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Abstract 
A field theory of dislocation mechanics and plasticity is illustrated through new results at the 
nano, meso, and macro scales. Specifically, dislocation nucleation, the occurrence of wave-type 
response in quasi-static plasticity, and a jump condition at material interfaces and its implications 
for analysis of deformation localization are discussed. 
 
 
 
1. Introduction 
 
We review a PDE model of plasticity (Acharya 2004; Acharya and Roy, 2006) that allows a 
discussion of mechanical response at different scales, as it arises from the stress field and motion 
of dislocations in an elastic solid.  At the nanoscale, the model makes a prediction for a driving 
force for dislocation nucleation and the associated slip (Acharya, 2003, 2004; Miller and 
Acharya, 2004). In this paper, we physically interpret this prediction. On elementary space-time 
averaging of this nanoscale nonlinear system, a mesoscale system of PDE emerges that makes a 
connection between classical plasticity modeling and the elastic theory of continuously 
distributed dislocations. A primary conceptual modification of this theoretical setup over 
conventional plasticity is a clear kinematical definition of excess (or geometrically-necessary-
dislocation GND) and statistical dislocation (statistically-stored-dislocation SSD) densities 
related to the scale of observation, and an allowance for the motion of both as contributing to the 
total plastic strain rate. This feature turns the evolution equation for the excess dislocation 
density into a nonlinear transport equation displaying features of wave propagation that needs to 
be solved as a primary field equation, in sharp contrast to being a ‘passively’ determined field 
obtained by taking the curl of a constitutively specified plastic strain rate. More importantly, this 
formulation as a field equation implies jump conditions of physical relevance at surfaces of 
discontinuity (Acharya, 2007). Taken together, these features allow for a stabilizing effect in 
situations corresponding to softening plasticity, the prediction of moving plastic fronts, and size-
independent nonlocal effects in macroscopic plasticity in the presence of inhomogeneous plastic 
deformation. In this paper, we discuss and illustrate each of these features (of course, size-
dependent nonlocal effects are also predicted by the theory). To state a facile analogy with fluid 
turbulence modeling, the classical constitutive specification of plastic strain rate emerges as a 
subgrid term in the new theoretical structure; the modifications that this structure imposes on 
conventional plasticity amounts to defining the governing equations for the dynamics of the 
‘large eddies’ (excess dislocation density) and their coupling to the energetics and dynamics of 
the ‘smaller’ ones (statistical dislocation density). 

Detailed connections of our theory with work in the literature, both classical as well as recent, 
can be found in (Acharya, 2001; Roy and Acharya, 2005; Acharya and Roy, 2006). A series of 
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works by Limkumnerd and Sethna (2006a, 2007, 2006b) that have since appeared is based on 
essentially the same theory as recognized by the authors (Limkumnerd and Sethna, 2006b). 
Motivated by their numerical results, these authors suggest that the theory admits singularities in 
the Nye tensor field even when the elastic response is linear, an interesting claim that would be 
well worth establishing rigorously. The characterization of stress-free states is dealt with in a 
Fourier-transform setting with its associated limitations in Limkumnerd and Sethna (2007); of 
course, stress free states of continuum distributions of dislocations can be dealt with in the 
greater generality of a real-space setting of finite bodies, as can be deduced from the works of  
Kröner (1981) and Mura (1989), as shown in Head et al. (1993) and Acharya (2003). 

 This paper is organized as follows: in Section 2 we discuss the phenomena of dislocation 
nucleation and motion, as manifested in atomistic simulations. The discussion illuminates the 
difference between the physical meanings of dislocation nucleation and motion. In Section 3, the 
theory of Field Dislocation Mechanics (FDM) and its averaged counterpart, Mesoscopic Field 
Dislocation Mechanics (MFDM) are briefly described. In Section 4, the driving forces for 
dislocation nucleation and the associated slip in FDM are interpreted physically, leading to 
partial guidance on a criterion for dislocation nucleation. In Section 5, a finite element 
implementation of PMFDM (Phenomenological MFDM), i.e. MFDM augmented with 
phenomenological constitutive assumptions, is used to model the propagation of a plastic front in 
a whisker as observed in experiment. This propagation is triggered by the sudden motion of 
subgrid, statistical, mobile dislocations leading to a temporary stress softening response, and it is 
shown to be catastrophic in conventional, rate-dependent, plasticity theory which is incapable of 
predicting such propagation. Finally, in Section 6 we consider the partial continuity conditions 
on plastic strain rate implied by the theory on a surface of discontinuity not moving with respect 
to the material. The theory suggests that such a condition should apply even in conventional 
plasticity theory. Conventionally, the evolution equation for the plastic deformation in standard 
local plasticity is an ordinary differential equation and therefore can be entirely discontinuous in 
space, e.g. at a static grain boundary. Thus, the new jump condition implies a size-independent 
nonlocal feature in heterogeneous conventional plasticity and an implication with respect to 
conditions for strain localization is discussed. 

 
2. Dislocation nucleation and motion in atomistic simulation 
 
Considering dislocations as the only lattice defects for simplicity, slip or permanent deformation 
in a crystal is produced by the mechanisms of dislocation motion and nucleation. The essential 
physical difference between these two types of slip is that nucleation of a dislocation involves 
the instantaneous slip of many atoms in a slip plane whereas motion of a dislocation over a time 
interval comparable to that required for nucleation involves the slip of only a few atoms on the 
slip plane. An idealized picture of these two phenomena is schematically described in Fig. 1. 

The physical differences between the mechanisms of dislocation nucleation and dislocation 
motion can be readily understood through atomistic simulations.  Here, we focus our attention on 
dislocation nucleation and subsequent motion beneath a surface indented by a spherical indenter.  
What follows in this section is a summary of part of a recent paper by Miller and Rodney (2007), 
in which more detail can be found.  Here in this review, we use the results of Miller and Rodney 
to better understand the details of the nucleation mechanism itself.   

Using static (zero temperature) molecular statics within an embedded atom method (EAM) 
atomistic framework, Miller and Rodney pressed a rigid, frictionless sphere into an initially 



 
 
 
 

3 
 
 

Figure 1. Schematic illustration of dislocation motion and nucleation; a) 
motion of an existing edge dislocation resulting in an advance of the 
slipped region; b) nucleation of an edge dislocation; c) nucleation of an 
edge dislocation dipole. Red lines indicate slipped regions of the crystal; 
green lines represent unslipped (but possibly deformed) regions; and black 
lines represent dislocations as the boundary between slipped and unslipped 
regions.  

a) 

b) 

c) 

perfect single crystal in both 2D and 3D.  The 2D results are useful for visualization and 
understanding of the mechanism, and so we confine our attention here to these simpler results. 

Miller and Rodney used a simple triangular lattice of atoms, interacting with the Ercolessi-
Adams EAM potentials (Ercolessi and Adams (1994))  The lattice had a near-neighbor distance 
of a0=2.83Å.  The indenter was idealized as a perfect sphere using a repulsive indenter potential, 
along the lines of other authors (Kelchner et al. (1998), Knap and Ortiz (2001), Li et al. (2002), 
Miller et al. (2003), Miller and Acharya (2004)).  Unless otherwise noted below, the indenter 
radius was R=100 A. 
 

2.1 The Mechanisms of Homogeneous Nucleation 
The model used for indentation along the [01] direction in the triangular lattice is shown in Fig. 
2.  Miller and Rodney studied this case using the static quasicontinuum (QC) method (Shenoy et 
al. (1999), Tadmor and Miller (2007)).  The region beneath the indenter, extending 
approximately from -130 to 130 Å horizontally and from -120 to 0 Å vertically was fully 
atomistic.  The inset on the top right of the figure shows the details of the lattice beneath the 
indenter. 

In order to capture the first nucleation of a defect, it is necessary to take very small load steps 
as we approach the critical indenter penetration.  To do this, Miller and Rodney used an 
algorithm whereby a given load step, ∆d, was chosen and repeated until a defect nucleates.  At 
this point, the last relaxed configuration prior to nucleation was restored, the size of the load step 
reduced by a factor of two, and the process repeated until the load step size was below some 
tolerance.  In this way, it is possible to capture the configuration of the atoms so close to 
nucleation that subsequent indenter motion of less that 1x10-6 Å triggers nucleation, implying 
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Figure 2: Indentation into a 2D triangular 
lattice along the [01] direction. (After 
Miller and Rodney (2007).) 

that the final elastic configuration is, for all practical purposes, right at the point of instability 
leading to the first defect nucleation. 
In Fig. 3, we show the region under the indenter just before and just after nucleation.  A mesh is 
shown between the atoms, rather than the atoms themselves, to better appreciate the plastic 
deformation.  The sheared elements indicate the plane along which slip has taken place, leaving a 
dislocation near the surface at the left edge of the indenter and another out of view towards the 
lower right side.  The unstable nature of the nucleation process, coupled with the low Peierls 
barrier, means that the dislocations travel a long way from their initial nucleation site.  In other 
words, it is difficult to isolate the actual nucleation process from the subsequent dislocation 
motion by which it is typically accompanied.  To see the details of the nucleation itself and its 

exact location, it is necessary to look at intermediate configurations during the CG minimization 
between relaxed configurations (a) and (b) in figure Fig. 3, i.e., at each configuration after a line 
minimization step. 

Fig. 3 reveals the exact moment of dislocation nucleation by comparing the CG minimization 
steps just before and after the defect forms.  We can see that the nucleation event is the 
instantaneous appearance of a dislocation dipole of finite size, corresponding to the collective 
motion of about 10 atoms on either side of the slip plane.  One row of 10 atoms moves about 0.6 
Å along the slip direction, while the next row moves about the same distance in the other 
direction.  Other than these 20 or so atoms, there is very little movement.  The value of 0.6 Å 
corresponds to about 1/4 of the Burgers vector, so that the total slip in the region is about b/2.  
After the formation of this ``nucleus'', the formation of the full defect proceeds in two more steps 
as shown in Fig. 4.  First, the Burgers vector of the dipole grows to reach the full b.  Within 
about 10 minimization steps, the dislocation is fully formed and the dipole spacing has grown 
only slightly, to about 13 atomic spacings. Only then does the final step take place, during which 
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the fully formed dipole moves apart.  However, although the final configuration involves two 
fully formed dislocations with a large separation between them, the true nucleus of plasticity is a 
dipole with about half the full Burgers vector. 

Miller and Rodney have determined that this nucleation process is a signature of the indentation 
simulations, regardless of the crystal orientation, indenter size or model dimensionality (although 
of course the load level and precise location of the initial defect change).  The size of this dipole 
is more or less constant with respect to the orientation of the crystal, but grows with the size of 
the   indenter, an interesting point that we will return to right away.   

In 3D, this process becomes the spontaneous formation of a loop, again of a finite size 
depending only on the size of the indenter.  Miller and Rodney referred to the diameter of this 
critical nucleating disk (or dipole in 2D) as the ``nucleation diameter'', dnuc.  
Qualitative snapshots of the 3D nucleation process, painting the general picture of how and 
where the initial defects form, are abundant in the literature (Kelchner et al. (1998), van Vliet et 
al. (2002), Knap and Ortiz (2003), van Vliet et al. (2003), Li (2007), Miller and Rodney (2007)), 
where the interested reader may find more detail.  

Miller and Rodney studied the dependence of the nucleation diameter dnuc on the indenter 
radius R, and found an approximately linear relationship between the indenter radius and the 
nucleation diameter, of a range of indenters from R=20 Å to R=2000 Å.  This linear dependence 
leads to an interesting size independence of the ``hardness'' associated with the first nucleation 

Figure 3: Configurations (a) just before and (b) just after 
dislocation nucleation during indentation into a 2D triangular 
lattice along the [01] direction. (After Miller and Rodney 
(2007).) 
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Figure 4 : Conjugate gradient minimization steps (a) just before and (b) 
Conjugate gradient minimization steps (a) just before and (b) just after 
nucleation.  Vectors in (c) show the displacements of each atom during the 
minimization step magnified by a factor of 10, while (d) superimposes the 
atomic positions from (a) (shown in black) beneath those from (b) (shown in 
white). (After Miller and Rodney 2007)

event.  Taking the hardness as the force on the indenter divided by the contact area (contact 
length in 2D) just prior to nucleation, Miller and Rodney demonstated that the nucleation 
hardness is virtually independent of the indenter size.  By way of contrast, we note that 
nanoindentation experiments typically show a relatively strong size dependence of the inverse 
square root form (Nix and Gao (1998), Gerberich et al. (2002)).  As such, this suggests that most 
plastic flow in experiments is governed by mechanisms other than homogeneous nucleation.  
Since the critical disk grows with the indenter size, we expect that homogeneous nucleation 
would rapidly become highly unlikely as the indenter size increases.  This is because the 
probability of such a large region of crystal being free of any defects (including vacancies) 
becomes very small.  On the other hand, for very small indenters, homogeneous nucleation may 
in fact occur.  

Having gained an understanding of the physical mechanisms of nucleation, it is now 
worthwhile to summarize briefly the most significant points.  The mechanism we have just 
described suggests a strongly nonlocal character, as nucleation is clearly a collective motion of 
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Figure 5: Nucleation and motion of a dislocation dipole during nano-indentation.  
(a) the undefected cystal.  (b) nucleation (c) growth to a full Burgers vector and 
(d)-(f) motion. 

several atoms over the slip plane and does not initiate at an isolated atomic position.  Further, the 
fact that the nucleated disk grows with the indenter size points to a nucleation process that is in 
some sense sampling the gradients of the mechanical field variables (like stress).  This highlights 
the need, within any theory, to include nonlocal effects, or at the least gradient effects, if we 
hope to have a reliable criterion for the nucleation process.  Likewise, atomic-scale nucleation 
criteria based on an atom-by-atom quantity (such as, for example, the atomic level stress at an 
atom) are likely to be unable to accurately describe this process.  A full discussion of these 
challenges and further examination of nucleation criteria is presented in Miller and Rodney 
(2007).  

The effect of temperature on this process has not been addressed here.  Certainly we expect, at 
least for low to moderate temperatures, that transition state theory will apply and the nucleation 
process becomes a stochastic one related to the size of energy barriers.  Evidence that the 
nucleation mechanism is more or less unchanged at moderate temperatures was provided by 
Dupuy et al. (2005).  There, simulations analogous to these were performed at finite temperature 
to reveal essentially the same nucleation mechanisms (albeit on a different crystal structure). 
 

2.3 The Mechanisms of Dislocation Motion 
The same 2D simulations of Miller and Rodney can be used to understand the mechanisms of 
dislocation motion by examining the atomistic configurations during CG minimization step 
subsequent to the initial defect nucleation.   
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Figure 6: Nucleation and motion of a dislocation dipole during nano-indentation, with 
contours showing relative magnitudes of atomic motion (Å).  (a) the undefected 
cystal.  (b) nucleation (c) growth to a full Burgers vector and (d)-(f) motion. 

Figures 5 and 6 illustrate the differences between nucleation and motion by showing selected 
snapshots of the atomistic configurations as the dislocation dipole nucleates and moves.  In Fig. 
5, we show the atoms and a mesh between them.  The crystal in figure 5(a) is defect free, and the 
nucleation step is shown in (b).  From (b) to (c) the dislocation dipole develops a full Burgers 
vector, but the two dislocations do not move substantially.  Finally, frames (d)-(f) show the 
dipole growing as the two dislocation break free of each other and move apart.  Arrows in each 
frame show the approximate width of the dipole.   

Figure 6 shows the same atomic configurations as in figure 5, but superimposed on contours of 
the magnitude of relative atomic motion between subsequent images.  For example, contours in 
frame (b) show the change in atomic positions during the motion from configuration (a) to (b).  It 
is clear that the nucleation and growth phase (frames (b) and (c)) involve the collective sliding of 
atoms over two planes, as described previously in the discussion of nucleation.  By contrast, the 
dislocation motion shown in frames (d) through (f) is accomplished by localized rearrangements 
within the dislocation cores, thus the relatively small regions of red contours at either end of the 
dipole. 
 
3. FDM and MFDM 
 
The presence of dislocations and applied loads induce stresses in a body. The nucleation and 
motion of dislocations induce permanent deformation in the body. The evolution of the defect 
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distribution and the stress field are intimately coupled, each affecting the other. The primary goal 
of the theory of Field Dislocation Mechanics (FDM, Acharya, 2001, 2003, 2004) is to achieve a 
mathematical description of this process. Its equations may be written in the form 

 ( ) ( )

( ){ }
( )

:

.

curl
div
div grad div

div grad

curl

=
=

= × +

⎡ ⎤− + + =⎢ ⎥⎣ ⎦
=− × +

χ α
χ

α Ω

χ

α α

0
z V

C u z b 0

V s

�

�

 (1) 

Here, χ  is the incompatible part of the elastic distortion tensor eU , u  is the total displacement 
field, −u z  is a vector field whose gradient is the compatible part of the elastic distortion tensor, 
C  is the fourth-order, possibly anisotropic, tensor of linear elastic moduli, b  is the body force 
per unit volume field, α  is the dislocation density tensor, V  is the dislocation velocity vector, s  
is a dislocation nucleation rate tensor (not related to dislocation line length increase from existing 
dislocations), and Ω  a rate of slipping tensor representing the slip associated with dislocation 
nucleation. On the other hand, ×α V  represents the slip rate associated with the motion of 
existing dislocations. The argument of the div  operator in (1) 4  is the stress tensor, and the 
functions V , s , Ω  are constitutively specified. 

These equations admit well-defined initial and boundary conditions that have been worked out 
(Acharya 2003, Acharya and Roy, 2006). In particular, (1)1,2,3  are solved with the essential 
conditions 

 
  on  

 arbitrarily fixed at one point of the body
B= ∂χn 0

z
 (2) 

(only grad z  is of physical importance) and (1) 3  implies the natural condition at the boundary 
given by 
 ( )  on  .grad B− × − = ∂α Ωz V n 0�  (3) 
Here, n  refers to the outward normal field on the boundary of the body. In this model of 
dislocation mechanics, the total displacement does not represent the actual physical motion of 
atoms involving topological changes but only a consistent shape change and hence is not 
required to be discontinuous. However, the stress produced by these topological changes in the 
lattice is adequately reflected in the theory through the utilization of incompatible elastic/plastic 
distortions. Indeed, the compatible part (i.e. a part that can be represented as a gradient of a 
vector field) of the plastic distortion is given by grad z  and the total displacement gradient is 
simply the sum of the compatible parts of the elastic and plastic distortions: 
 ( )egrad grad= − +χu U z . (4) 

To derive the structure of an averaged theory (Mesoscopic Field Dislocation Mechanics, 
MFDM) corresponding to (1), we adapt a commonly used averaging procedure utilized in the 
study of multiphase flows (e.g. Babic, 1997) for our purposes. For a microscopic field f  given 
as a function of space and time, we define the mesoscopic space-time averaged field f  as 
follows: 
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where B  is the body and ℑ  a sufficiently large interval of time. In the above, ( )Ω x  is a 
bounded region within the body around the point x  with linear dimension of the order of the 
spatial resolution of the macroscopic model we seek, and ( )I t  is a bounded interval in ℑ  

containing t . The averaged field f  is simply a weighted, space-time, running average of the 
microscopic field f . The weighting function w  is non-dimensional, assumed to be smooth in 
the variables , , ,t t′ ′x x  and, for fixed x  and t , have support (i.e. to be non-zero) only in 

( ) ( )I tΩ ×x  when viewed as a function of ( ), t′ ′x . Applying this operator to the equations in (1), 
we obtain [9] an exact set of equations for the averages given as 
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where pL , defined as 
 ( ) ( ) ( ) ( ) ( ) ( ), : , , , ,p t t t t t= − × = × − ×α α α αL x V x V x x V x , (7) 

and V  are the terms that require closure (and we have ignored the terms s  and Ω  for 
simplicity). Physically, pL  is representative of a portion of the average slip strain rate produced 
by the ‘microscopic’ dislocation density; in particular, it can be non-vanishing even when =α 0  
and, as such, it is to be physically interpreted as the strain-rate produced by so-called 
‘statisticaldislocations’ (SD), as is also indicated by the extreme right-hand side of (7). The 
variable V  has the obvious physical meaning of being a space-time average of the pointwise, 
microscopic dislocation velocity. Initial and boundary conditions for (6) are important from the 
physical modeling point of view, particularly in the context of triggering inhomogeneity under 
boundary conditions corresponding to homogeneous deformation in conventional plasticity 
theory. These have also been worked out (Acharya and Roy, 2006). 
 
4. Physical interpretation of driving force for dislocation nucleation  
 
In this section we derive the driving forces for dislocation nucleation and motion implied by 
FDM along with a global, mechanical version of the Second Law of thermodynamics. We then 
physically interpret the driving force for nucleation. The physical interpretation of the driving 
force for motion was provided in Acharya (2003) establishing it as an analog, in the field setting, 
of the Peach-Koehler force of classical dislocation theory. Due to the nonlocal nature of the 
theory, the derivation requires a mathematical device for decomposing the stress field into 
compatible and incompatible parts. In Acharya (2001, 2003, 2004), orthogonal decompositions 
for merely square-integrable ( )( )2L B  fields are used. At the cost of using less smooth functions 
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but to make the analogy with classical Stokes-Helmholtz decompositions of ( )1H B  tensor fields 
on bounded domains, we utilize the following theorem due to Friedrichs (cf. Jiang, 1998, Thm 
5.8, 5.2): Given a sufficiently smooth ( )( )1H B  stress field T , there exists a unique tensor field 
W  satisfying 

 on 
on 

div B
B

=
× = ∂
W 0

W n 0
 (8) 

and a unique vector field g  satisfying 
 ( )  on  grad B− = ∂g T n 0 , (9) 
such that 
 curl grad= +T W g  (10) 
and the orthogonality condition 
 : 0

B
grad curl dv =∫ g W  (11) 

holds. In passing, we note that the boundary condition (8) 2  implies ( ) on curl B= ∂W n 0 , a 
condition that is useful in proving the decomposition (10). 

The use of this Stokes-Helmholtz decomposition of the stress field in the derivation that 
follows immediately is an effort to state precisely the following observation: defining 
 :p egrad grad= − = −χU u U z  and curl=− Ωs  
so that 
 ( )pcurl curl=− = × +α α ΩU V� �  
it seems reasonable to want to conclude that the rate of plastic working in the body 
 ( ): :p

B B
dv dv≅ × +∫ ∫ α ΩT U T V� . 

The rate of working of the external loads less the rate of change of free energy of the body 
yields the rate at which mechanical energy is dissipated: 

 ( ) .
B B B

dda dv dv
dt

ψ
∂

= ⋅ + ⋅ −∫ ∫ ∫Tn u b u� �D  (12) 

We assume that the specific free energy depends only on the symmetric part of the elastic 
distortion and the stress is given by the derivative of the free energy with respect to its argument, 
i.e. 

 ( )    ;   e
sym e

sym

ψψ ψ ∂
= =

∂
U T

U
. (13) 

Equations (12), (13), (4), and (10) now imply 
 ( ) ( ) ( ): :

B B
grad dv curl grad grad dv= − = + −∫ ∫χ χT z W g z� �� �D . (14) 

Utilizing the conditions (8) 2 , (2)1 , (1) 2 , the dissipation simplifies to 

 : :
B B

grad grad dv curl dv= −∫ ∫ χg z W ��D . (15) 

Furthermore, (3) and (1) 3  imply 

 ( ): :
B B

grad grad dv grad dv= × +∫ ∫ α Ωg z g V� , (16) 

and (8) 2 , and (1)1,5  imply 
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 ( ): : :
B B B

curl dv dv curl dv= − ×∫ ∫ ∫χ αW W s W V� , (17) 

so that the dissipation in the model may be expressed as 
 : : :

B B B
dv dv grad dv= × + − +∫ ∫ ∫α ΩT V W s gD . (18) 

Based on the physical meaning of a dislocation being the boundary between slipped regions of 
differing magnitude, it seems natural to associate the dislocation nucleation rate s  with an 
appropriate, incompatible measure of the spatial variation of the nucleation slipping rate Ω , i.e. 
 curl=− Ωs , (19) 
which also satisfies the requirement that the dislocation density field α  be divergence-free. 
Then, 
 ( )( ):

B
dv= ⋅ +∫ Χ α ΩT V TD , (20) 

where ( ){ } ijk jr rki
Tε α=Χ αT  and ijkε , for specific values of the indices, is a Cartesian 

component of the third-order alternating tensor. The form of (20) suggests the driving forces for 
the dissipative mechanisms of dislocation motion characterized by the dislocation velocity V  
and nucleation slip characterized by Ω  as ( )Χ αT  and T , respectively. 

The physical content of the driving force for dislocation motion has been dealt with in detail in 
Acharya (2003). In order to gain physical insight into possible constitutive equations for 
nucleation suggested by the theory, let the strain rate associated with the nucleation event be 
written as 
 ς= ⊗Ω m n  
where m is slip (burgers) vector direction, n  is the slip plane normal and ς  is a scalar rate of 
slipping. Substituting in (20), the driving force for nucleation on a slip plane is given by 
 :τ⋅ =m Tn  , 
the traction on the slip plane resolved in the direction of the Burgers vector. A simple 
constitutive assumption for the nucleation slip rate might be 
 ( )f τ= ⊗Ω m n , 
where f  is a non-negative function guaranteeing positive dissipation due to nucleation. Then, 
 ( )( )f gradτ τ′=− ⊗ ×s m n  (21) 
by definition, and thus the theory suggest that a dislocation line appears where there is a sizeable 
gradient of the resolved traction, but only in directions along  the slip plane. Gradients in the out-
of-plane directions are immaterial for the purposes of nucleation. Given the definition of a 
dislocation line as a boundary between unequally slipped regions on a slip plane, this makes 
physical sense if we relate magnitude of slipping at a point to be in proportion to the resolved 
traction at that point. 

The use of  (21) in a nanoscale continuum theory would require a physically accurate definition 
and constitutive representation of the stress tensor at the nanoscale. In particular, the stress field 
resulting from such a description would have to be able to represent spatial heterogeneity at the 
scale of a lattice spacing. These are delicate issues as reflected in the considerations of Machova 
(2001), Nielsen and Martin (1985), Cormier et al. (2001), Lutsko (1988), Hardy (1982), Irving 
and Kirkwood (1950), Tsai (1979) and Maranganti et al. (2007). 
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5. Plastic front propagation in PMFDM 
 
In this section we demonstrate the capability of the phenomenological MFDM (PMFDM) 
framework in representing the phenomena of propagating fronts of plastic deformation. 
Experimental studies on a number of metals suggest that “self excited waves” may be ubiquitous 
in plastic flow (Zuev, 2006).  Kocks (1981) pointed out that the spreading of a Lüder’s front is 
actually a delocalization  following an initial instability. While the prediction of the propagation 
of plastic fronts has been a long-time goal of 3-d plasticity theory, the realization of such a goal 
is hampered by the  mathematical structure forwarded in the traditional approach to analysis. 
Within the conventional theory, propagating fronts of plastic deformation can be obtained in the 
presence of spatial variations in material properties (e.g. polycrystals, spatial variations in 
strength etc.); however, such fronts are also observed in single crystals with spatially 
homogeneous hardening characteristics (Zeigenbein et al., 1995). Generally speaking, the 
progression of waves is properly identified with the phenomenon of transport and concomitant 
description through partial differential equations. In what follows, we present the qualitative 
prediction of a plastic wave following from transport of excess dislocation density. 

We note that for a model at the mesoscale it is physically essential to introduce realistic 
constitutive assumptions for the plastic strain rate produced by the unresolved statistical density 
and the average velocity of the excess density; below, we outline one such model. However, we 
emphasize that the qualitative prediction of the moving plastic front is insensitive to the choice 
of any such model (as long as it incorporates a mechanism for initial softening, here through 
rapid evolution of the statistical mobile density), and is a direct result of the transport in excess 
dislocation density implied by the field equation (6) 6 . 

The propagation of a Lüder’s band in solid solution alloys is typically associated the microscale 
mechanism of mobile dislocation breakaway from solute atoms. The macroscale response is 
reflected in the development of a yield point and the propagation of a plastic front. Lüder’s band 
propagation has also been noted in whisker crystals of pure fcc metals (Brenner 1957; Nittono  
1971).  The tensile stress-strain curve of copper whiskers includes a sharp yield point followed 
by a region of easy glide, leading finally to a work hardening response.  The propagation of slip 
ahead of the Lüder’s band is generally associated with the mechanism of cross-slip (Brenner 
1957; Nittono 1971). The kinetics of deformation in copper whiskers was investigated by 
Saimoto (1960) through incremental loading applied at different test temperatures. Gotoh (1974) 
observed that the yield point drop occurred at the point in which an initial slip line is crossed by 
another and noted double cross-slip as a mechanism of band propagation in [110] single crystals. 

In the following, we outline a PMFDM model for the tensile deformation of a flat whisker. The 
averaged slip strain rate   Lp  follows from the activity of statistical mobile dislocations on the 12 
fcc slip systems as 
 p

m s s s
s

bvρ= ⊗∑L b m  (22) 

where mρ  is the statistical mobile density, sb  and sn  are the Burgers vector and normal of slip 
system s , b  is the magnitude of the Burgers vector and vs  is an averaged velocity (to be detailed 
below). We adopt evolution relations as outlined in Varadhan et al. (2005), with simplifications 
deemed appropriate for the relatively limited range of straining considered in the present 
simulations.  For the statistical mobile density there is generation and loss according to 
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 1
2

2
m m

C C
C

ρ ρ Γ
⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜⎝ ⎠

�� , (23) 

where Γ�  is the rate of straining due to the combined action of statistical and excess mobile 
dislocation densities given by 
 m s

s

b vΓ ρ= × +∑α V� . (24) 

The creation of forest (sessile) dislocation density, ρ f , follows from interaction with excess 
dislocations (Acharya and Beaudoin, 2000) and loss of mobile density 

 ( )0
2f s m s m

s

C b v C
b

ρ ρ ρ Γ= ⋅ + × +∑ α αn V �� . (25) 

In the above 0C , 1C  and 2C  are material constants. 
The ensemble velocity for statistical densities follows the power law relation 

 ( )0 sgn
m

s
s s

a h

v v
τ

τ
τ τ

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
    ;    ( ):s s sτ = ⊗b n T  (26) 

with reference velocity v0 , athermal strengthτ a  and stress exponent m  as material parameters 
and the hardness τ h  related to the forest density in the usual way as 
 h faGbτ ρ= , (27) 
where a  is a non-dimensional material parameter and G  is the shear modulus. 

The excess density is transported with the velocity 
 v=V d d  (28) 
whose magnitude is assumed to be an average of the statistical slip velocities over the 12n =  
slip systems 

 1
s

s

v v
n

= ∑ , (29) 

and the direction is prescribed as (Acharya and Roy, 2006) 

 

( ) ( )( )

: ,

1:   ;     ;    :   ;  .
3i ijk jr rk i mm ijk jkb e T tr a T eα α

⎛ ⎞⎟⎜ ⎟= −⎜ ⋅ ⎟⎜ ⎟⎟⎜⎝ ⎠
⎛ ⎞⎟⎜′ ′= = = = ⎟⎜ ⎟⎜⎝ ⎠

Χ α Χ α

a ad b b
a a

b T a T

 (30)  

  Note that while V  is not constrained to a slip plane, however, the character of excess density 
dislocation following from the contribution pcurl− L  in (6) 6  follows from slip geometry.  This 
leads to “generation” of Burgers vector and line direction in α  with crystallographic sense.  In 
turn, the relation (30) leads to transport of the excess density in roughly the sense that one would 
expect from the Peach-Koehler relation (Acharya, 2003). This was demonstrated in modeling of 
the torsion of ice single crystals (Taupin et al., 2007), where the predominant movement of 
screw dislocations developed in torsion was on basal planes.  The interplay of internal stresses 
associated with χ  and the applied stress may indeed provide a driving force with (30) allowing 
for transport out of the slip plane.  Such role is critical in the present work to representing a 
mechanism of transport of excess dislocation density along the specimen axis. 
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The sample geometry and orientation studied by Nittono (1971) serve as a basis for the present 

study. The whisker cross-section was taken as 200 µm in width by 30 µm in thickness.  Total 
length was 2400 µm with degrees of freedom fully constrained on one end and velocity in the 

direction of elongation only applied at the other. The applied strain rate is 10-3 sec-1. The mesh 

                         Table 1 – Material parameters used in the whisker simulation 
 
b   0.26 [nm]    v0   3.5 ⋅10−8  [m/s] 

 
C0   25.0     α   0.35 

  
C1   2.43E-05    ν   0.42 

 
C2   3.03     ρ f 0( )  1010 [m-2] 

 
E  66.6 [GPa]    ρm 0( )  108 [m-2] 

 
G   75.2 [GPa]    τ a   3.7 [MPa] 
 
m   20      

Figure 7: Stress-strain response, with flow stress normalized by the initial slip 
system strength. 
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contained 24, 6 and 192 elements in the width, thickness and length directions, respectively.  The 
finite element formulation outlined in references (Roy and Acharya, 2006; Varadhan et al. 2005) 
was adopted with linear interpolation used for the χ   field and quadratic interpolation used for 

the  z  and u  fields.  This choice of interpolation provides for a piecewise linear continuity in 
evaluation of the elastic distortion Ue and allied stresses. Anisotropic elastic response is 
described through Young’s modulus, E, Poisson’s ratio, ν , and shear modulus,G . The transport 
problem, (6) 6 , is addressed using the Galerkin-Least Squares treatment given by Varadhan et al. 
(2006), with added diffusion that is consistent from the numerical perspective. Parameters used 

 

 

 

 

Figure 8 – Magnitude of the excess density, rate of plastic strains, effective stress and 
effective plastic strain at nominal strains of a)ε = 0.00016 , b)ε = 0.0007 , c) 
ε = 0.0016 and d)ε = 0.0026 .    
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in the simulation are listed in Table 1. The stress strain response is shown in Fig. 7 for 
simulations with transport of the excess densityα , as outlined above, and without transport of 
the excess density, by setting =V 0 .  In both cases, there is elastic loading followed by a stress 
drop, associated with the evolution of statistical mobile density. With transport, this stress drop is 
followed by plateau, then a transition to a work hardening response. Without transport, the initial 
development of plastic strain rate, associated with the stress drop, is similar to that shown in 
Figure 8a.  However, subsequent plastic activity does not spread throughout the specimen, 
localization follows, and the calculation can only be continued up to an applied strain of 

45 10−×∼  before the time-steps become prohibitively small. 
The progression of deformation with transport is shown in Fig. 8. Initial plastic activity, 

indicated by the strain rate measure Γ� , develops in a relatively symmetric fashion at the left end 
of the specimen (Fig. 8a).  Slip then progresses from left to right, with a relatively diffuse region 
of slip activity.  A second plastic front develops at the right end of the specimen, moving from 

right to left. The magnitude of the plastic strain is taken as ( )2 3 :p p pε = U U , where 
p grad=− +χU z . Slip progresses through the specimen volume by the motion of these plastic 

fronts.  The history of non-uniform plastic activity is indicated by the magnitude of the excess 
density, α , progressing with a relatively sharp front. Plastic activity exists ahead of the excess 
density front over a distance on the order of hundreds of  µm.   

In this small displacement gradient formulation, stress concentrations arising from geometric 
defects such as slip steps are not represented.  However, localized internal stress arising from slip 
incompatibilities are captured through (6)1  and the subsequent stress calculation.  One can see 
that the stress at the head of the front is elevated with respect to the nominal stress in the 
(relatively) undeformed cross-section (Fig. 8a-8d).  This higher stress at the head of the plastic 
front is more representative of the upper yield stress developed after initial elastic loading and 
not the lower yield stress associated with the plateau.  This notion was set forth by Ziegenbein et 
al.  (1995) in a study of solution-strengthened Cu single crystals.  The present result suggests that 
stress concentrations associated with incompatibilities play a role in setting stress at the head of a 
propagating band. 

With the mesoscale averaged response implied in the present simulations, one cannot draw 
association of observations made in the simulation with specific microstructural mechanism.  
Specifically, associating the symmetric pattern of plastic activity in Fig. 8a with initiation of a 
plastic front following from slip on two planes (and thereby rendering double cross-slip) (Gotoh 
1974) or deeming the diffuse region of strain rate to be due to preceding dislocations (Nittono 
1971) is to overstate the detail represented in the simulation. On the other hand, the PMFDM 
setting allows one to adopt established models of crystal plasticity and work hardening and cast 
such within an overarching framework that allows for the transport of dislocation content from 
one point in the specimen to another. The resulting partial differential equations provide for 
development of a propagating plastic front, without resort to ad hoc extensions of the local 
models to provide for spatial coupling.  

 
6. Implication of macroscopic plasticity as a limit of MFDM: a new continuity condition 
 
MFDM is a model of plasticity that forges a precise link between the classical theories of elasto-
plasticity and continuously distributed dislocations, based on averaging the latter to obtain an 
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augmentation of the former.  The two classical approaches have been pursued (historically) by 
separate groups of researchers with different research objectives; more importantly, while there 
has been strong appreciation amongst researchers of the fact that the two classical theories must 
somehow be related, a sound mathematical model with physically rigorous underpinnings has 
eluded the community for forty-odd years. 

To see the link that MFDM introduces, we consider the usual equations for equilibrium and 
linear elasticity, 
 div =T 0  (31) 
and  
 : e=T C U  (32) 
where , , eT C U  are the Cauchy stress, fourth-order tensor of linear elastic moduli and elastic 
distortion.  For simplicity, here we restrict attention to the small-deformation case. 

In classical elastoplasticity theory the elastic distortion is assumed to arise as the difference of 
the total displacement gradient and the plastic distortion given by 
 e pgrad= −U u U , (33) 
and the rate of plastic distortion is prescribed by a constitutive model: 
 p p=U L� . (34) 
For example, in von-Mises 2J  plasticity the plastic strain rate is specified as 
 p γ ′=L T�  
where γ�  is an appropriately defined scalar measure of plastic strain rate and ′T  is the stress 
deviator; in crystal plasticity it is a description of slipping on predefined slip systems as 
 p p κ κ κ

κ

γ= = ⊗∑U L b n� � . (35) 

where κγ�  is the slip system shearing rate on the system κ dependent upon stress and strength, 
and κb  and κn  are the individual slip system directions and normals, respectively. In these 
classical theories, the slipping rate is a local function of stress, strength (and strain rate, in the 
rate-independent case). 

These classical models have been shown to be versatile in the prediction of overall shape 
changes due to permanent deformation. However, they cannot deal with the question of 
predicting the internal stress field of dislocation distributions in the material. 

On the other hand, in the classical theory of continuously distributed dislocations (Kröner, 
1981; Mura, 1963) the equations (31)-(32) are solved along with the equation 
 ecurl =αU  (36) 
where  α  is assumed to be a pre-assigned field of dislocation density (Nye’s dislocation density 
tensor, Nye, 1953). Thus, this theory predicts the internal stress of the dislocation density 
distribution but is silent on the matter of predicting permanent deformation. Mura (1963), 
following Kröner, also suggested the following equation of evolution for the dislocation density, 
 ( )curl=− ×α α V� , (37) 
where V  is the microscopic dislocation velocity, but realized that this equation could not be the 
correct one at averaged scales. In the context of this discussion, it is important to realize that the 
classical theory of elastoplasticity implies the following equation for the evolution of dislocation 
density 
 ( )pcurl=−α L�  (38) 
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MFDM averages the microscopic equation (37) of evolution of dislocation density to show that, 
to first order, the natural equation for evolution of dislocation density at mesoscopic and higher 
scales should be (ignoring the overhead bars for convenience in this section) 
 ( )pcurl=− × +α α V L� . (39) 
where ×α V  is the microplastic strain rate associated with the motion of signed, excess 
dislocation density and pL  is the strain rate associated with statistical density of no net sign. Due 
to the fact that (39) is a conservation law for essentially a density of lines, an observation that 
makes sense due to the definition (36) of α  as a curl of a tensor field even without an 
association with crystal dislocations, it implies jump conditions on surfaces of discontinuity 
(Acharya 2007). In particular, in the simple case of a material surface of discontinuity not 
moving with respect to the material (39) implies 
 p× + × =α V L N 0c fe hd g , (40) 

where a b  represents a jump of its argument at the surface of discontinuity as defined 
conventionally (Truesdell and Toupin, 1960) and N is the unit normal to the surface, with 
arbitrarily chosen orientation. The condition implies that the tangential action of the plastic 
distortion rate is continuous at a material surface of discontinuity. Here, given a tensor A  and a 
surface with normal N , the tangential action refers to the tensor − ⊗A AN N . 

In principle, then, the augmentation that MFDM suggests to the classical theory of 
elastoplasticity [(31)-(34)] is simply the replacement of (34) with 
 p p= × +αU V L�  (41) 
along with the addition of (39) and (40). 

Let us now consider the case where ≡V 0  in (41). A complete theory may be stated as 

 
:

.

e

e p

p p

p p

div

grad

=

=

= −

=

× = × =

T 0
T C U
U u U
U L

U N L N 0

�

�c f c fe hd ge h d g

 (42) 

Apart from (42) 5 , this is classical plasticity, in particular if the constitutive equation for pL  is 
local and material length scale independent. However, appending the jump condition (42) 5  
makes the theory nonlocal as limiting values of fields from two sides of a surface discontinuity 
are required to have some relationship. While such a nonlocality does not produce a length-scale 
effect under self-similar geometric scalings, it does produce a change in the effective plastic 
strain rate in the theory that is not constitutively specified. For instance, in crystal plasticity 
theory, active slip system selection at grain boundaries is likely to be affected. In practice, the 
imposition of (42) 5  without a PDE for pU  (or appropriately defined parts of it) is a non-standard 
matter. Solving equations (6)1 3,5−  with ≡V 0  and their associated jump conditions is one 
convenient way to ensure that the jump condition (42) 5  is imposed. When used in numerical 
approximation, they also ensure that the spatial heterogeneities in pU  that can produce internal 
stress are also accounted for in a robust manner. 
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As an example of the change that this condition implies for predictions of conventional 
plasticity, we consider the simple case of identifying conditions for deformation localization out 
of a spatially homogeneous state in small deformation, rate-independent plasticity. The task is to 
identify the orientation of a surface in a homogeneously deformed, infinite body across which 
the velocity gradient can experience a jump, with the body continuing to be in static equilibrium. 
We assume that at all such possible surfaces of discontinuity the material loads plastically on 
both sides of the discontinuity-surface, i.e., in the parlance of rate-independent plasticity, we 
consider the linear comparison solid. 

Let the constitutive equation for the plastic distortion rate be expressed as 
 ( ):p grad=U Z v Y� , (43) 
where the second-order tensors ,Z Y  are current state dependent and v is the material velocity. 
The form (43) includes 2J  plasticity and crystal plasticity may be covered with a slight 
modification.  Because of the spatial homogeneity of the current state and the requirement that 
the velocity be a continuous function, across any possible surface of discontinuity with normal 
N  
 ( ):p = ⊗U Y Z a N�c fd ge h , (44) 

where a  is an arbitrary vector in the representation a bgrad = ⊗v a N . Then, 

 0  or  p × = ⇒ ⋅ = × =U N 0 a ZN Y N 0�c fd ge h , (45) 
where N  is some direction (to serve as a normal to a candidate plane of discontinuity). 

If Y  were of the form ⊗m N  for some vector m , then × =Y N 0 . For most constitutive 
equations this requirement would be quite restrictive. For instance, in 2J  plasticity Y  is a 
symmetric deviatoric tensor and this along with the condition = ⊗Y m N  implies that m  be 
parallel to N , corresponding to the fact that the tensor Y  should correspond to a ‘uniaxial’ state. 
At any rate, even if the equations of continuing/rate equilibrium lose ellipticity for a Y  that is 
not a rank-one tensor (or, more generally, does not satisfy × =Y N 0  for some direction N ), a 
bifurcation from a homogeneous state is excluded, assuming strongly-elliptic elasticity. That is, 
continuing equilibrium requires 
 ( ) 0ijkl ij kl l j kC Y Z N N a= ⇒ − =T N 0�c fd ge h , (46) 

and even if the set of homogenous linear equations in ka  admit non-trivial solutions in the 
absence of further constraints, because  of the new constraint (42) 5  the only admissible solution 
is 0ka =  in case × ≠Y N 0  and the elasticity tensor is strongly elliptic. 

Of course, loss of ellipticity implies the loss of strong ellipticity of the equations of equilibrium 
and under these circumstances unstable behavior in the form of sensitivity to perturbations is to 
be expected even though non-uniqueness is precluded (for the base state considered). Indeed, it 
would be interesting to explore to what extent, if at all, the new continuity condition alleviates 
mesh-sensitivity in computations where the equilibrium equations have lost ellipticity, e.g. 
softening plasticity. Another curiosity relates to the question of using equation (39) with ≠V 0  
in rate-independent, local, softening plasticity with regard to the alleviation of pathological 
behavior in computations. 
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