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We have used phase field simulations to study elastic stress driven phase inversion in which an initial microstructure with a minority
phase embedded in a majority phase evolves to one in which the latter becomes embedded in the former. Such phase inversion is possible
if the majority phase is elastically stiffer than the minority phase. For a given set of parameters (volume fraction and elastic moduli of
the phases), phase inversion occurs at a characteristic microstructural length scale (`c). Our results show that `c is lower for systems
with larger mismatch in elastic moduli, and (to a smaller extent) in those with greater elastic anisotropy.

1 Introduction

A typical two phase microstructure consists of a topologically continuous ‘matrix’ phase in which islands
of ‘precipitate’ phase are embedded. Usually, the matrix phase is also the majority phase in terms of
volume fraction. For example, simulations of spinodal decomposition in off-symmetric alloys always lead
to microstructures in which the minority phase is embedded within the majority phase.

In solid systems with a dilatational or isotropic lattice paramter mismatch, however, elastic energy
considerations [1, 2] lead us to expect the hard phase to assume compact (or, precipitate-like) forms
embedded in the softer phase. In elastically isotropic systems, for example, Barnett et al [1] showed that
elastic energy minimizing shape of an isolated particle is a sphere for a hard particle and a thin plate for
a soft particle. Thus, if the early-stage microstructure has a soft (minority) phase embedded in a hard
matrix, it is expected to assume elongated shapes with increasing size; if its volume fraction is sufficiently
large, the elongated plates of soft phase could coalesce to form a percolating network. In other words, even
though the soft phase has a lower volume fraction, it becomes the ‘matrix’ in which the hard, majority
phase becomes embedded. We term this phenomenon ‘phase inversion’.

Phase inversion is known to occur in polymer blends due to differences in viscosity of the two phases
which, in turn, leads to different flow behaviours [3, 4]. Analogously, in solid systems, it is driven by
differences in elastic moduli. While it has not been observed experimentally, it has been shown to be
possible in several simulation studies [5–7]. These studies, however, are limited by (a) their use of isotropic
elastic moduli, (b) approximations used for computing elastic stresses, and (c) small system sizes. Further,
in the studies by Onuki and Nishimori [5] and Sagui et al [6], spinodal decomposition in different systems
(for example, with different values for elastic modulus mismatch) leads to different ‘initial’ microstructures
(which then undergo phase inversion at later stages). Since the initial microstructures are different, their
simulations do not allow a systematic study of phase inversion.

In this paper, we report our results from large scale simulations of phase inversion in two-phase solid
systems with dilatational misfit. Our study has been designed to overcome the specific shortcomings
mentioned above. Thus, in our study, (a) elastic moduli of the phases may possess a cubic anisotropy, (b)
elastic stress computations do not involve any approximations, and (c) system size is large. Further, in
each set of simulations, we start with the same microstructures; this allows us to estimate quantitatively
the dependence of phase inversion on modulus mismatch and elastic anisotropy.

∗Corresponding author. Email: gururajan.mp@gmail.com

Philosophical Magazine
ISSN 1478-6435 print/ISSN 1478-6443 online c© XXXX Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/1478643YYxxxxxxxx



This paper is organized as follows: In Section 2, we present a brief summary of the phase field model;
the details of the formulation can be found elsewhere [8]. In Section 3, we illustrate phase inversion in
both elastically isotropic and anisotropic systems, and describe a way of computing size at which phase
inversion occurs. In Section 4, illustrate the effect of modulus mismatch and elastic anisotropy on phase
inversion. We conclude the paper with a discussion and a summary.

2 Modelling

The diffuse interface formulation for the study of microstructural evolution in elastically stressed systems
is well known (See for example [7, 9–16]), and several of these studies are based on Fourier spectral tech-
niques [9,10,12–14]. Ours is also a phase field model with a semi-implicit Fourier spectral implementation.
We present a brief outline of our model; the details may be found in Ref. [8] (available online).

2.1 Formulation

Consider a microstructure in a binary A-B system described by a composition field c and consisting of two
phases: A-rich m and B-rich p phases (which correspond to normalised compositions of unity and zero,
respectively). Let the free energy of the system be given by

F = NV

∫

[

Ac2(1 − c)2 + κ(∇c)2
]

dV +
1

2

∫

σ : εeldV, (1)

where, NV is the number of atoms per unit volume, κ is the gradient energy coefficient, A is a constant
(with dimensions of energy per atom) that sets the height of the energy barrier between the p and m
phases, σ is the elastic stress field, εel is the elastic strain, and the symbol “:” denotes tensor scalar
product. We have assumed the gradient energy coefficient κ to be a scalar constant, which leads to an
isotropic interfacial energy.

The microstructural evolution in such a system is obtained by solving the following modified Cahn-
Hilliard equation:

∂c

∂t
= ∇ · M∇µ, (2)

where, M is the mobility, and µ is the chemical potential defined by given by the variational derivative of
the free energy F with respect to composition:

µ =
δ (F/NV )

δc
. (3)

In this equation operator δ/δc represents the variational derivative with respect to composition.
Our phase field simulations are based on solving the diffusion equation 2 above, under the following

assumptions:

(i) For any given composition distribution, the elastic equilibrium is obtained instantaneously.
(ii) Mobility M is independent of the local state of stress.
(iii) Elastic stresses and strains obey Hooke’s law:

σij = Cijklε
el
kl, (4)

where, εel = ε − ε0, εij and ε0 being the total strain and eigenstrain, respectively, and Cijkl is the
elastic modulus tensor, which may have cubic anisotropy.



(iv) Composition dependence of the elastic moduli and eigenstrain are given by the following expressions:

Cijkl(c) = Ceff
ijkl + α(c)∆Cijkl; (5)

ε0
ij(c) = β(c)εT δij , (6)

where, α(c) and β(c) are scalar (interpolation) functions of composition, Ceff is the ‘effective’ moduli,
∆C = Cp

ijkl − Cm
ijkl is the difference between the elastic moduli of the p and m phases, δij is the

Kronecker delta, and εT is the strength of the eigenstrain and indicates the change in lattice parameter
with composition.

For each configuration (represented by the instantaneous composition field) with its associated eigen-
strain field, we first solve the equation of mechanical equilibrium under zero prescribed (applied) stress.
For this purpose, we use an iterative Fourier spectral technique obtained by modifying the stress-control
via strain-control algorithm [17] (see also Ref. [18]) to systems with an eigenstrain field. Our formulation
is similar to that of Hu and Chen [9] who extended the work of Khachaturyan et al [19]. However, Hu and
Chen presented – and used – their algorithm to study systems under a prescribed homogeneous strain.
Since we are interested in studying phase inversion under a zero applied stress, we have found it easier to
modify the algorithm of Moulinec et al [17] for our study.

With this formalism, we simulate microstructural evolution as follows: For a given composition (and
hence, eigenstrain) field c(r, t), a numerical solution to the equation of mechanical equilibrium yields
elastic stress (σ) and strain (ε) fields. They, in turn, yield µ the chemical potential field through through
Eq. 3 and Eq. 1. Substitution of µ in the Cahn-Hilliard equation (Eq. 2), and a numerical time-integration
(over a time step ∆t) yields c(r, t + ∆t), the composition field at the end of the time-step, on which
this process is repeated. We use a semi-implicit Fourier spectral technique, due to Chen and Shen [20],
for numerical integration of the Cahn-Hilliard equation. The (discrete) Fourier transforms needed for our
calculations have been carried out using FFTW developed by Frigo and Johnson [21].

2.2 Parameters

We non-dimensionalise the diffusion equation in such a way that both κ and A take the value of unity, the
equilibrium compositions of the p and m phases are at unity and zero respectively. Our calculations use a
1024 × 1024 grid in two dimensions with a grid spacing of ∆x = ∆y = 1. For the time integration of the
Cahn-Hilliard equation, we have used a time step of ∆t = 0.5 for the first 10000 time steps, and ∆t = 1.0
later.

For a system with cubic elastic constants, the circular averages of the Voigt constants (C11, C12, and
C44) can be related to the average shear modulus G, the Poisson’s ratio ν, and the anisotropy parameter
AZ [22] using the following expressions:

G = C44, (7)

ν =
1

2

C12

C12 + C44

, (8)

and,

AZ =
2C44

C11 − C12

. (9)

If AZ = 1, the elastic constants are isotropic; if AZ > 1 (or, AZ < 1), the 〈10〉 and 〈11〉 directions are



the elastically soft and hard directions (or, hard and soft directions), respectively. Further, we define the
elastic inhomogeneity ratio δ as the ratio of the shear modulus of the precipitate to that of the matrix:
δ = C

p
44/C

m
44.

For each system we have studied, we assume that νp = νm, and Ap
Z = Am

Z ; i.e., elastic anisotropy and
Poisson’s ratio are the same for both p and m phases. Thus, we need to specify AZ , ν and G for the m
phase, and the inhomogeneity parameter δ to completely characterise the elastic moduli.

In all our calculations, we have used νp = νm = 0.3, εT = 0.01, and α(c) = β(c) = c− c0. Moreover, the
p phase is always harder than the m phase (δ > 1). Displacement fields are iteratively refined until they
converge to within 10−8.

The initial microstructure in all our simulations is shown in Figure 1: it consists of circular particles of
the soft, A-rich m phase (black) embedded in the hard, B-rich p phase (white). The volume fraction of
the p phase is ≈ 60 %. It is possible to start with a microstructure with a uniform composition of 60 %
throughout the domain with a very small initial noise and study phase separation and inversion. However
(and as we stated in the Introduction), in such a case, different combinations of AZ and δ would lead to
different microstructures before phase inversion. This would make impossible to compare phase inversion
across systems with different elastic parameters.

Figure 1. Initial microstructure used in all our simulations: c0 = 0.6. The white phase is the hard phase.

3 Results

The initial microstructure in Fig. 1 evolves to yield those shown in Fig. 2 after (a) t = 500 and (b)
t = 8000 for an elastically isotropic system with δ = 2. At t = 500, the white phase (elastically hard p
phase) still constitutes the matrix in which islands of dark m phase are embedded. By t = 8000, however,
the microstructure has undergone a phase inversion, with islands of the majority (white) phase embedded
in the minority (dark) phase. In addition to visual inspection, we have used Hoshen-Kopelman cluster-
counting algorithm [23] to track phase inversion; operationally, for our two dimensional system, the phase
which percolates both from left-to-right and from top-to-bottom in a microstructure is considered to be
the matrix phase. Using such an approach (which would not work in three dimensions), we identify the
time at which phase inversion takes place. At this time, we compute the characteristic length scale `c,
defined as the first zero of the circularly averaged pair correlation function. For each system, we report
the average value of `c from three independent simulations. For example, the system shown in Figure 2
phase-inverted at `c ≈ 30.



(a) (b)

Figure 2. Phase inversion in an elastically isotropic system (AZ = 1) with δ = 2: microstructures after (a) 500 and (b) 8000 time units.
While the white (hard) phase is percolating along both x and y directions in (a), the dark phase is percolating in (b): c0 = 0.6.

(a) (b)

Figure 3. Effect of δ on phase inversion in an elastically anisotropic system AZ = 3. Microstructures after 4000 time units in systems
with (a) δ = 2 and (b) δ = 3: c0 = 0.6.

Figure 3 shows the microstructures at t = 4000 in elastically anisotropic systems with AZ = 3 for two
different levels of elastic inhomogeneity values: (a) δ = 2 and δ = 3. Both systems have undergone phase
inversion to yield the p-phase (majority, hard phase, in white) as the embedded phase. We discern in these
microstructures an alignment of the p phase along the 〈10〉 directions; the black channels of the minority
m phase run along these directions. In contrast, the microstructure for the elastically isotropic system in
Figure 2 exhibits directionless, rambling black channels of the minority m phase.

A closer examination of these microstructures also reveals that the p phase is broken up more in the
system with larger δ. This implies that the system with the harder p phase underwent phase inversion at
a smaller size (or, earlier than t = 4000). This may be rationalized by considering the driving force for



phase inversion; with all else being the same, systems with harder p phase would have a higher driving
force, causing it to phase invert at smaller sizes.

Similarly, a comparison of Figure 2(b) and Figure 3(a) shows that, for the same inhomogeneity (δ = 2),
system with a cubic anisotropy has phase inverted at a smaller size. This is due to a geometric effect. Phase
inversion may be thought of as a result of elongation and coalescence of the soft (m) phase. In systems with
cubic anisotropy, this elongation is along the soft 〈10〉 directions, which facilitates coalescence. In isotropic
systems, however, the elongation does not have any preferred direction, implying that an m phase particle
has to ‘meander’ before finding another meandering m phase particle to coalesce with.

These broad conclusions are summarized more quantitatively in Figure 4, in which the length scale of
phase inversion (`c) is plotted against elastic anisotropy (AZ) for different two different values of elastic
inhomogeneity (δ = 2 and δ = 3). The main conclusion is that both anisotropy AZ and inhomogeneity
δ are important only at small values of AZ . Increasing anisotropy beyond AZ = 2, leads only to small
differences in the critical size for phase inversion.
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Figure 4. The effect of AZ on the characteristic length scale for phase inversion (for two different δ). The data is averaged from three
simulations on a system of composition c0 = 0.6. The lines joining the data points are drawn only as a guide to the eye, while the error

bar on the data points denotes the standard deviation.

4 Discussion

Phase inversion is reported to occur in several phase separating, viscoelastic polymer blends, and has been
studied both experimentally and theoretically (see [24] and references therein). However, in the polymer
literature, phase inversion is defined in several different ways. In some studies [25], with increasing volume
fraction of one of the phases, if a previously continuous phase becomes discontinuous (thus switching the
role of ‘network’ and ‘particles’ in a polymer blend), the volume fraction at which the switching occurs is
known as ‘phase inversion’ point. In the work of Lazo and Scott [26], volume fraction of the phases is held
a constant, and the initial microstructure with islands of the majority phase dispersed in a matrix of the
minority phase, evolves into one in which the minority phase forms the dispersed phase.

Finally, some theoretical studies on polymer blends define phase inversion as that point at which ‘the
role of the percolating majority phase and the non-percolating minority phase is interchanged between the
low- and the high-viscosity portions of the liquid’ [27]. This definition is similar to the one adopted in our
study.

In polymer systems, phase inversion is a result of the flow of a less viscous, low volume fraction phase
around a higher viscous, high volume fraction phase. In contrast, in this paper we have shown elastic
stress driven phase inversion in solid systems, in which particles of a soft, minority (m) phase elongate



and coalesce to become the matrix phase.
All the existing studies of elastic stress driven phase inversion employ approximate computations of

elastic stresses; while Sagui et al [6] and Onuki and Nishimori [5] consider systems with small differences
in ∆C, Leo et al [7] do not incorporate the homogeneous strain in their calculations. Further, all the
three studies are on isotropic systems. Finally, Sagui et al and Onuki and Nishimori spinodally decompose
the microstructures, while Leo et al start with a very specific configuration. In view of these significant
differences between these studies and ours, we do not attempt a critical comparison.

In each set of simulations (with different combinations of elastic moduli), we have used the same initial
microstructure, with elastically soft m phase particles embedded in the p phase which is also the majority
phase. As noted earlier, using the same initial microstructure allows a quantitative comparison of different
systems. Further, we note that an initial microstructure in which the majority phase is the matrix phase
is not unexpected; for example, in the absence of elastic stresses, spinodal decomposition in off-symmetric
alloys is known to give rise to microstructures with a dispersed minority phase [28].

Since phase inversion is driven by elastic stresses, an increase in the the magnitude of elastic stresses
can be expected to lead to phase inversion at smaller sizes (i.e., at smaller value of `c). Our simulation
results (not shown here) show that this is indeed the case. In addition, phase inversion is also influenced
by the inhomogeneity δ and elastic anisotropy AZ (as shown in Figure 4). We have rationalized this
observation (in Section 3) in terms of the driving force for phase inversion and the geometry of elongation
and coalescence of the soft m phase.

All the results we have presented in this study are for systems in which fm, the soft (minority) phase
volume fraction, is 0.4. With lower fm, the soft phase particles have to elongate more before they can
coalesce to form a percolating network. This implies that phase inversion would occur at larger sizes in
systems with lower fm. This is indeed the case; in our simulations with fm = 0.3, it took too long before
phases underwent an inversion. By this time, however, the number of hard phase particles was too small
to allow us to extract a statistically meaningful and reliable value of `c; therefore, we have not reported
any data for this system.

5 Summary

Elastic stress-driven phase inversion is observed in multiparticle simulations in elastically inhomogeneous,
coherent binary alloys. The characteristic length scale at which phase inversion occurs is decreases with
an increase in the elastic inhomogeneity in elastic anisotropy; this influence is stronger at lower values
of elastic anisotropy. `c also increases with a decrease in the volume fraction of the soft, minority phase.
These trends have been rationalised in terms of the combined effect of the driving force for phase inversion
and geometry.
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