the point at which inversion occurs (just after t=6.3).

Future Work

There is much work left to be done here. In the rubber half-sphere alone,
a complete variation of parameters study could be done which could help to
elucidate the relationship between the thickness of the membrane, the amount
of the sphere that is included in the inversion, and the material properties.
During this process, a comparison of stress, strain, and pressure results must be
made to see if they are of the right magnitude.

From here, we must return to the reality of the Volvox. To begin with, the
mode of contraction and elongation of the cells must be better understood. It is
quite likely that the method of contraction that we observe in the posterior end
is the same as that in the interior end, but without the phialopore. Secondly,
since the material is not rubber, and is a interconnected cell network which
share cytoplasm, as well as extracellular matrix, the Hookean solid material
model may not be appropriate. A viscoelastic model may be more appropriate,
or a �uid-�lled Hookean membrane. Additionally, as the scale of the rubber
models is much di�erent, we must consider that the snap-through instability
observed in the rubber ball models may not be the mechanism that pops the
rear through on the real organism. While it is likely similar, we need to take
into account the change in scale, and consider how this e�ects the role of inertia
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(a) X displacement at apex (b) X displacement at midline

(c) Y displacement at apex (d) Y displacement at midline

(e) Z displacement at apex (f) Z displacement at midline

Figure 13: (1-3) Displacements at apical node {a,c,e}=(0, 0,−0.05) and circum-
ferential nodes {b,d,g}= (0.05, 0, 0), (0, 0.05, 0), (−0.05, 0, 0), (0,−0.05, 0)
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Figure 14: Inversion of the half-half-sphere!

16



(a) Z displacement at apex (b) Z displacement at midline

Figure 15: Displacement in the Z-direction of the (i) apical and (ii) circumfer-
ential points during the dynamic portion of the inversion process.

and viscosity. Comparison with discrete truss model may be useful, and would
account for cytoplasmic bridges more accurately.

More generally, this project has spawned an interest in modeling membranes.
While much work has been done on this area using thin shell approximations,
I am interested to see if thin, but still three-dimensional FEM simulations can
correctly model their behavior. During the course of this work, several mem-
brane models that were not shown here were created to help me understand the
capability of FEM in this area. The biggest question is if computation is cheap,
why not use 3D FEM and not use the complicated thin shell approximation?

Experimentally, I am also interested in doing some rheological studies of the
epithelial sheets. Finding a realistic set of parameters would be useful here, and
the creep, relaxation, and cyclic tests could be performed. I intended to contact
David Weitz's group to see if I can use their equipment.

The obvious bifurcation points in the time-dependent solutions are also of
interest. The interplay between the geometry, the material model, and the time
step needs more investigation. Consultation of a dynamical systems text will be
my next step in this area. While inertia plays a small role in both the rubber
ball, and the Volvox, it was interesting to �nd that solving the time-dependent
problem helped to �nd the unstable solutions we observed in some of the rubber
models.

Once the issues of reality versus model have been resolved, and we are able
to properly simulate the wild-type and a mutant or two, we can apply the
model to the many other inversion types in other species of Volvox, as shown
in �gure 16. Once proved, this type of analysis can be useful for understanding
more epithelial sheet folding problems, such as that in gastrulation, neural tube
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formation, and many other processes in �higher� organisms, such as ourselves.
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Figure 16: Schematic of inversion in other Volvocaceans.
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