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Abstract

We show the full multiscale Persson’s theory for rubber friction due to
viscoelastic losses can be approximated extremely closely to simpler models,
like that suggested by Persson in 1998 and similarly by Popov in his 2010
book (but notice that we do not make any use of the so-called "Method of
Dimensionality Reduction"), so it is essentially a single scale model at the
so called large wavevector cutoff. The dependence on the entire spectrum
of roughness is therefore only confusing, at least for range of fractal dimen-
sions of interest D ≃ 2.2, and we confirm this with actual exact calculations
and reference to recent Lorenz et al data. Moreover, we discuss the critical
assumption of the choice of the "free parameter" best fit truncation cutoff.
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1. Introduction

After the introduction of the concepts of multiscale roughness (Ciavarella
et al, [1], Persson, [2]), we have recognized that the real area of contact
is very loosely defined and it depends, together with some other physical
quantities, on the small wavelength truncation of roughness, which is hard
to define with some physical argument, rather than just as a best fit fitting
"free parameter".

This led to a proliferation of papers about multiscale roughness (see e.g.
Persson et al., [3]) and the debate between the classical asperity models
(Greenwood & Williamson, [4]) vs the more accurate Persson model [2], see
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eg. Putignano et al, [5]. Since Persson’s theory and GW predict the same
dependence of the contact area vs load at asymptotic large separation even
quantitatively, it took a long time to realize that the difference exists and
is rather in the intermediate range of separations, where Persson’s theory
certainly is more accurate. Hence, Persson’s theory improved one aspect:
the area of contact is actually in principle much less dependent on roughness
details than what GW theories, and developments, had predicted.

However, it remains now a bigger problem: no reliable estimates can
be made of quantities like the real contact area, or other quantities which
strongly depend on the cutoff wavelength, like friction in viscoelastic bodies
even in the most advanced models which rely on these quantities (although
hidden in the much complex formulation) which are difficult to define. Actu-
ally, the latest development of Persson’s theories which involves friction due
to viscoelastic losses as well as a number of other mechanisms (Lorenz et al,
[6]), suggest the truncation of the spectrum of the surface should be such
that the rms slope is fixed to

h′rms (q1) = 1.3 (1)

where we have made it evident that the rms slope strongly depends on upper
truncating cutoff wavevector q1. A quite interesting simple result, although
there seems to be no clear understanding for such a universally good choice.
Other authors also recently (Carbone & Putignano [7]) do not consider the
problem solved and prefer to consider the truncation cutoff it as a "free
parameter", which may be related "to the micrometer size of the small dirt
particles covering the contacting surfaces or, alternatively, can be related to
the size of rubber wear particles". It is surprising that at least since Persson
[8], the various attempts to model friction in rubber material with quite
different choices and models (the number of papers is very large), they all
seem to conclude a good agreement with experiments. We tend to think that
the reality is in the middle: there is a good qualitative agreement in most of
the models, but when one tries to be quantitative, the number of effects is
so large that only a certain choice of the fitting parameters in the models,
makes the answer reasonable, within the obviously limited and well specified
range of experiments to be modelled.

Starting from the two really fundamental contributions of Williams Lan-
del & Ferry [9] who gave a single empirical function known as the WLF
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transform to relate temperature and rate dependence of viscoelastic proper-
ties, and Grosch [10] experimental result showing a single "master curve" can
describe the temperature and velocity dependence of friction, many authors
have attempted to make more "quantitative" models. In fact, Grosch showed
that friction on a rough track Fig.1 (solid line) shows two maxima, one re-
lated to molecular adhesion with the track, the primary source of friction on
a smooth surface (Fig.1 dashed line), at low speeds (and this contribution
disappears with adding fine powder like Magnesia to the track), and another
due to viscoelastic losses in the rubber at much higher speeds. Grosch [11]
has a good review of this, of other experimental evidence (like dependence
on normal load which we will briefly mention) and developments for mod-
ern polymerization methods and filler concepts with mainly lab work which
aims to change the viscoelastic properties to aim at an optimal result of high
friction high wear resistance and low rolling resistance.

Heinrich [12] was perhaps the first to attempt introducing fractal surfaces
concept in the topic, while at about the same time Persson [8] in a simple
paper, suggested the "rubber completely follows the short-wavelength surface
roughness profile", introducing some energy balance adhesion concepts which
he later developed and yet today are no longer present in his models (because
adhesion is considered to be destroyed by large roughness?). In any case, the
interesting aspect is that dissipation occurred in a wavelength of order the
diameter of the asperity contact area, not defined a priori but clearly fixed
as a single scale in the model. This led him to suggest that the friction
coefficient was

µ = C
ImE (ω0)

|E (ω0)|
(2)

where E (ω0) is the complex viscoelastic modulus of the rubber, and ω0 ∼ v/l
is the frequency of the cyclic deformation at velocity v, in the asperity of di-
ameter l. At that time, he concluded that C could be found from GW theory
but for "very rough surfaces typically involved in rubber friction, C is of or-
der unity" — a conclusion that we shall reobtain after a long discussion. Also,
ImE(ω0)
|E(ω0)| is also of the order unity at the frequency where this ratio assumes a

maximum, concluding that friction would be of the order unity. Persson [8]
was entirely happy at that time of reasoning in terms of a single scale model
of roughness, and very surprisingly a posteriori, was aimed at explaining the
result for the very smooth track (due to molecular adhesion) with the hys-
teresis loss, as he discusses the case for roughness of just 100Angstrom and
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similar wavelength (notice therefore the slope is about 1), like in the glass
polished with alumina powder of Grosch experiments (see Fig.1).

Fig.1. Adapted from Persson [8]’s Fig.3 in turn using Grosch [10] results on
silicon carbide paper (solid curve) and a smooth glass surface (dashed

curve)

Persson [8] did not comment on silicon carbide paper results of Grosch
which, with much higher roughness, with particle size of order 0.01 cm,
showed similar value of friction but clearly could not be explained by the
simple adhesion/losses model — on the contrary, it is this case where its hys-
teresis loss theory now attempts to explain (Lorenz et al [6]), while adhesion
contribution is attributed to shear strength in the contact area which involve
newer models. The calculation based on adhesion and full contact showed
a dependence on normal load of the friction coefficient (which may be qual-
itatively justified for smooth surfaces), and a quadratic dependence on the
slope (ratio of amplitude to wavelength) of the sinusoid, which however was
assumed of the order unity. This calculation was found, with appropriate
estimates of the rubber properties, to give correct order of magnitude results
as the observed frictional stress in most cases. Today, Lorenz et al [6] say
that there is "no way" that a hysteretic friction mechanism can explain the
low speed friction result (like essentially those in Grosch with glass surface
which Persson [8] considered in very good agreement with the theory).

Despite the quite radical changes of interpretation in the models, it re-
mains interesting that assumption of slope of the order of 1 makes most
models, still reasonable.
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Popov, in his book ([13] eqt.16.12)1, arrives at a similar equation as Pers-
son [8] (2), as in fact he uses simple argument based on a single "scale" of
asperities (same diameter), but this time he includes the rms slope of the sur-
face, because we know (mainly thanks to Persson [2] theory and the corrective
factors that have been suggested (see Putignano et al [5]) the dependence of
the pressure in the asperity contact on this geometrical parameter

µ = h′rms (q1)
ImE (ω0)

|E (ω0)|
(3)

This obviously holds when we are in the regime of small fraction of contact
area, as it is realistic for macroscopic applications. It implies of course that
µ ≤ h′rms (q1) and in particular, the curve follows the dependence on the
frequency (and therefore on velocity of sliding) observed by Grosch, and in

the middle frequency domain, many types of rubbers have a peak ImE(ω0)
|E(ω0)|

close to 1.
But naturally one aspect is very often not much discussed: what is really

the rms slope of surfaces? This quantity varies wildly at small scales and in
principle would grow up to infinity, and at atomic scale it is certainly ill-
defined, but from extrapolating of the fractal scalings, it can easily reach a
value of 10. In his most recent take on the problem, Lorenz et al [6] suggest
to take h′rms (q1) = 1.3 and the real reason for this choice is obscure (other
than the authors attempt of best fits): clearly, if we took a much higher
value, it would be difficult to convince people about its meaning, as already
1.3 makes most newcomers quite surprised. After all, we are discussing of
models purely developed at small slopes, which neglects all finite deformation,
rotations, plastic or even viscoplastic behaviour. Notice that even with this
postulate h′rms (q1) = 1.3 , the pressure in the contact areas is of the order of

prough = E∗h′rms (q1) /2 (4)

which means deformations of 65% and pressures near the elastic modulus:
this would be prohibitively large for a metal, although for a rubber it may
still be a range where, approximately, linear elasticity is satisfied (?).

But the main effort in the present paper is to see if full Persson’s multiscale
theory is really so different from the earlier simpler models.

1This should not be confused with the so called Method of Dimensionality Reduction
(Popov and Hess, 2015).
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2. A simplification of multiscale Persson theory

Persson has given his main theory for contact mechanics and rubber fric-
tion in [2] where friction is due to the hysteretic losses assuming no adhesion
at the interface. With some improvements, it proves quite good compared
to full numerical simulations involving only this mechanism of friction obvi-
ously (see e.g. Scaraggi & Persson [14]). However, it looks quite involved
and doesn’t show any immediate dependence with respect to the much sim-
pler (2, 3). The friction coefficient depends on the "magnification" or on the
truncation wavevector, so we will use the notation µ (q1) which makes this
clear, rather than µ used by Persson which seems to suggest a true quantity.
It reads

µ (q1) ≃
1

2

� q1

q0

dqq3C (q)S (q)P (q)×
� 2π

0

dφ cos (φ) Im
E (qv cos (φ))

(1− ν2) σ0
(5)

where σ0 is the nominal contact stress, C (q) the surface roughness power
spectrum (defined as a function of wavevector q), and the function P (q) =
A (ζ) /A0 is the relative contact area when the interface is observed at the
magnification ζ = q/q0, where q0 is the smallest (relevant) roughness wavevec-
tor, and A0 is the nominal contact area. Finally, the factor S(q) is a correc-
tion factor which at large magnifications, can be taken as S(q) ≃ 1/2, and
otherwise results from some fitting calculations of the stiffness of the contact
(which were done for elastic contact), but is equal to 1 for full contact. The
theory also gives

P (q) = A (ζ) /A0 = erf

�
1

2
√
G

�
(6)

G =
1

8

� q

q0

dqq3C (q)×
� 2π

0

dφ

����
E (qv cos (φ))

(1− ν2) σ0

����
2

(7)

where the argument of the complex module is the projection of the wavevector
on the direction of sliding.

Let us consider the outer integral in (5). For small q0, the contact area
starts from full contact, because G is small and one seems to need the full
formulation. However, if we assume full contact persists up to a certain qf ,
we obtain at that scale that the friction coefficient should be

µ (qf) =
1

2

� qf

q0

dqq3C (q)×
� 2π

0

dφ cos (φ) Im
E (qv cos (φ))

(1− ν2) σ0
(8)
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where we recognize the square of the rms slope. At intermediate qf the
rms slope remains quite small and a fortiori its square value, and moreover
the loss modulus is also quite small, so this contribution (which incidentally
would give a simple inverse dependence on normal load) can be neglected if
the surface has a spectrum which spans many decades. One could therefore
use this model for very smooth surfaces, although not much effort has been
produced to test it. In fact, despite the dependence on the normal load is
well known, it is not quantitatively or qualitatively in agreement with the
previous equation but rather shows a much weaker power law (see Grosch,
[11], Fig.1 and Table 1), probably because for very smooth surfaces, the
correct model is adhesion-based and not hysteresis losses anyway.

In any case, for these many reasons it has little sense to add this con-
tribution to the integral (even assuming it were correct), because for large
spectrum surfaces, the main contribution to the friction coefficient will come
from the large wavevectors. The contact area decay with wavevector there-
fore removes the dependence on the applied pressure, as this term cancels
out2.

For a typical power law tail PSD (Power Spectrum Density) of rough
surface like C (q) = Zq−2(1+H) (we don’t need to require the entire PSD to
be a power law) the variance of slopes is m2 = π

� q1
q0

dqq3C (q) ≃ πZ
2−2H q2−2H1 ,

as a very good approximation unless the fractal dimension is strangely low.
A typical fractal dimension nowadays considered realistic is D = 2.2 (most
recent papers consider this, and Lorenz et al [6] give enough evidence).

Therefore, in this range we can approximate erf
�

1
2
√
G

�
≃ 1√

πG
and (5)

simplifies to

µ ≃
√
8

4
√
π

� q1

q0

dqq3C (q)×
� 2π
0

dφ cos (φ) Im E(qv cos(φ))
(1−ν2)σ0�

� q
q0
dqq3C (q)×

� 2π
0

dφ
���E(qv cos(φ))(1−ν2)σ0

���
2

(9)

where q1 is the upper cutoff wavevector.
Within our approximation, for a given q we solve the integral under the

2Referring again to Grosch (1996) nevertheless, this is also only approximately true as
a power law dependence with exponent -1/9 is often observed, and in some case even an
increase of friction with load, which is not explained by any of the present theories, as
far as I know, nor any theory has attempted to model the quite different dependence on
normal load from wet and dry conditions.
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square root, and putting

R1 =

� 2π
0

dφ cos (φ) ImE (q1v cos (φ))	� 2π
0

dφ |E (q1v cos (φ))|2
(10)

we obtain a further simplification to

µ ≃ R1√
π

√
2m2 =

R1√
π
h′rms (11)

where we have written
√
2m2 = h′rms as it is correct for 2D surfaces where

the gradient in orthogonal directions are uncorrelated. This equation looks
already very similar to Persson [8] and Popov [13], respectively (2, 3), and
we have reduced the original 4 integrals to just 2.

We will then show that a further very good approximation is to remove
all integration processes and write

R1,appr√
π

≃ ImE (q1v)

|E (q1v)|
(12)

Indeed, we show this result is an extremely good approximation for re-
alistic cases taken from Lorenz paper. We cannot provide a rigorous proof
for this, but consider the simplest exact case, a Maxwell simple model of a
spring of stiffness E connected in series with a damper of constant η, in the
continuum version using the moduli rather than stiffness (see Popov [13],
ch.15.7): the storage and loss modulus are

ReE (ω) = E
(ωτ)2

1 + (ωτ )2
ImE (ω) = E

(ωτ )

1 + (ωτ )2
(13)

where τ = η/E is a time constant. Computing R1 and our approximate
version

R1 =

√
2π

ωτ


���1−
1

	
(ωτ)2 + 1

≃
√
π




1−
�
3

8
ωτ

�2
+ ..

�

(14)

R1appr =
√
π

1
	
(ωτ )2 + 1

≃
√
π

�
1− 1

2
(ωτ)2 + ..

�
(15)
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and notice that not only the first term is identical, but even quadratic and
higher order terms have similar coefficients. For the Maxwell model, it could
be shown that only at extremely high frequencies, those with no interest in
practice for our application, the error could be at most 40%.

3. An engineering formula?

Cancelling the square root of π terms, our proposal is therefore to use an
extremely simple approximation of Persson’s theory

µ ≃ h′rms
ImE (q1v)

|E (q1v)|
(16)

This approximation seems coincident with what Popov gives in his book
([13], eqt.16.12), although Popov further suggests that in many casesmax ImE(q1v)|E(q1v)| ≃
1 in the intermediate frequency range. In our example cases below, it is R1
that reaches a value just above 1, and not

√
π because the loss modulus is

never really greater than the storage modulus in this case. Moreover, one
has to check if the velocity at which this maximum is reached, considering
the truncating wavevector, is outside the "low velocity" assumption due to
thermal restrictions.

Let us estimate this approximation with actual full results from Lorenz et
al [6]. They consider 4 types of surfaces, having all Hurst exponent near 0.8
(hence, D = 2.2): three types of asphalt a, b, c and sandpaper. Their PSD
looks in fact quite similar, except for a small shift in the multiplier Z so one
wonders if really all this emphasis on the PSD determination is justified, at
least considering that the theory we have at present essentially depend only
on a quantity at very large wavevectors, which is arbitrarily fixed in the end.
The obvious corollary of the postulate h′rms = 1.3 independent on anything
else (but let us assume for generality h′rms = c as this may well change in
the future), together with out proposal (16), is that for the power law tracks
tails C (q) = Zq−2(1+H), where we can easily show Z = H

π
h2rmsq

2H
0 and hence

q1,cutoff =

�
1−H

H

c2

h2rmsq
2H
0

�1/(1−H)
(17)

which seems a direct engineering formula requiring only the measurement of
the slope of the PSD spectrum (at high wavevectors) Z, the Hurst exponent
(which in practice most people assume 0.8) and the velocity, together with
the viscoelastic loss and storage moduli as a function of frequency.
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We then make some actual estimate of our approximations, from Lorenz
at al [6] paper. Consider the viscoelastic modulus of rubber compound C,
which is detailed in their Fig.6, and scan carefully the data from the figure
with a simple software (Engauge Digitizer). The storage and loss modulus is
shown in Fig.2, and dashed lines are power laws at low frequencies, which are
in fact those of interest, because in practice, as we assume low velocities v <
1m/s (as otherwise the theory and experiments become too dependent on the
heating process). However, we shall not need any power law approximation,
and we see that the approximation is good in the entire frequency range.

ReE
ImE

-5 5 10 15 20
log10HfL @HzD

-1

1

2

3

4
log10ImHEL,log10ReHEL @MPaD

Fig.2 - Real (solid blue) and Imaginary (solid black) parts of the
viscoelastic modulus in Lorenz et al [6] rubber compound C, together with

power law approximations (dashed lines) at low frequencies.
ImE = 100.075f 0.07 and ReE = 101.075f 0.05

Indeed, our approximation does not need the power law behaviour,
as Fig.3 compares the (10), with our approximate solution (12) obtained
from the full data. All the results are clearly extremely close, even above
the maximum and this is irrespective on speed (results are given for v =
0.01, 0.1, 1m/s).
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v=0.01,0.1,1m/s

-5 0 5 10 15
log10Hq1L

0.1

0.2

0.3

0.4

0.5

0.6
R1� Π

Fig.3 - A comparison of our approximate solution (12)

R1appr/
√
π ≃ ImE(q1v)

|E(q1v)| (solid lines) for the viscoelastic moduli ratio (10)

R1/
√
π, (dashed lines). The data are for decreasing velocities going from

left to right (black, blue, red line), v = 1, 0.1, 0.01m/s .

Next, to check our previous approximation in the integration, we extract
from Lorenz paper in their Fig. 5a the rms slope for asphalt "a" as a function
of truncating wavevector q1 again with the same digital software.

The majority of Lorenz et al [6] friction data seem to imply a maximum
coefficient of friction of the order 1, which is incompatible with the sim-
ple hysteresis loss model if we truncate the spectrum at wavevectors giving
h′rms = 1.3 as this corresponds to truncation in the power-law range of Fig.2
and therefore give a much lower friction coefficient.

But in our final proposal (16) we have made 2 approximations, one was
to remove the full dependence on the PSD spectrum, and the other on the
ratio of the moduli. Therefore, we need a comparison with a full calculation.
This is possible by comparing for example our prediction with the results
shown in Lorenz et al [6] Fig.17, again which we upload with the software,
as a function of q1, for v = 1m/s . The result is shown in Fig.4, showing an
excellent agreement: the error is negligible, compared with so many other
possible errors. Therefore, we conclude that the 2 successive approximations
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we have made are in fact quite justified. Therefore, the hysteresis loss can be
obtained with a simple calculation, instead of the full calculation involving
recursive integrations over many decades of spectrum of roughness. The
implication is also obvious: is Persson’s full theory really showing multiscale
effects?

æ

æ æ
æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
log10Hq1L0.00

0.05

0.10

0.15

0.20

Μ

Fig.4 - Increase of friction coefficient with cutoff wavevector q1 in Lorenz et
al [6] (red dots), against our approximation (blue solid line) (16).

4. The two terms theory

We could further discuss the many additional contributions suggested
by Lorenz et al [6] to fit the data with an "adhesion term", but we are
not convinced much of the treatment because, according to Grosch, the two
contributions (adhesion and hysteresis) should result in two maxima (see
Fig.1), each related to its mechanism (molecular adhesion at much lower
speeds, and hysteresis at much higher ones) whereas the experimental curves
Lorenz et al produce remain always with a single maximum and therefore it
is unclear if really two mechanisms are at play.

But most importantly, we disagree with the statement in the Discussion
paragraph of Lorenz et al that "there is noway to obtain the measured friction
coefficient assuming only a viscoelastic contribution to the friction. That is,
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even if q1 is chosen as large as physically possible, namely, of order 1010 m−1,
atomic length scale, it is not possible to obtain so high friction coefficient in
the low velocity region ( v ≃ 10−3 m/s) as observed in the experiments".
Instead, it is easy to show that, as h′rms ∼ q1−H1 = q0.21 , if we let the rms
slope increase for another 4 decades of spectrum to reach the "atomic scale"
suggested by Lorenz et al, we could in principle have a rms slope higher by a
factor 100000.2 = 6.3 whereas ImE(q1v)

|E(q1v)| would increase by a factor 0.6/0.18 =
3.33 making a final friction coefficient of more than 3. This is represented in
Fig.5 by the blue solid curve showing even too high friction coefficient, also
at low speeds.

In fact, we find that a cutoff of q1 = 109 m−1 which is represented by
the solid black curve, fits the experimental data (red dots) quite well. This
would suggest that the rms slope cutoff should be taken as h′rms ≃ 3.5, but
this is representative of the essentially fitting capabilities of these models. If
one really had data with two maxima, and wanted to represent them with
a single model, of course the problem would be more clearly defined. At
present, this point seems therefore unresolved, as is the entire issue of the
"appropriate cutoff".

Notice that we are responding to Lorenz et al’s comment that it would
not be possible to fit friction data with increasing the continuum theory down
to atomic scales. We contradict this statement, but we are not suggesting
that the theory should indeed be always truncated to atomic scale. As one
reviewer pointed out, "rubber is a continuum only down to scale around 1
µm. At smaller scales rubber must be considered as a mixture of polymers
and filler particles, and any theory operating at such small scales with the
dynamic modulus of a rubber compound would be incorrect". However,
Persson’s theory suggested truncation is based on slopes and not on "scale",
and hence all this requires further investigation.
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Fig.5 - Increase of friction coefficient with speed with different choices of
wavevector q1. Black line is the "best fit" with pure hysteresis loss

contribution, which corresponds to a cutoff of h′rms ≃ 3.5, whereas the solid
blue line is the "theoretical limit" at atomic scale suggested by Lorenz et

al[6]

5. Discussion: the challenges

In view of the present results, it is perhaps easier to judge in the future
what Persson’s theory (or at least, the pure hysteresis loss version) really
shows in simple terms, since in fact it doesn’t differ considerably from the
simple Persson [8] single scale theory fitting model, or the Popov [13] simple
derivation. Persson, in this 2001 theory [2], makes unclear arguments about
the cutoff, at the same time saying that there should be no dependence on
the cutoff, and also that there should be (see Appendix) — this is perhaps
just a curiosity, but the problem has remained intact in the following 15
years. In Lorenz et al [6] we are told that the truncation cutoff q1 should
be chosen so that the rms slope becomes equal to 1.3: this is indeed the
order of magnitude which was estimated in the single scale theory of Persson
[8]. However, Lorenz et al do not agree that this cutoff should be put even
farther, and seem to reach different conclusions than what we found with
their own data: the fit could be made, provided we pushed the threshold to
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near the nanoscale: whether this makes any sense, or gives any real physical
interpretation, is not clear at present, but certainly it makes a much simpler
fitting equation. The "adhesion" contribution is probably at its early stages
of development in Persson’s theory, and it is very difficult to follow the various
versions and arguments, especially as the key ingredients and proofs are then
referred to in a reference (46), which then turns out to be "B. Lorenz and B.
N. J. Persson (unpublished data)".

Anyway, the present note is really more on the simplification of Persson’s
theory, which in fact puts some arguments in favour of the conclusion of
Popov’s group (see Popov, et al [15]) that really only the very small scales
count for hysteresis friction, but an important difference is that we reached
this conclusion quite clearly from Persson’s theory, and including also quanti-
tative factors, and here we haven’t made any use of the so-called "Method of
Dimensionality Reduction" (MDR) [16]. Lyashenko et al. [17] have debated
the conclusions of a previous paper by Popov’s group, but the criticism is
really more on the so called MDR method, which incorrectly computes the
contact area for rough surfaces, than to the conclusion of the simple scaling
of Popov [13] which in fact is similar to Persson [8] as we have here recalled.

Essentially, multiscale contact numerical findings (see Pastewka and Rob-
bins [18]) suggest that the characteristic scale of asperity contacts depends
only on geometry and is a very narrow distribution, close to constant. Hence,
there is no reason to make a complicated multiscale model if the result is re-
ally a single scale asperity-scale.

There remains a real problem. Is it naif to even look for an "exact" theory
of rubber friction on real surfaces like asphalt or concrete? How can we ever
be able to considered all influencing factors on the friction coefficient, like
surface porosity, polarity (expressed by free surface energies), brittleness,
binder properties, lubrication, adhesion, dirty particles, viscoplastic, finite
deformations, etc.? At the high slopes that all theories seem to postulate
to explain the viscoelastic dissipation, how to include precise data about
the materials properties (non-linear viscoelastic - even viscoplastic rubber
behaviour)? If one insists too much on the multiscale aspect, one will not
be able to include these factors. Hence, to spend resources on the purely
academic question about multiscale aspect of the spectra, when we have
then to impose arbitrary cut-off lengths in the spectra (and sharp one), is
quite a debatable choice.

In general, Persson’s theory is formulated for self-affine surfaces with
Gaussian height distribution. Real surfaces are not necessarily self-affine
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with normally-distributed heights. Local slopes in contact points can be
different from those calculated from PSD. II. Moreover, if the two terms
theory is valid, then hysteresis friction theory by Persson is not relevant for
low sliding velocities, where friction is dominated by adhesion: where is this
further transition, in general? We are far from a "theory" of rubber friction,
we simply have many fitting equation models.

5.1. Is there any meaning to a "sharp cutoff"?

In fact, one remark about the "sharpness" of the proposed cutoffs. While
the multiscale theorists are all enthusiastic about the fact that "all scales
below the cutoff" should be considered, they are all ready to consider than
"no scale" beyond the cutoff should matter. This is a little curious. With
a single scale model, one could attempt to condense the effects of "all scale
below" and "all scale above" in some approximate sense. In the particular
case of rubber friction, we think we have shown quite clearly that the mul-
tiscale effect is quite limited perhaps to a corrective factor to consider the
actual contact area as a function of pressure — which gives indeed the correct
pressure in the asperity scale. That asperities have almost the same size, it
was already shown in the Greenwood-Williamson model. In these respect, it
is remarkable to note that a theory which is considered equally competitive
to Persson’s theory (Kluppel & Heinrich [19], see also Heinrich & Klüppel
[20]) is essentially based on a Greenwood-Williamson model, and yet it seems
to work quite well.

We conclude that Persson’s theory contribution is most important in the
correct dependence of area with respect to load, which translates in the
correct estimate of the pressure in the asperity, which is suspiciously high to
apply any simple theory, so leaving all these refined models at most semi-
quantitative.

At engineering scale, currently, a challenge is to implement a simple the-
ory into a physically nearby "exact" theory in an suitable and effective FE-
code, managing the rubber and road surface data identification, and then
calculating with the FE-code the grip / skid characteristics of a complete
tires (or other rubber parts). At present, many theories seem satisfactory in
predicting the rolling resistance of a rolling tire, but not for the wet/dry skid
behaviour (stopping distance) of a tire under real ABS-braking conditions.
Perhaps we should therefore look first more into single scale models? The
experiments of the so-called MDR theory in this respects may be at most
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suggestive, but attract the criticisms that the real contact area is incorrectly
predicted.
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7. Conclusions

We have derived a simplified version of the multiscale Persson’s theory,
and we have proved that it leads to a result very much simpler than what
the theory suggests, and a closed form engineering-level equation has been
found, which suggests the crucial factor of just the rms slope of the spectrum,
and the wavevector at which this is found. This is in line with previous the-
ories from Persson [8] and from Popov [13]. We have confirmed that the
approximation seems quite good with respect to full calculations, and pro-
vided simple explanation on why this is so, alternative from the qualitative
derivations of from Persson [8] and from Popov [13]. We therefore suggested
that the main progress of Persson’s multiscale theory was the correct determi-
nation of the pressure at asperity scale (equivalently, of the correct coefficient
of the area-load linear relationship), but that the quantitative aspects still
are way beyond our understanding. In particular, the choice of the sharp
cutoff remains arbitrary, and pushing it farther from what Lorenz et al [6]
suggest, seems to be able to fit that data that otherwise Lorenz et al [6]
suggest require a two-terms theory, involving many other assumptions and
fitting parameters. In the present much simpler form, it may encourage fur-
ther research into simple models, particularly on the sensitivity of the results
to "scale-dependence", not in the sense of "sharp cutoffs" to be introduced
in multiscale theories, but rather in corrective physics models in essentially
single scale models which could correct for effects at scales both above and
below the scale of choice.
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9. Appendix - the cutoff discussion in the original Persson (2001)

The problem of truncation cutoff was already considered in the famous
paper where Persson (2001) introduced his contact mechanics theory. In that
case, there is a confused argument for the function P (q) = A (ζ) /A0 : first,
it is recognized that for small pressures, the contact area goes to zero as
G >> 1 and friction is independent on normal load. Persson argues that the
contact area does not go really to zero as "For example, the shortest possible
distances are of atomic length, ... or at a much larger length scale because of
contamination particles, or trapped fluid or trapped pockets of compressed
air, .... or a thin modified surface layer skin, or... the yield stress of the
materials ... beyond that point the area of real contact stays constant".

However, even without an upper cutoff the friction coefficient given by
Eq. 36 for a fixed sliding velocity v remain finite. This would not occur for
full contact as

µ ∼
� q1

q0

dqq1−2H ∼ q2−2H1 ∼ m2 (18)

since the integrand in Eq. 36 behaves as q−2H (in fact it is rather q1−2H ) for
large q, and the integral q−2H+1 (in fact it is rather q2−2H) diverges if H >
0.5 (in fact, it diverges for all H!). However, when the correct asymptotic
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dependence P ∼ q−1+H is taken into account the integral converges as q−H1 :
Persson clearly has forgotten a factor 1 as instead

µ ∼
� q1

q0

dqq1−2Hq−1+H =

� q1

q0

dqq−H ∼ q−H+1 ∼ m
1/2
2 (19)

which does not converge and actually is exactly the inverse dependence of
the contact area which he has just discussed not to converge. In fact, his cal-
culations in Fig.11 and Fig.13 show a friction coefficient strongly dependent
on the cutoff and even for realistically low fractal dimensions, are up to 5.

20

Journal of Tribology. Received February 01, 2017; 
Accepted manuscript posted May 30, 2017. doi:10.1115/1.4036917 
Copyright (c) 2017 by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Downloaded From: http://tribology.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jotre9/0/ on 07/20/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use




