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1 Introduction

If a structure has one of its dimensions much smaller than the other two, such as a flat or
curved panel, we can simplify the analysis of such a structure using plate or shell models.
In this chapter, we focus on flat panels which can be modeled using plate models for
simplicity. Mathematically speaking, a plate can be considered as a degenerated shell.
Figure 1 provides a simple sketches of a rectangular plate with constant thickness. In
general it is not necessary for the plate to be rectangular nor the thickness must be
constant. The only requirement is that the thickness must be small in comparison to
the in-plane dimensions. For the rectangular plate in Figure 1, we require h/a ≪ 1 and
h/b ≪ 1. Usually, we also have a ≈ b. If it is a circular plate with radius r, we then require
h/r ≪ 1. The small aspect ratio is not a defined value but a qualitative assessment and
an engineering judgement of the analyst. For us to develop the plate theory, we need
to introduce two terminologies: reference surface and transverse normal. The reference
surface of the plate is defined along the two larger dimensions, denoted using x1, x2 in
Figure 1. There are infinite many choices of reference surface although the mid-plane
is usually chosen as the reference surface. Note in the undeformed state, the reference
surface of a plate structure is actually a plane. The transverse normal is formed by the
material points along the thickness direction, denoted using x3 in Figure 1. Without loss of
generality, we locate the origin of x3 on the reference surface in this note. In other words,
x3 = 0 denotes the reference surface. For every point in the reference surface denoted
by (x1, x2), there erects a transverse normal. If the mid-plane is chosen as the reference
surface, then x3 ranges from −h/2 to h/2. If the thickness is not constant, we could have
the thickness as a function of x1, x2. For the structure to be reasonable modeled as a plate,
we also require that the thickness varies smoothly along the reference surface of the plate.

Although we could use the finite element method to routinely analyze complex struc-
tures, simple plate models are often used in the preliminary design stage because they can
provide valuable insight into the behavior of the structures with much less effort. There

∗Associate Professor, Department of Mechanical and Aerospace Engineering.
Copyright c⃝ 2012 by Wenbin Yu.

1



11
ˆ,ex

22
ˆ,ex

33
ˆ,ex

a

b

h

Figure 1: Sketch of a plate.

are different plate models with different accuracy. The simplest one is the so-called classi-
cal plate model, also called Kirchhoff plate theory, which usually can provide a reasonable
prediction for thin plates. There are at least three ways to derive this plate model: New-
tonian method based on free body diagrams, variational method as an application of the
Kantorovich method, and variational asymptotic method. Both the Newtonian method
and the variational method are based on various ad hoc assumptions including Kirchhoff
kinematic assumptions and kinetic assumptions for the 3D stress field within the structure.
For this reason, we also term both the Newtonian method and the variational method as
ad hoc approaches. Most textbooks only present the Newtonian method as it is intuitive
for understanding. However, it is tedious and error-prone for development of new models
and analysis of real structures. On the contrary, the variational method is systematic and
easy to handle real structures. Mainly for this reason, the variational method is commonly
employed in the literature to derive new plate models. The variational asymptotic method
is a recent addition to the plate literature and it has the merits of the variational method
without using ad hoc assumptions. We will present the details of these three methods for
constructing the classical plate model for isotropic, homogeneous plate (plate-like struc-
ture made of a single isotropic material) to appreciate the advantages and disadvantages
of different methods.

Fundamentally speaking, a plate model, no matter how rudimentary or how sophisti-
cated it is, is a two-dimensional (2D) model. It seeks to replace the governing equations
of the original three-dimensional (3D) structure with a set of equations in terms of two
fundamental variables, the two coordinates describing the plate reference surface. In other
words, we need to replace the original 3D kinematics, kinetics, and energetics in terms of
their 2D counterparts.

As plate models can be considered as an approximation to the 3D elasticity theory, it is
appropriate for us to review the basics of the 3D elasticity theory. For simplicity, we restrict
ourselves to material and geometric linear problems only. The theory of linear elasticity
contains three parts including kinematics, kinetics and energetics. The kinematics deal
with a continuous displacement field (ui) (Here and throughout this chapter, Greek indices
assume values 1 and 2 while Latin indices assume 1, 2, and 3. Repeated indices are
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summed over their range except where explicitly indicated) and a continuous strain field
(εij) satisfying the following strain-displacement relations at any material point in the
body:

εij =
1

2
(ui,j + uj,i) (1)

The kinetics deals with a continuous stress field (σij) satisfying the following equilibrium
equations at any material point in the body:

σji,j + fi = 0 (2)

The energetics deals with the constitutive behavior of the material. For an isotropic elastic
material, it deals with the following constitutive relations satisfied at any material point
in the body:

ε11
ε22
ε33
2ε23
2ε13
2ε12


=

1

E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν





σ11

σ22

σ33

σ23

σ13

σ12


(3)

It is commonly called the generalized Hooke’s law for isotropic elastic materials. The 6×6
matrix is the compliance matrix with E as the Young’s modulus and ν as the Possion’s
ratio. The constitutive relations in Eq. (3) can be simply inverted to obtain a 6×6 stiffness
matrix.

The 15 equations in Eqs. (1), (2), (3) form the complete system to solve the 15 un-
knowns (ui, εij, σij, note the symmetry of εij and σij). Clearly boundary is also part of the
body, which implies that the above equations should also hold for points on the boundary.
However, along the boundaries, we also know some information which can be considered
as given to the plate structure in question. For example some boundary points are fixed.
Hence along the boundary, we have some additional equations to satisfy. If the displace-
ment of some boundary surfaces is prescribed to be u∗

i , then we require the displacement
field to satisfy

ui = u∗
i (4)

on such boundary surfaces. If the traction of some boundary surfaces is prescribed to be
ti, then we require the stress field to satisfy

σijni = tj (5)

2 Ad Hoc Approaches

In view of what we have learned about beams, plates can be understood analogously. Like
a beam has the cross-section much smaller than the reference axis, a plate has the length
of the transverse normal much smaller than the reference surface dimensions. Like beams
are modeled using 1D models posted over the beam reference axis, plates are modeled
using 2D models posted over the plate reference surface.
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Using ad hoc approaches to develop beam models, we introduced some kinematic
assumptions regarding the deformation of the cross-section. Likewise, to use ad hoc ap-
proaches to develop plate models, we will introduce some kinematic assumptions regarding
the deformation of the transverse normal. Specifically, in deriving the classical plate model,
we need to first introduce the so-called Kirchhoff assumptions which enables us to express
the 3D displacements in terms of the 2D plate displacements, and the 3D strain field in
terms of 2D plate strains. Then assumptions of the stress field are also used to relate the
3D stress field with the 3D strain field as what we did similarly in deriving the classical
beam model. Although these assumptions are commonly used in our textbooks, they are
not emphatically pointed as one set of many possible assumptions. Students might mis-
takenly think these are the assumptions must be made for plate theory or, even worse,
they might think that these assumptions represent a universal truth for plate-like struc-
tures. The reality is that these assumptions are usually reasonably justified for isotropic
homogeneous plates and become questionable for plate made of general anisotropic, het-
erogeneous materials such as composite laminates or sandwich panels. These assumptions
are not absolutely needed if one uses the variational asymptotic method to construct the
plate model, as we will show later.

2.1 Kinematics

As we have pointed out that the derivation of the classical plate model using the Newtonian
method and the variational method starts from some kinematic assumptions which were
originally made by Kirchhoff. We will first discuss his assumptions and their implications
for kinematics.

2.1.1 The displacement field based on Kirchhoff assumptions

The Kirchhoff assumptions are

1. The transverse normal is infinitely rigid along its own direction.

2. The transverse normal of the plate remains straight during deformation.

3. The transverse normal remains normal to the reference surface of the plate during
deformation.

Clearly these assumptions are completely analogous to the Euler-Bernoulli assumptions
we used in deriving the classical beam model if we replace transverse normal with cross-
section and plate reference surface with beam reference axis. Experimental observations
show that these assumptions are reasonable for thin panels made of isotropic homogenous
materials. When these conditions are not met, the classical plate model derived based on
these assumptions may be inaccurate. Now, let us discuss the mathematical implication
of the Kirchhoff assumptions.

As shown in Figure 1, we introduce a set of unit vectors êi with coordinates xi to
facilitate the derivation of our plate model. This set of axes is attached at a point of
the plate structure, ê3 is along the transverse normal, and ê1 and ê2 define the plate
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2ê

Figure 2: Decomposition of the in-plane displacement field.

reference surface. Let u1(x1, x2, x3), u2(x1, x2, x3), and u3(x1, x2, x3) be the displacement
of an arbitrary material point of the plate in the ê1, ê2, and ê3 directions, respectively.

The first Kirchhoff assumption states that the normal material line is infinitely rigid
in its own direction, which implies every material point of the transverse normal moves
rigidly along the transverse direction, which also implies that the transverse displacement
of every material point in the plate with the same in-plane location (x1, x2) remains the
same. In other words, the transverse displacement field of the plate structure can be
described as a function of x1, x2 such that

u3(x1, x2, x3) = ū3(x1, x2) (6)

The second Kirchhoff assumption states that the transverse normal remains straight
during deformation. This implies the in-plane displacement field of the plate is at most
linear of coordinate x3, which is

u1(x1, x2, x3) = ū1(x1, x2) + x3Φ2(x1, x2)

u2(x1, x2, x3) = ū2(x1, x2)− x3Φ1(x1, x2)
(7)

Here ūα can be considered as the in-plane displacements of material points on the reference
surface (x3 = 0). Although the center of rotation is not necessarily at the origin of
x3, rotation around any other point can still be expressed using Eq. (7) as any in-plane
displacements introduced by the shifting of the rotation center can be incorporated into
the unknown functions ūα(x1, x2). The physical meaning of the in-plane displacement
expressions in Eqs. (7) is explained by the sketch in Figure 2. Note the sign convention:
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the rigid body translations of the transverse normal ūi(x1, x2) are positive in the direction
of the axes êi; the rigid body rotations of the transverse normal Φα(x1, x2) are positive if
they rotate about the axes êα, respectively. Figure 3 depicts these various sign conventions.
The reason there is a negative sign in the last term of Eq. (7) is because a positive Φ1 will
create a negative in-plane displacement along x2 direction for a positive x3 (see Figure 2).
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Figure 3: Sign convention for the displacements and rotations of a plate.

The third Kirchhoff assumption states that the transverse normal remains normal to
the reference surface during deformation. This implies the equality of the slope of the
reference surface and of the rotation of the transverse normal, as depicted in Figure 4

Φ1 = ū3,2; Φ2 = −ū3,1 (8)

where comma denotes partial derivative with respect to in-plane coordinates, i.e., (),α =
∂()
∂xα

. The minus sign in the second equation is a consequence of the sign convention on
the displacements and rotations. Substituting Eqs. (8) into Eq. (7), we can eliminate the
rotations of the transverse normal from the in-plane displacement field. The complete 3D
displacement field for a plate-like structure implied by the Kirchhoff assumptions writes

u1(x1, x2, x3) = ū1(x1, x2)− x3ū3,1

u2(x1, x2, x3) = ū2(x1, x2)− x3ū3,2

u3(x1, x2, x3) = ū3(x1, x2)

(9)

Here, we have to emphasize that the fact that in reality that the 3D displacements
ui(x1, x2, x3) are generally 3D unknown functions of x1, x2, x3 as determined by physics.
We have assumed a specific functional form for them in virtue of Kirchhoff assumptions so
that uα must be a linear combination of x3 and some unknown 2D functions ūi and their
derivatives which are functions of x1, x2 only. The Kirchhoff assumptions can be equiva-
lently considered as constraining the structure in such a way that it must behave according
to these assumptions, although we might not be able to apply such constraints physically.
Because of these constraints, the overall system is stiffer than the original structure. In
other words, for a structure under the same load, displacements ui obtained using the clas-
sical plate model based on the Kirchhoff assumptions will be generally smaller than those
obtained using a theory (for example 3D elasticity) without such assumptions. One or all
of the three Kirchhoff assumptions can be removed or replaced by other assumptions. For
example, one can remove the third Kirchhoff assumptions, which implies the transverse
normal remains straight during deformation but it not necessarily remains as normal to
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ê

2
ê
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ê

Figure 4: Plate reference surface slope and transverse normal rotation.

the reference surface. This is actually the starting point of the derivation of the Reissner-
Mindlin plate model. As the Reissner-Mindlin plate model has one less assumption, it is
expected that the displacements obtained by this model will be larger than those obtained
using the classical plate model based on the Kirchhoff assumptions.

Clearly, the complete 3D displacement field of the plate can be expressed in terms of
three two-dimensional displacements ūi(x1, x2). This important simplification resulting
from the Kirchhoff assumptions allows the development of the classical plate model in
terms of ūi which are unknowns functions of the in-plane coordinates x1 and x2 only, a
2D formulation. In other words, by using the Kirchhoff assumptions, we relate the 3D
displacements, ui(x1, x2, x3), in terms of 2D plate displacements, ūi(x1, x2).

2.1.2 The strain field

To deal with geometrical linear problem, we use the infinitesimal strain field defined in 3D
linear elasticity as

εij =
1

2
(ui,j + uj,i) (10)

Substituting the displacement field in Eqs. (9), we obtain the following 3D strain field as

ε11(x1, x2, x3) = ū1,1 − x3ū3,11

ε22(x1, x2, x3) = ū2,2 − x3ū3,22

2ε12(x1, x2, x3) = ū1,2 + ū2,1 − 2x3ū3,12

ε13(x1, x2, x3) = ε23(x1, x2, x3) = ε33(x1, x2, x3) = 0

(11)

The vanishing of transverse normal strain ε33 is a direct consequence of the first Kirchhoff
assumption as we assumed that the transverse normal is infinitely rigid which implies no
strain exist in the transverse direction. The fact the in-plane strains εαβ are linear functions
of x3 is a direct consequence of the second Kirchhoff assumption as we assumed that the
transverse normal remains straight during deformation. The vanishing of transverse shear
strains εα3 is a direct consequence of the third Kirchhoff assumption as we assumed that
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the transverse normal remains normal during deformation. That is, the 90 degree angle
between transverse normal line and the reference surface remains as 90 degree, implying
that the corresponding shear strain components are zero.

At this point it is convenient to introduce the following notation for the 2D plate
strains

ϵαβ(x1, x2) =
1

2
(ūα,β + ūβ,α); καβ(x1, x2) = −ū3,αβ (12)

where ϵαβ are the in-plane plate strains, καβ the curvature of deformed reference surfaces.
These strain measures ϵαβ, καβ are usually collectively terms as the classical plate strain
measures. Eq. (12) can be considered as the 2D plate strain-displacement relations.

Using the definition in Eqs. (12), we can express the 3D strain field in Eq. (11) as

εαβ(x1, x2, x3) = ϵαβ + x3καβ

ε13(x1, x2, x3) = ε23(x1, x2, x3) = ε33(x1, x2, x3) = 0
(13)

The original 3D strain field is expressed in terms of the classical plate strain measures,
which are 2D functions of x1, x2 and we have now completed the expressions for 3D kine-
matics including the displacement field ui(x1, x2, x3) and the strain field εij(x1, x2, x3) in
terms of 2D kinematics including plate displacement variables ūi(x1, x2) and the classical
plate strain measures ϵαβ(x1, x2) and καβ(x1, x2).

2.2 Kinetics

Having known the strain field, we can obtain the stress field in the plate structure using the
generalized 3D Hooke’s law if the material is linear elastic. For example, for an isotropic
material, we have

σ11 = (λ+ 2G)ε11 + λε22

σ22 = (λ+ 2G)ε22 + λε11

σ12 = 2Gε12

σ33 = λ(ε11 + ε22)

σ13 = σ23 = 0

(14)

where λ = νE
(1+ν)(1−2ν)

and G = E
2(1+ν)

is the shear modulus. Although this stress field

naturally flow from the generalized Hooke’s law using the strain field in Eq. (13), it does
not agree with the experimental measurements very well. We have to introduce additional
assumptions regarding the stress field to provide more accurate approximation of the
reality. Because the thickness of the plate is much smaller comparing to the in-plane
dimension of the plate, we can assume that transverse stresses σi3 ≈ 0 in comparison to
σαβ. This assumption, particularly σ33 ≈ 0, clearly conflicts with the stress field in Eq. (14)
resulted from the strain field which is obtained from the displacement field based on the
Kirchhoff assumptions. The reason is that the first assumption of Kirchhoff, transverse
normal remains rigid in its own direction, clearly violates the reality. We all know that
when the plate is deformed, the plate will deform in its thickness direction due to Poisson’s
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effect. For this very reason, we overrule the previous assumptions for obtaining kinematics
and introduce the following assumptions for the stress field:

σi3 = 0 (15)

Note σα3 already vanishes in Eq. (14) due to the third Kirchhoff assumption and isotropy
of the material. If the material is general anisotropic, σα3 in Eq. (14) will not vanish
although we still have the transverse shear strain εα3 = 0 due to the third Kirchhoff
assumption. The stress assumption in Eq. (15) is usually called plane stress assumption.
Here, to comply with this assumption for isotropic material, we have to also implicitly
assume the transverse normal strain ε33 is not zero. According to the generalized Hooke’s
law, we know

σ33 = (λ+ 2G)ε33 + λ(ε11 + ε22) (16)

In view of the assumption in Eq. (15), we have

ε33 = − λ

λ+ 2G
(ε11 + ε22) =

ν

ν − 1
(ε11 + ε22) (17)

This implication directly contradicts with the strain field in Eq. (13) obtained using the
Kirchhoff assumptions except when ν = 0 which in general is not true.

Substituting the transverse normal strain in Eq. (17) along with those additional strain
measures in Eq. (13) into the generalized Hooke’s law, we end up with the following stress
field:

σ11 =
E

1− ν2
(ε11 + νε22)

σ22 =
E

1− ν2
(ε22 + νε11)

σ12 = 2Gε12

σ33 = 0

σ13 = σ23 = 0

(18)

Clearly the above stress field is not the same as those in Eq. (14), which implies that
the stress field in Eq. (18) conflicts with our starting Kirchhoff assumptions. This kind
of contradictions is common in structural models derived based on ad hoc assumptions.
Nevertheless, such inconsistencies are used in the derivation of the classical plate model
and commonly taught in textbooks. These contractions can be partially justified by the
fact that we need to rely on the Kirchhoff assumptions to obtain a simple expression of the
3D kinematics in terms of 2D kinematics and we also use the stress assumptions in Eq. (15)
so that the results can better agree with reality. A sad fact is that such inconsistencies
are seldom clearly pointed out and criticized. As a summary, to derive the classical plate
model based on ad hoc assumptions, we have to first use the Kirchhoff assumptions to
related 3D kinematics with 2D kinematics, and then use the stress assumption in Eq. (15)
to obtain the 3D stress field. In other words, in our further derivations, we use the 3D
strains as expressed in Eqs. (13) and the 3D stresses as expressed in Eq. (18), despite of
the fact that they are obtained by using two sets of conflicting assumptions.
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Figure 5: Sign convention for plate stress resultants

We also need to note that the transverse shear stresses in Eq. (18) vanish because the
transverse shear strains vanish based on the Kirchhoff assumptions. When we assume
the transverse normal remains normal to the reference surface during deformation, we
effectively assume that the plate is infinitely rigid in transverse shear. Hence, the trans-
verse shear stresses, although exist in general, cannot be obtained based on constitutive
relations but must be determined from equilibrium considerations as will be shown later.

To complete the 2D plate model, we also need to introduce a set of 2D kinetic variables
called plate stress resultants to relate with it 3D counterparts, the 3D stress field. The
plate stress resultants are defined as follows:

⟨σαβ⟩ = Nαβ

⟨x3σαβ⟩ = Mαβ

(19)

where the angle brackets denote integration over the thickness. Because σ12 = σ21, we
have N12 = N21 and M12 = M21. The sign convention is determined by the definition as
depicted in Figure 5 for a differential plate segment. The transverse shear stress resultants
Nα3 are defined similarly as the first equation in Eq. (19) such as

⟨σ1α⟩ = Nα3 (20)

although as we have pointed out that σ1α in Eq. (18) vanish due to the third Kirchhoff
assumption and the Hooke’s law. However, such stress values are not zero as they are
needed to balance the vertical load on the plate, which is the primary loading mechanism.
For this we have to admit the fact that we cannot obtain the transverse shear stresses
directly from the constitutive considerations. Nevertheless, we can obtain Nα3 from equi-
librium considerations. From Nα3, we can approximately estimate σ1α. For example, we
can assume the transverse shear stress is approximately uniform through the thickness,
then we have σ1α ≈ Nα3/h. Another way to estimate the transverse shear stresses are
through the 3D equilibrium equations with the knowledge of in-plane stresses σαβ. As will
be shown later, Nα3 are not kinetic variables in the 2D classical plate model and are only
used for deriving the equilibrium equations using the Newtonian approach.
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It is timely noted that to complete the kinetics part, we need to establish governing
equations among the 2D plate kinetic variables Nαβ,Mαβ which will be furnished by either
Newtonian method or the variational method later.

2.3 Energetics

Substituting the 3D strain field in Eqs. (13) into the 3D stresses in Eq. (18), then into
Eq. (19), we have

N11 =

⟨
E

1− ν2

⟩
ϵ11 +

⟨
Eν

1− ν2

⟩
ϵ22 +

⟨
x3E

1− ν2

⟩
κ11 +

⟨
x3Eν

1− ν2

⟩
κ22

N22 =

⟨
Eν

1− ν2

⟩
ϵ11 +

⟨
E

1− ν2

⟩
ϵ22 +

⟨
x3Eν

1− ν2

⟩
κ11 +

⟨
x3E

1− ν2

⟩
κ22

N12 =

⟨
E

2(1 + ν)

⟩
2ϵ12 +

⟨
x3E

2(1 + ν)

⟩
2κ12

M11 =

⟨
x3E

1− ν2

⟩
ϵ11 +

⟨
x3Eν

1− ν2

⟩
ϵ22 +

⟨
x2
3E

1− ν2

⟩
κ11 +

⟨
x2
3Eν

1− ν2

⟩
κ22

M22 =

⟨
x3Eν

1− ν2

⟩
ϵ11 +

⟨
x3E

1− ν2

⟩
ϵ22 +

⟨
x2
3Eν

1− ν2

⟩
κ11 +

⟨
x2
3E

1− ν2

⟩
κ22

M12 =

⟨
x3E

2(1 + ν)

⟩
2ϵ12 +

⟨
x2
3E

2(1 + ν)

⟩
2κ12

(21)

The constitutive relations in Eqs. (21) can be rewritten in the following matrix form as

N11

N12

N22

M11

M12

M22


=

[
A B
B D

]


ϵ11
2ϵ12
ϵ22
κ11

2κ12

κ22


(22)

where A is the extension stiffness, B is the extension-bending coupling stiffness, and D is
the bending stiffness. For a plate made of a single homogenous isotropic plate, we have

A =
Eh

1− ν2
∆ B =

E ⟨x3⟩
1− ν2

∆ D =
E ⟨x2

3⟩
1− ν2

∆ with ∆ =

1 0 ν
0 1−ν

2
0

ν 0 1

 (23)

If the origin of x3 is located at the mid-plane, i.e., −h
2
≤ x3 ≤ h

2
, we have ⟨x3⟩ = 0 and

⟨x2
3⟩ = h3

12
. Clearly the extension-bending coupling stiffness matrix B vanishes under this

choice of x3.
Eq. (22) can be considered as the constitutive relations for the classical plate model,

the 2D counterpart of the 3D generalized Hooke’s law. The 6 × 6 symmetric matrix is
commonly called classical plate stiffness matrix. Because of the assumptions we have
used, the restriction that the plate is made of a single isotropic material, and the choice
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of mid-plane as the reference surface, the bending behavior is automatically decoupled
from extension, implied by the fact that the extension-bending coupling stiffness matrix
B vanishes. That is also the reason that why in traditional textbooks on the theory of
plates, only the bending behavior is primarily taught. Many situations may result in
nonzero B matrix. Then the extension and bending behavior should be studied together.
For a composite plate structure, the stiffness matrix could be fully populated such that
A, B, and D are fully populated 3× 3 symmetric matrix, and the extension and bending
behavior are fully coupled for general cases.

2.4 Equilibrium equations

In our classical plate problem, we are solving for the unknown plate displacements (ūi),
plate strains (ϵαβ, καβ), and stress resultants (Nαβ,Mαβ), a total of 15 unknowns, noting
ϵ12 = ϵ21, κ12 = κ21, N12 = N21, and M12 = M21. Thus far, we have obtained six
equations for the 2D strain-displacement relations in Eq. (12), and six equations for the
2D constitutive relations in Eq. (22), a total of 12 equations. We are lacking of three
equations to form a complete system. These three equations can be derived using either
Newtonian method or variational method.

2.4.1 Newtonian method

To use Newtonian method to derive the equilibrium equations of the classical plate model,
we need to consider the equilibrium of a differential plate element using some free body
diagrams, which is the focus of this section.

Consider a plate structure subjected to a general loading consists of distributed forces
pi and moments qα in the reference surface and distributed forces Pi and moments Qα

along the boundary of the reference surface. The distributed surface forces p1(x1, x2),
p2(x1, x2), and p3(x1, x2) act in the direction ê1, ê2, and ê3, respectively. The same
convention is used for the distributed boundary loads P1, P2, and P3. The distributed
surface moments q1(x1, x2) and q2(x1, x2) act about the axes ê1 and ê2, respectively. The
distributed moments along the boundary Q1 and Q2 act about the same axes. One or more
sets of concentrated forces and moments could be applied at any in-plane locations. Note
here, we consider the distributed loads in terms of distributed forces pi and distributed
moments qα acting at the origin of x3 and they are functions of x1 and x2 only. In other
words the distribution is only along the reference surface axis and not distributed along the
thickness. In reality, in the original 3D structure, within the framework of 3D elasticity,
there are distributed body forces as functions of xi and distributed surfaces tractions along
the boundary surfaces. The 2D loads should relate with the 3D loads in such a way that
they are statically equivalent: summation of forces and summation of moments in three
directions of the 3D loads should be equal to those of the 2D loads. How to achieve it
systematically will be given in the next section when we derive the classical plate model
using the variational method. One may wonder why there is no moments (q3 or Q3) about
ê3. The reason is that the classical plate model cannot sustain such loads which will
become clear when we derive the loads using the variational method. The distributed
forces have unit as force per unit area, N/m2 or Pascals in the SI system. The distributed
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Figure 6: Free body diagram for in-plane forces.
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Figure 7: Free body diagram for the transverse shear forces.

moments have unit as moment per unit area, N ·m/m2 in the SI system.
The equilibrium equations can be derived considering free body diagrams of a differ-

ential plate element. Let us focus on the force equilibrium along the in-plane directions of
the plate first. Consider the differential plate element as depicted in Figure 6. Summing
all the forces in the ê1 direction yields the following equation

∂N11

∂x1

+
∂N12

∂x2

+ p1 = 0 (24)

Summing all the forces in the ê2 direction yields the following equation

∂N21

∂x1

+
∂N22

∂x2

+ p2 = 0 (25)
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Next, let us consider the force equilibrium along ê3 direction for a differential plate
element. which is depicted in Figure 7. A summation of the forces along ê3 gives the
transverse force equilibrium equation in this direction

∂N13

∂x1

+
∂N23

∂x2

+ p3 = 0 (26)

Equilibrium also implies the summation of moments along all the directions should
vanish. As sketched in Figure 8, summing the moments about an axis parallel to ê1 yields

−∂M12

∂x1

− ∂M22

∂x2

+ q1 +N23 = 0 (27)

Summing the moments about an axis parallel to ê2 yields

∂M11

∂x1

+
∂M21

∂x2

+ q2 −N13 = 0 (28)

The moment equilibrium about the ê3 direction can be obtained from a free body
diagram similar to Figure 7, we will obtain the identity that N12 = N21, but this equation
bring no new information about equilibrium as this identity is already satisfied by the
equality of in-plane shear stresses σ12 = σ21.

The transverse shear stress resultants Nα3 can be eliminated from the equilibrium
equations by taking a derivative of Eq. (27) with respect to x2 and taking a derivative of
Eq. (28) with respect to x1, then using Eq. (26), to yield the bending moment equilibrium
equations

(M11,1 +M21,2 + q2),1 + (M12,1 +M22,2 − q1),2 + p3 = 0 (29)
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The three equations in Eqs. (24), (25), and (29) are the last three equations we need
to complete the classical plate theory.

In summary, the classical plate theory is characterized by the following sets of equations

• Kinematics in terms of six strain-displacement equations in Eq. (12).

• Kinetics in terms of three equilibrium equations in Eqs. (24), (25), and (29).

• Energetics in terms of six constitutive equations in Eq. (21).

These equations plus some appropriate boundary conditions can be used to solve for the
plate displacements ūi, plate strains ϵαβ and καβ, plate stress resultants Nαβ and Mαβ, a
total of 15 unknown 2D functions of the in-plane coordinates x1 and x2. After solved for
these fields, we can recover the 3D displacement field using Eq. (9), the 3D strain field
using Eq. (13), and the 3D stress field using Eq. (18).

If the extension-bending coupling stiffness matrix B vanishes, the Kirchhoff plate prob-
lem is decoupled into the following two simpler problems.

• The in-plane problem: this problem involves eight unknowns including ūα, ϵαβ
and Nαβ. The corresponding eight governing equations are the first three strain-
displacement equations in Eq. (12), the first three constitutive equations in Eq. (21),
and the two equilibrium equations in Eqs. (24) and (25).

• The bending problem: this problem involves seven unknowns including ū3, καβ

and Mαβ. The corresponding seven governing equations are the last three strain-
displacement equations in Eq. (12), the last three constitutive equations in Eq. (21),
and the equilibrium equation in Eq. (29).

Next, let us show how we can eliminate the plate strains and stress resultants to
develop a displacement formulation for the bending problem. Substituting the 2D strain-
displacement relations in Eq. (12) into the 2D constitutive relations in Eq. (21), then
into the moment equilibrium equation in Eq. (29), we obtain the following displacement
formulation of the classical plate theory for the bending problem:

ū3,1111 + 2ū3,1122 + ū3,2222 =
q2,1 − q1,2 + p3

D
(30)

with D = Eh3

12(1−ν2)
, denoting the plate bending stiffness. The basic equation of Kirchhoff

plate bending theory in Eq. (30) is a biharmonic partial differential equation for the
transverse displacement, which can be written in a more compact manner as

∇4ū3 =
q2,1 − q1,2 + p3

D
(31)

What is lacking is a discussion of boundary conditions, which will be supplied later.
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2.5 Variational method

The equilibrium equations of the classical plate model can be derived in a more systematic
fashion using the variational method based on the Kantorovich method. From the view
point of the Kantorovich method, our objective is to reduce the original 3D problem to a 2D
problem so we need to approximate the original 3D fields in terms of 2D unknown functions
of the in-plane coordinates xα and some known functions of the transverse coordinates
x3. To this end, we consider the displacement field based on the Kirchhoff assumptions,
Eq. (9), as approximate trial functions for the 3D displacement field, and the stress field
in Eq. (18) as approximate trial functions for the 3D stress field. For the original 3D
structure, the load can be applied either as distributed body force fi, surface tractions τi
on the top surface, βi on the bottom surface, and ti on the lateral surface. The principle
of virtual work of the plate structure can be stated as

1

2

∫
S

δU2DdS = δW (32)

with U2D understood as the 2D strain energy density defined over the reference surface
plane denoted using S. Clearly the 2D strain energy density is the integration of the 3D
strain energy density over the thickness such that

U2D =
1

2
⟨σijεij⟩ (33)

where the angle bracket denotes the integration over the thickness. The virtual work δW
due to applied loads can be expressed as

δW =

∫
S

(
⟨fiδui⟩+ βiδui(x1, x2,−

h

2
) + τiδui(x1, x2,

h

2
)

)
dS +

∫
Ω

⟨tiδui⟩ dΩ (34)

Here Ω denotes the boundary curve of the plate reference surface (that is, the intersection
of the boundary lateral surfaces of the plate with the plate reference surface), and the
last two terms within the first integrand denote the virtual work evaluated at the bottom
surface (x3 = −h

2
) and the top surface (x3 = h

2
), respectively. Substituting the 3D

displacement field expressed in Eq. (9) into Eq. (34), we have

δW =

∫
S

(piδūi + qαδΦα) dS +

∫
Ω

(Piδūi +QαδΦα) dΩ (35)

with

pi(x1, x2) = ⟨fi⟩+ βi + τi

q1(x1, x2) =
h

2
(β2 − τ2)− ⟨x3f2⟩

q2(x1, x2) =
h

2
(τ1 − β1) + ⟨x3f1⟩

Pi = ⟨ti⟩
Q1 = −⟨x3t2⟩
Q2 = ⟨x3t1⟩

(36)
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Note Φ1 = ū3,2 and Φ2 = −ū3,1 due to the third Kirchhoff assumption. Here we actu-
ally provided a systematic way to obtain the distributed forces pi(x1, x2) and moments
qα(x1, x3) along the reference surface, and the distributed forces Pi and moments Qα along
the boundary curve we used in the Newtonian method based on the body forces and surface
tractions applied on the original 3D structure.

Substituting the 3D stress field expressed in Eq. (18) into Eq. (33), we have

U2D =
1

2
⟨σαβεαβ⟩ =

1

2

⟨
E

1− ν2
(ε211 + 2νε11ε22 + ε222) +G(2ε12)

2

⟩
(37)

Substituting the 3D strain field expressed in Eqs. (13) into the above equation, we have

2U2D =



ϵ11
2ϵ12
ϵ22
κ11

2κ12

κ22





⟨
E

1−ν2

⟩
0

⟨
νE

1−ν2

⟩ ⟨
x3E
1−ν2

⟩
0

⟨
x3νE
1−ν2

⟩
0

⟨
E

2(1+ν)

⟩
0 0

⟨
x3E

2(1+ν)

⟩
0⟨

νE
1−ν2

⟩
0

⟨
E

1−ν2

⟩ ⟨
x3νE
1−ν2

⟩
0

⟨
x3E
1−ν2

⟩⟨
x3E
1−ν2

⟩
0

⟨
x3νE
1−ν2

⟩ ⟨
x2
3E

1−ν2

⟩
0

⟨
x2
3νE

1−ν2

⟩
0

⟨
x3E

2(1+ν)

⟩
0 0

⟨
x2
3E

2(1+ν)

⟩
0⟨

x3νE
1−ν2

⟩
0

⟨
x3E
1−ν2

⟩ ⟨
x2
3νE

1−ν2

⟩
0

⟨
x2
3E

1−ν2

⟩





ϵ11
2ϵ12
ϵ22
κ11

2κ12

κ22



=



ϵ11
2ϵ12
ϵ22
κ11

2κ12

κ22


[
A B
B D

]


ϵ11
2ϵ12
ϵ22
κ11

2κ12

κ22


(38)

where A,B,D are the same as those given in Eq. (23).
Carrying out the partial derivatives of U2D in Eq. (38) and in view of Eq. (21), we

obtain

∂U2D

∂ϵ11
=

Eh

1− ν2
(ϵ11 + νϵ22) = N11

∂U2D

∂2ϵ12
=

Eh

2(1 + ν)
2ϵ12 = N12

∂U2D

∂ϵ22
=

Eh

1− ν2
(νϵ11 + ϵ22) = N22

∂U2D

∂κ11

=
Eh3

12(1− ν2)
(κ11 + νκ22) = M11

∂U2D

∂2κ12

=
Eh3

24(1 + ν)
2κ12 = M12

∂U2D

∂κ22

=
Eh3

12(1− ν2)
(νκ11 + κ22) = M22

(39)

Here, we restrict to the case that the plate is isotropic and homogeneous and the mid-
plane is the reference plane. This gives another way to define the plate stress resultants
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as conjugates to the 2D plate strains in terms of the 2D strain energy density, i.e., the
stress resultants can be defined as the partial derivative of the 2D strain energy density
with respect to the corresponding 2D plate strain measures and these equations can also
be written in the same matrix form as Eq. (22). In other words the variational method
provides another way to derive the same energetics as we have presented previously in
Section 2.3.

Substituting Eqs. (35), into Eq. (32), we can rewrite the principal of virtual work
energy in a 2D form as∫

S

δU2DdS =

∫
S

(piδūi + q1δū3,2 − q2δū3,1) dS +

∫
Ω

(Piδūi +Q1δū3,2 −Q2δū3,1) dΩ (40)

which implies the following

0 =

∫
S

(δU2D − piδūi − q1δū3,2 + q2δū3,1) dS −
∫
Ω

(Piδūi +Q1δū3,2 −Q2δū3,1) dΩ (41)

The variation of 2D strain energy density U2D can be evaluated based on Eq. (39) as

δU2D = N11δϵ11 +N12δ(2ϵ12) +N22δϵ22 +M11δκ11 +M12δ(2κ12) +M22δκ22

= N11δū1,1 +N12δ(ū1,2 + ū2,1) +N22δū2,2 −M11δū3,11 − 2M12δū3,12 −M22δū3,22

(42)

Carrying out integration by parts for the integral term in Eq. (41), we can obtain the cor-
responding equilibrium equations governing the plate. For the simplicity of presentation,
we first collect the terms related with ūα in Eq. (41) as

0 =

∫
S

[−(N11,1 +N12,2 + p1)δū1 − (N12,1 +N22,2 + p2)δū2] dS

+

∫
Ω

[(n1N11 + n2N12 − P1)δū1 + (n1N12 + n2N22 − P2)δū2] dΩ

(43)

where n1 and n2 denote the components of the outward normal n of the boundary curve
(see Figure 9). It is more natural to express the boundary conditions using the normal and
tangent coordinates of the boundary curve. Denoting the displacement components along
the boundary curve as ūn along the normal direction and ūs along the tangent direction,
we have

ū1 = n1ūn − n2ūs ū2 = n2ūn + n1ūs (44)

The boundary terms in Eq. (43) now become∫
Ω

[(n1N11 + n2N12 − P1)(n1δūn − n2δūs) + (n1N12 + n2N22 − P2)(n2δūn + n1δūs)] dΩ

=

∫
Ω

(Nnn − Pn)δūn + (Nns − Ps)δūsdΩ

(45)
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Figure 9: The local coordinate system along the boundary curve.

with

Nnn = n2
1N11 + n2

2N22 + 2n1n2N12

Nns = n1n2(N22 −N11) + (n2
1 − n2

2)N12

Pn = P1n1 + P2n2

Ps = −P1n2 + P2n1

(46)

As ū1 and δu2 can vary independently, the corresponding Euler-Lagrange equations are

N11,1 +N12,2 + p1 = 0 N12,1 +N22,2 + p2 = 0 (47)

which are the same as the equilibrium equations we obtained in Eqs. (24) and (25) using
the Newtonian method. The boundary conditions can be deduced from the last line
of Eq. (45). Following calculus of variations, if a displacement variable ( ūn or ūs) is
prescribed, then it variation must be zero and the boundary term related with the variation
of this displacement variable (δūn or δūs) will vanish. If a displacement variable is free to
vary, then to vanish the corresponding boundary term related with this displacement, the
coefficients in front of the variation of that variable must be zero, that is we have

Nnn = Pn Nns = Ps (48)

Next, let us collect the terms related with δū3 in Eq. (41). We have

0 =−
∫
S

[(M11,1 +M12,2 + q2),1 + (M12,1 +M22,2 − q1),2 + p3] δū3dS

−
∫
Ω

[(n1M11 + n2M12 −Q2)δū3,1 + (n1M12 + n2M22 +Q1)δū3,2] dΩ

+

∫
Ω

[n1(M11,1 +M12,2 + q2) + n2(M12,1 +M22,2 − q1)− P3] δū3dΩ

(49)
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The boundary terms in the second line of Eq. (49) can be expressed using the derivatives
of ū3 along with normal direction and tangent direction as∫
Ω

[(n1M11 + n2M12 −Q2)(n1δū3,n − n2δū3,s)(n1M12 + n2M22 +Q1)(n2δū3,n + n1δū3,s)] dΩ

=

∫
Ω

(Mnn −Qn)δū3,n + (Mns −Qs)δū3,s

(50)

with

Mnn = n2
1M11 + n2

2M22 + 2n1n2M12

Mns = n1n2(M22 −M11) + (n2
1 − n2

2)M12

Qn = Q2n1 −Q1n2

Qs = −Q2n2 −Q1n1

(51)

If we also introduce the following notation

V3 = n1(M11,1 +M12,2 + q2) + n2(M12,1 +M22,2 − q1) (52)

Then Eq. (49) can be simplified as

0 =−
∫
S

[(M11,1 +M12,2 + q2),1 + (M12,1 +M22,2 − q1),2 + p3] δū3dS

+

∫
Ω

(V3 − P3)δū3 − (Mnn −Qn)δū3,n − (Mns −Qs)δū3,sdΩ

(53)

We also need to realized that δū3 and δū3,s are not independent quantities along the
boundary curve Ω. One more integration by parts is needed, so that we have

0 =−
∫
S

[(M11,1 +M12,2 − q1),1 + (M12,1 +M22,2 − q2),2 + p3] δū3dS

+

∫
Ω

[V3 − P3 + (Mns −Qs),s]δū3 − (Mnn −Qn)δū3,ndΩ− [(Mns −Qs)δū3]Ω

(54)

where the notation [·]Ω indicates the end points of the boundary curve. If it is a rectangular
plate, the end points of the boundary curve will be defined by its four corners. If it is a
circular plate, the boundary curve has not end points and the last term in Eq. (54) vanish.

Although both the Newtonian method and the variational method based on the same
set of ad hoc assumptions necessary to obtain the displacement field in Eq. (9), the strain
field in Eqs. (13), and the stress field in Eq. (18), there are some difference between these
two methods.

• We does not have to introduce the transverse shear stress resultants for the derivation
using the variational approach.

• The variational method can establish a rational connection between the applied loads
in the original 3D structure and the final 2D plate model.
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• Although lack of being intuitive, the variational approach is more systematic. As
far as one is careful about the derivation, it is not easy to make a sign error like
commonly happen in Newtonian approach particularly for deriving the boundary
conditions.

• As the variational approach is based on the Kantrovich method, it is easy to extend
this derivation for higher-order models by using a different set of assumptions for
the 3D displacement field in terms of 2D unknown functions, while such extensions
using the Newtonian approach are much more difficult.

• The concept of total vertical force and corner forces are a natural byproduct of the
variational approach, while we have to introduce these two concepts in an ad hoc
manner to overcome the problems associated with the boundary conditions to be
applied along the free edge of a plate.

However, because both methods are based on a host of ad hoc assumptions, they
feature the same set of contradictions as we discussed carefully in previous sections. In
the next section, we will use the variational asymptotic method to construct the classical
plate model without invoking any ad hoc assumptions thus avoiding the awkward self-
contractions.

3 Variational Asymptotic Method

The whole purpose of the plate model is to approximate the original 3D model with a 2D
model formulated in terms of unknown functions of the two in-plane coordinates describing
the reference surface of the plate. Our motivation comes from the fact that the thickness
is much smaller than the in-plane dimensions of the plate structure. This fact of smallness
of the thickness compared to the plate in-plane dimensions can be exploited using the
variational asymptotic method to derive the classical plate model. Let us denote h as the
thickness of the plate and L as the characteristic dimension of the plate reference surface.
Then we know that δ = h/L as a small parameter. Suppose the 3D displacements are
ui(x1, x2, x3), then the 3D strains as defined in linear elasticity are

εij =
1

2
(ui,j + uj,i) (55)

To proceed using the variational asymptotic method, we need to have some very basic
knowledge of order analysis. For a continuous differentiable function, f(x) for x ∈ [a, b].

If we denote the order of f(x) as f̄ , then df
dx

is of the order of f̄
b−a

, denoting as df
dx

∼ f̄
b−a

.
Then it is obvious that ui,α ∼ ūi/L and ui,3 ∼ ūi/h, and ui,α ≪ ui,3 because δ = h/L ≪ 1.
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The 3D strain field can be written explicitly as

ε11 = u1,1

2ε12 = u1,2 + u2,1

2ε13 = u1,3 + u3,1

ε22 = u2,2 (56)

2ε23 = u2,3 + u3,2

ε33 = u3,3

The total potential energy of the original 3D structure is given as follows

Π =
1

2

∫
S

U2DdS −W (57)

with twice of the 2D strain energy density expressed in the following form as

2U2D =

⟨
2G

(
ρε2αα + εαβεαβ

)
+ 4Gεα3εα3 +

E(1− ν)

(1 + ν)(1− 2ν)
(ε33 + ρεαα)

2

⟩
with ρ = ν/(1 − ν). Note although this form is different from that in Eq. (33), they are
identical to each other after some algebraic manipulations.

In view of Eq. (34), the work done by applied loads in the original 3D structure can
be obtained as

W =

∫
S

(
⟨fiui⟩+ βiui(x1, x2,−

h

2
) + τiui(x1, x2,

h

2
)

)
dS +

∫
Ω

⟨tiui⟩ dΩ (58)

We have assumed that the 3D strain field is small as we are working within the frame-
work of linearity elasticity, i.e., ϵ̂ = O(εij) ≪ 1 with ϵ̂ denoting the characteristic magni-
tude of the 3D strain field. From Eqs. (56), we can conclude that

ui = O(Lϵ̂) (59)

The 2D strain energy density will be of the order of µ̄hϵ̂2 with µ̄ denoting the order of
the elastic constants. The condition of the boundedness of deformations for h/L → 0 puts
some constraints on the order of the external forces. It is clear that the work done must
be of the same order as the strain energy, i.e., fiuih ∼ tiui ∼ µ̄hϵ̂2. In view of Eq. (59),
we have

fih ∼ ti ∼ µ̄
h

L
ϵ̂ (60)

Substituting the strain field in Eq. (56) into the total potential energy of the original
structure in Eq. (57) and dropping smaller terms, we obtain:

2Π =

⟨
Gu2

1,3 +Gu2
2,3 +

E(1− ν)

(1 + ν)(1− 2ν)
u2
3,3

⟩
(61)

Note these kept terms, in the order of µ̄L2ϵ̂2, are much larger than those neglected in the
strain energy and in the work done. The behavior of the structure is governed by the
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principle of minimum total potential energy. The quadratic form in Eq. (61) will reach its
absolute minimum zero if the following conditions can be satisfied:

u1,3 = u2,3 = u3,3 = 0 (62)

which has the following solution

u1(x1, x2, x3) = ū1(x1, x2) (63)

u2(x1, x2, x3) = ū2(x1, x2) (64)

u3(x1, x2, x3) = ū3(x1, x2) (65)

where ūi are arbitrary unknown 2D functions of in-plane coordinates x1, x2. Although we
have found expressions for the 3D displacement field in terms of 2D functions of x1, x2, we
are not sure whether we have included all the terms corresponding to the classical plate
model yet. We need to continue our variational asymptotic procedure by perturbing the
displacement field such that

u1(x1, x2, x3) = ū1(x1, x2) + v1(x1, x2, x3)

u2(x1, x2, x3) = ū2(x1, x2) + v2(x1, x2, x3) (66)

u3(x1, x2, x3) = ū3(x1, x2) + v3(x1, x2, x3)

with vi asymptotically smaller than ūi. Because ūi are three arbitrary functions, for
definiteness of the expression in Eq. (66), we need to introduce three constraints for newly
introduced 3D functions vi. The choice of three constraints is directly related with how we
define the three 2D functions ūi(x1, x2) in terms of the 3D displacement field ui(x1, x2, x3).
If we choose the constraints as

⟨vi⟩ = 0 (67)

It implies the following definitions of ūi(x1, x2) in terms of 3D displacements as

hūi(x1, x2) = ⟨ui(x1, x2, x3)⟩ (68)

That is, we define the 2D plate displacements ūi as the average of the corresponding 3D
displacements ui through the thickness. Substituting this displacement field in Eq. (66)
into Eq. (56), we can obtain the following 3D strain field as

ε11 = ϵ11 + v1,1

2ε12 = 2ϵ12 + v1,2 + v2,1

2ε13 = ū3,1 + v1,3 + v3,1

ε22 = ϵ22 + v2,2 (69)

2ε23 = ū3,2 + v2,3 + v3,2

ε33 = v3,3

Here we let ϵαβ = 1
2
(ūα,β + ūβ,α) as we introduced previously for the definition of in-plane

plate strains.
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Substituting the displacement field in Eqs. (66) and the 3D strain field in Eqs. (69) into
the total potential energy of the original 3D structures in Eq. (57) and dropping smaller
terms, we have

2Π =

⟨
G(ū3,1 + v1,3)

2 +G(ū3,2 + v2,3)
2 +

E(1− ν)

(1 + ν)(1− 2ν)
(v3,3 + ρϵαα)

2

⟩
−

∫
S

piūi dS +

∫
Ω

PiūidΩ

(70)

The load related terms pi and Pi are defined the same as Eq. (36). The vi related terms
in Eq. (70) will reach the absolute minimum value zero if the following conditions are
satisfied:

ū3,1 + v1,3 = 0 (71)

ū3,2 + v2,3 = 0 (72)

v3,3 + ρϵαα = 0 (73)

which has the following solution

vα = −x3ū3,α v3 = −xαρϵαα (74)

with the unknown functions of x1 and x2 can be absorbed into ūi(x1, x2). If we choose the
origin of x3 located at the mid-plane, the constraints in Eq. (67) are also satisfied. Oth-
erwise, some functions of x1, x2 (constants as far as x3 is concerned) should be introduced
to satisfy the constraints in Eq. (67).

Substituting the solutions for vi in Eqs. (74) into Eq. (66), we can express the 3D
displacement field as

u1 = ū1(x1, x2)− x3ū3,1

u2 = ū2(x1, x2)− x3ū3,2 (75)

u3 = ū3(x1, x2)− x3ρϵαα

Now, we know that the asymptotical expansion of the 3D displacement field will be
spanned by ūi as no new degrees of freedom will appear according to the variational
asymptotic method. However, we are still not sure whether we have included all the or-
ders needed for the classical plate model. For this purpose, we perturb the displacement
field one more time such that

u1 = ū1(x1, x2)− x3ū3,1 + w1(x1, x2, x3)

u2 = ū2(x1, x2)− x3ū3,2 + w2(x1, x2, x3) (76)

u3 = ū3(x1, x2)− x3ρϵαα + w3(x1, x2, x3)

with the constraints on vi passed onto wi following the same reasoning we have used for
obtaining Eq. (67). That is we have

⟨wi⟩ = 0 (77)
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The 3D strain field corresponding to the displacement field in Eq. (76) is

ε11 = ϵ11 + x3κ11 + w1,1

2ε12 = 2ϵ12 + 2x3κ12 + w1,2 + w2,1

2ε13 = −x3ρϵαα,1 + w1,3 + w3,1

ε22 = ϵ22 + x3κ22 + w2,2 (78)

2ε23 = −x3ρϵαα,2 + w2,3 + w3,2

ε33 = −ρϵαα + w3,3

Here we let καβ = −ū3,αβ as we defined previously. Clearly from these equations, we can
estimate that ϵαβ ∼ hκαβ ∼ ϵ̂.

Substituting the displacement field in Eqs. (76) and the 3D strain field in Eqs. (78) into
the total potential energy of the original 3D structures in Eq. (57) and dropping smaller
terms, we have

2Π =

⟨
Gw2

1,3 +Gw2
2,3 +

E(1− ν)

(1 + ν)(1− 2ν)
(w3,3 + x3ρκαα)

2

⟩
−

∫
S

piūi + q1ū3,2 − q2ū3,1 dS +

∫
Ω

Piūi +Q1ū3,2 −Q2ū3,1dΩ

(79)

with qα, Qα defined the same as those in Eqs. (36). The minimization of this functional
in Eq. (79) will be reached by the following conditions:

w1 = w2 = 0

w3,3 + x3ρκαα = 0

which can be solved along with the constraints in Eq. (77), yielding

w1 = w2 = 0

w3 = −1

2
ρκαα(x

2
3 −

h2

12
)

(80)

Now we have obtained for all the contributions to the classical plate model and it can be
easily verified that any further perturbation will not add any major terms to this plate
model as far as the total potential energy of the structure is concerned.

Substituting Eq. (80) into Eq. (76), we obtain the complete 3D displacement field of
the classical plate model according to the variational asymptotic method as

u1 = ū1(x1, x2)− x3ū3,1

u2 = ū2(x1, x2)− x3ū3,2 (81)

u3 = ū3(x1, x2)− ρ

(
x3ϵαα +

1

2
(x2

3 −
h2

12
)καα

)
Comparing to the displacement field based on the Kirchhoff assumptions in Eqs. (9),
the variational asymptotic method obtained additional terms which are underlined in
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Eq. (81). In other words, for plates made of a single isotropic material, the first Kirchhoff
assumption is not valid, i.e., the transverse normal can deform in its own direction. As
far as the classical plate model for an isotropic homogeneous plate is concerned, the other
two Kirchhoff assumptions are still valid.

Substituting the solutions for wi in Eqs. (80) into Eqs. (78) and dropping the terms
smaller than the order of ϵ̂, the complete 3D strain field of the classical plate model
according to the variational asymptotic method is

εαβ = ϵαβ + x3καβ

2ε13 = 2ε23 = 0 (82)

ε33 = −ρ(ϵαα + x3καα)

Comparing to the strain field obtained based on the Kirchhoff assumptions in Eq. (13),
ε33 is different.

The complete stress field using the Hooke’s law will be

σ11 =
E

1− ν2
(ε11 + νε22)

σ22 =
E

1− ν2
(ε22 + νε11)

σ12 = 2Gε12

σ33 = 0

σ13 = σ23 = 0

(83)

which is the same as those we assumed previously in Eq. (18) in the ad hoc approaches,
although none of the assumptions has been used in obtaining this.

Substituting the solutions for wi into Eq. (79), we will obtain the potential energy of
the classical plate model and carry out the variation will result in the same variational
statement as that in Eq. (40), which implies we will have the same 2D constitutive relations
as those in Eq. (22), the same 2D governing different equations as those in Eqs. (24),
(25), and (29), and the same boundary conditions as those derived using the variational
methods. In other words, the plate behavior for an isotropic homogeneous elastic plate
using the classical plate model will be the same no matter whether the equations are
derived using the ad hoc approaches, the Newtonian method or the variational method, or
the variational asymptotic method. The differences of the variational asymptotic method
is that the 3D displacement field and 3D strain field will be different and also the theory
derived using the variational asymptotic method is self consistent.

3.1 A shortcut for the variational asymptotic derivation

We have used three perturbations to derive the classical plate model. A shortcut is possible
for us to derive the same model using one perturbation, which is what we adopted in the
formulation of VAPAS, a general-purpose code for modeling composite plates.

To construct 2D classical plate model, the 3D displacement field must be expressed in
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terms of the three function ūi(x1, x2). Let us introduce the following change of variables

u1 = ū1(x1, x2)− x3ū3,1 + w1(x1, x2, x3)

u2 = ū2(x1, x2)− x3ū3,2 + w2(x1, x2, x3) (84)

u3 = ū3(x1, x2) + w3(x1, x2, x3)

The underline terms can be understood as the displacements introduced by the deforma-
tion of the plate reference surface in terms of ūi(x1, x2) if one assumes that the transverse
normal is not deformable. The reality that the transverse normal is deformable will be
captured by wi which are called generalized warping functions as the transverse normal
can deform both in-plane and out-of-plane which are asymptotically smaller than those
underlined terms. Although wi are not the same as those used in Eqs. (76), the constraints
in Eq. (77) can be used if we define ūi according to the following definitions:

hū3(x1, x2) = ⟨u3⟩
hūα(x1, x2) = ⟨uα(x1, x2, x3)⟩+ ⟨x3⟩ ū3,α (85)

The 3D strain field corresponding to the displacement field in Eq. (84) is

ε11 = ϵ11 + x3κ11 + w1,1

2ε12 = 2ϵ12 + 2x3κ12 + w1,2 + w2,1

2ε13 = w1,3 + w3,1

ε22 = ϵ22 + x3κ22 + w2,2 (86)

2ε23 = w2,3 + w3,2

ε33 = w3,3

Substituting the displacement field in Eqs. (84) and the 3D strain field in Eqs. (86) into
the total potential of the original 3D structures in Eq. (57) and dropping smaller terms,
we have

2Π =

⟨
Gw2

1,3 +Gw2
2,3 +

E(1− ν)

(1 + ν)(1− 2ν)

(
w3,3 + ρ(ϵαα + x3καα)

2
)⟩

−
∫
S

piūi + q1ū3,2 − q2ū3,1 dS +

∫
Ω

Piūi +Q1ū3,2 −Q2ū3,1dΩ

(87)

The warping functions that minimize the above energy functional are given by

w1 = w2 = 0 w3 = −ρ

(
x3ϵαα +

1

2
(x2

3 −
h2

12
)καα

)
(88)

Substituting the solutions for wi into Eq. (84), we obtain the same displacement as
Eq. (81). Substituting the solutions for wi into Eq. (86), we obtain the same strain field
as Eq. (82). Using the 3D Hooke’s law, we will obtain the same stress field as in Eq. (83).
In other words, we obtained the same solution for relating the original 3D elasticity to the
classical plate model as we derived previously using three perturbations in the previous
section in a much quicker way.

4 Problems
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