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Abstract: Periodic boundary conditions (PBC) are a set of boundary conditions that can be used to 
simulate a large system (i.e. bulk material) simply by modeling a finite Representive Volume 
Element (RVE). PBC has been favored among many researchers and practicing engineers in the 
study of various materials. Unfortunately it remains vague on how PBC should be applied properly 
in FEA packages such as Abaqus. In this article, we explicitly show the detailed procedures one 
could easily follow to define PBC in Abaqus through a simple example which is given in the forms 
of input file. A robust Matlab script which can be used to pair a large number of randomly 
distributed nodes on two opposite surfaces of a 3D RVE is also supplied to facilitate easy application 
of PBC. 
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1. Introduction 

To study the properties of a bulk system such as a material, we run computer simulation as using 
molecular dynamic method to investigate the elastic properties of polymer. We could use a sufficient 
large simulation box such that few molecules are on the surface of such a “box”, unfortunately this 
practice will need extremely extensive computational time and often it is impossible. On the other 
hand, a much smaller simulation box can be used, but most molecules would be near the edge of the 
simulation box. The solution to this dilemma is applying periodic boundary conditions. 

Periodic boundary conditions are commonly applied in molecular dynamics, dislocation dynamics 
and materials modeling to eliminate the existence of surface and avoid huge amount of molecules 
or large size of simulation box. In periodic boundary conditions, an infinite lattice system is formed 
simply by repeating the simulation box throughout space (Figure 1). When a molecule leaves the 
box, one of its images will enter through the opposite face with exactly the same way and direction. 
The molecules in the simulation box will conserve and the system can be thought of as having no 
surface.  
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Figure 1: A 2-D periodic boundary condition cell 

Composite material has appealing properties which is more and more widely used especially in 
aerospace industry. The Boeing 787 Dreamliner can be the best example of this claim.  Finite 
element method is a time and cost effective numerical approach which has been applied to study 
composite materials with great success. (Ochoa and Reddy, 1992; Alfano and Crisfield, 2001).  
PBCs are favored by researchers for modeling the composite materials for a long time (Al-Ostaz, 
1997; Jiang, 2001; Pegoretti et al, 2002; Wang, 2007; Melro, 2013). A randomly distributed 
inclusion-matrix composite RVE is shown in Figure 2. A strain controlled PBC may be specified 
for this RVE by the following equations (1)-(3):                                               
 

 

 

 

where u is the displacement at x, 0  is strained applied to the RVE, t is traction force and 1
B         

represents the boundary B whose normal is along “1” direction. 

Equation (1) represents kinematic boundary conditions, and 1
B  is subjected to periodic boundary 

condition. These are strain controlled PBC. Equation (1) can be simply understood as a strain 0 is 
applied to RVE as shown in the Figure 2. 

Unfortunately, it has been unclear to many researchers how PBC may be properly defined in finite 
element modeling of composites. Question of how to define periodic boundary conditions during 
modeling process is very frequently asked but no concrete answer has been given on internet. 
Among many of the powerful FEA packages, Abaqus is a strong candidate which can be used for 
simulation of composite materials. In this article, we explicitly explain how PBC can be properly 
defined in Abaqus. 

    xxuLxu 0 2
Bx

   
   xtLxt

xuLxu




1
Bx

)2(

)3(

)1(

2014 SIMULIA Community Conference 708



 
Figure 2. A randomly distributed inclusion-matrix composite RVE (Al-Ostaz et al. , 

2007) 

2. Applying PBC in FEA

2.1 Constraint equations in Abaqus 

We apply PBC through linear constraint in Abaqus (Abaqus 6.12 user manual). Multi points may 
be constrained by a general linear combination of nodal variables (such as displacements at different 
nodes), the summation of the product of a coefficient and the corresponding nodal variable is equal 
to zero.  Specifically, we define a general linear homogeneous equation  

0...21  R
kN

Q
j

P
i uAuAuA      (4) 

where R is node,  k is degree of freedom, i.e. 1, 2, or 3 which represent x, y ,z directions, AN  is a 
constant coefficient that define the relative motion of nodes. In abaqus, we use the command:  
* Equation  

to define the above general linear constraints of N points. The command line data is shown in Figure 
3. The data lines in Figure 3 below *Equation may be contained in a separate input file i.e. file.inp, 
a command line  

*Equation, input=file 

is then included in the model input file.  

2.2 Dummy node 

In order to apply PBC using constraint equations described above, one abstract concept of “dummy 
node” is introduced in Abaqus. We rewrite Equation (4) by replacing zero on the right side of the 
equation (4) by a nonzero value 𝑢̂    

uuAuAuA R
kN

Q
j

P
i ˆ...21     (5) 

where 𝑢̂ is a prescribed value such as a strain or displacement.  
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The prescribed value 𝑢̂  will be applied through a dummy node, Z, which is not attached to any other 
part in model. Though the dummy node will not be connected to any part in a model, a reference 
point with arbitrary coordinates should be defined to represent the dummy node. The dummy node 
can be specified as a boundary condition with a value 𝑢̂ at a certain direction. One has to define a 
load step in order to apply this value as a boundary condition since in initial step, users are not 
allowed to specify a nonzero displacement value as boundary. 
 

 

Figure 3.  Definition of *equation 

 

2.3 An example to define PBC in Abaqus  

A one by one (1 × 1 ) square RVE is subjected to the following PBCs: 

01.011  RightLeft uu       (6) 

    022  BottomTop uu        (7) 

•The first line
•Alwarys starts with this command

*Equation

•The second line
•Define how many terms are there in the linear 
constraint equation

N

•The third line
•The first node p, at direction i, with coefficient 
A1, p can be a single node (still needs to be 
defined as a node set) or node set

P, i, A1

•The fourth line
•The second node Q, at direction j, with 
coefficient A2
•If P is a single node, Q and all the rest nodes 
have to be single node; if P is a node set, Q and 
rest nodes can be either node set or single nod

Q, j, A2

• ......,...,...

•The (N+2)th line
•The Nth node R, at direction k, with coefficient AN

R,k,AN
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We use “Left” to represent node set “Left” which includes nodes “ 1,7,13,19,25,31”, “Right” is the 
node set which has nodes “6, 12, 18, 24, 36”,“ Top” is the node set which includes nodes “ 32, 33, 
34, 35” and “ Bottom” is a node set having nodes “2, 3, 4, 5”. 

In order to apply the constraint equations (6) and (7), one should follow the steps below: 

Step 1: 

Introducing a dummy node Z and rewrite the equation  

       uuAuAuA R
kN

Q
j

P
i ˆ...21             (8) 

as 

 0ˆ...21  Z
m

R
kN

Q
j

P
i uuAuAuA         (9) 

which means applying a displacement value  𝑢̂  to a dummy node Z at direction m.  

Specifically for our simple example: 

              01.011  RightLeft uu                   (10) 

will be rewritten as    

                                                   0111  ZRightLeft uuu                (11) 

where  

                 01.01 Zu                         (12) 

Equation (11) is used to constrain degree of freedom 1 at node Z (1000 for this example) to 0.01. 
Equation (12) requires defining a boundary value in history modal (i.e. assigning a displacement 
value “-0.01” to dummy node 1000 in load module within a load step other than in initial step) 

Step 2: 

Add the following command lines in modal data, it is vitally important to put these command lines 
in an appropriate place (refer to Appendix A of sample input file) 

*Equation 
3                   **   equation has 3 terms 
Left, 1, 1          **   left surface node set, dof =1, coeff. = 1 
Right, 1, -1        **   right surface node set, dof =1, coeff. = -1 
1000, 1, 1          **   dummy node Z=1000, dof =1, coeff. =1 
 
*Equation 
3                   **   equation has 3 terms 
Top, 2, 1           **   left surface node set, dof =2, coeff. = 1 
Bottom, 2, -1       **   right surface node set, dof =2, coeff. = -1 
2000, 2, 1          **   dummy node Z=2000, dof =2, coeff. =1 

One needs to make sure to define a big enough dummy node number such that it does not have 
conflict with any other node numbers in his model.  Numbers 1000 and 2000 are used in this example. 

Step 3:  
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Prescribe boundary conditions for dummy node Z (e.g. “1000” and “2000” in here). 

Add the following command lines in history data, which means we need to define a load step first, 
then specify the magnitude of displacement for the dummy node in that load step.   

*Boundary 
1000, 1, 1, -0.01   
** at dummy node 1000 prescribed boundary conditions   
**from DOF 1 to DOF 1 as “-0.01”   
*Boundary 
2000, 2, 2, 0      

 

2.4 Algorithm to generate paired nodes  

It is nontrivial to retrieve all the nodes on the PBC target surfaces and save them in a text or dat file. 
After that, we use a Matlab script (Appendix B) to find the matching nodes on two opposite surfaces 
as “Left” and “Right” in Figure 4. The algorithm which could be used for the above purpose is: 

1. Read the data file which includes all the x, y, z coordinates for all the target nodes on the 
left and right sides of the three-dimensional RVE (Figure 4). Save the node numbers and 
corresponding coordinates in a cell array.  

2. Sort the nodes (including node numbers, x, y, and z coordinates at the same time, node # 
and coordinates have to be “tied” together) on both sides according to their Y coordinates.  

3. Compute the pairwise distance between the node sets “Left” and “Right” and save the 
distances in a matrix.  

4. Find the minimum distance between the first point on the left side and a certain point on 
the right side, fetch the node numbers of the two points with the minimized distance and 
save them in a matrix. 

5. Move to the next node on the left side surface and repeat step 4 until all the nodes on the 
left side are read.  

6. Retrieve the paired nodes and incorporate them into Abaqus input file to define 
“Equations”. 

          
Figure 4.  A 3D RVE with nodes on left and right side surfaces 

 

Z 

Y 

X 

Left Right 
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3. Results and Conclusions 

Figure 5 shows the stress contour results when a RVE is subjected to a strain controlled PBC (refer 
to Appendix A for Abaqus input file). The advantage of applying PBC to material study is to avoid 
large simulation box thus reduce the computational time dramatically. Applying PBC in a 3D RVE 
with many nodes can be tedious. With the script included in this work (Appendix B and C), one may 
easily find paired nodes which are needed to define constrain equations in Abaqus.  

      

 

Figure 5.  An 1×1 RVE model and stress contour with strain controlled PBC 
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5. Appendix  
 

A. Sample Input file to apply PBC in Abaqus: pbc.inp 
 

** This is to use a 1*1 RVE to demonstrate how to apply PBC in Abaqus 
** Units: Metric-Meter-Pa 
*Heading 
** Job name: PBC Model name: pbc 
** Generated by: Abaqus/CAE 6.11-1 
*Preprint, echo=No, model=YES, history=YES, contact=NO 
** 
** PARTS 
** 
*Part, name=RVE 
*End Part 
**   
*Part, name=dummy-LR 
*End Part 
**   
*Part, name=dummy-TB 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=RVE-1, part=RVE 
*Node 
      1, -0.5, -0.5 
      2, -0.3, -0.5 
      3, -0.1, -0.5 
      4,  0.1, -0.5 
      5,  0.3, -0.5 
      6,  0.5, -0.5 
      7, -0.5, -0.3 
      8, -0.3, -0.3 
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      9, -0.1, -0.3 
     10,  0.1, -0.3 
     11,  0.3, -0.3 
     12,  0.5, -0.3 
     13, -0.5, -0.1 
     14, -0.3, -0.1 
     15, -0.1, -0.1 
     16,  0.1, -0.1 
     17,  0.3, -0.1 
     18,  0.5, -0.1 
     19, -0.5,  0.1 
     20, -0.3,  0.1 
     21, -0.1,  0.1 
     22,  0.1,  0.1 
     23,  0.3,  0.1 
     24,  0.5,  0.1 
     25, -0.5,  0.3 
     26, -0.3,  0.3 
     27, -0.1,  0.3 
     28,  0.1,  0.3 
     29,  0.3,  0.3 
     30,  0.5,  0.3 
     31, -0.5,  0.5 
     32, -0.3,  0.5 
     33, -0.1,  0.5 
     34,  0.1,  0.5 
     35,  0.3,  0.5 
     36,  0.5,  0.5 
*Element, type=CPS4R 
 1,  1,  2,  8,  7 
 2,  2,  3,  9,  8 
 3,  3,  4, 10,  9 
 4,  4,  5, 11, 10 
 5,  5,  6, 12, 11 
 6,  7,  8, 14, 13 
 7,  8,  9, 15, 14 
 8,  9, 10, 16, 15 
 9, 10, 11, 17, 16 
10, 11, 12, 18, 17 
11, 13, 14, 20, 19 
12, 14, 15, 21, 20 
13, 15, 16, 22, 21 
14, 16, 17, 23, 22 
15, 17, 18, 24, 23 
16, 19, 20, 26, 25 
17, 20, 21, 27, 26 
18, 21, 22, 28, 27 
19, 22, 23, 29, 28 
20, 23, 24, 30, 29 
21, 25, 26, 32, 31 
22, 26, 27, 33, 32 
23, 27, 28, 34, 33 
24, 28, 29, 35, 34 
25, 29, 30, 36, 35 
*Nset, nset=_PickedSet2, internal, generate 
  1,  36,   1 
*Elset, elset=_PickedSet2, internal, generate 
  1,  25,   1 
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** Section: Section-1 
*Solid Section, elset=_PickedSet2, material=steel 
*End Instance 
**   
** Defining two dummy nodes 1000, 2000 to apply prescribed boundary condition values 
** 
*Instance, name=dummy-LR-1, part=dummy-LR 
*Node 
1000,           -10.,           10.,           0. 
**This dummy node can be arbitrary 
*Nset, nset=dummy-LR-1-RefPt_, internal 
1000,  
*End Instance 
**   
*Instance, name=dummy-TB-1, part=dummy-TB 
*Node 
2000,           10.,           0.,           0. 
**This dummy node can be arbitrary 
*Nset, nset=dummy-TB-1-RefPt_, internal 
2000,  
*End Instance 
**   
** Define nset "Set-dummy-LR" and "Set-dummy-TB" for the two dummy nodes                                       
** 
*Nset, nset=Set-dummy-LR, instance=dummy-LR-1 
 1000, 
*Nset, nset=Set-dummy-TB, instance=dummy-TB-1 
 2000, 
*Nset, nset=Left, instance=RVE-1, generate 
  1,  31,   6 
*Nset, nset=Right, instance=RVE-1, generate 
  6,  36,   6 
*Nset, nset=Top, instance=RVE-1, generate 
  32,  35,   1 
*Nset, nset=Bottom, instance=RVE-1, generate 
  2,  5,  1 
**Start defining constraints using equation 
*Equation 
3 
Left, 1, 1.,Right, 1, -1.,Set-dummy-LR, 1, 1. 
*Equation 
3 
Top, 2, 1.,Bottom, 2, -1.,Set-dummy-TB, 2, 1. 
*End Assembly 
**  
** MATERIALS 
**  
*Material, name=steel 
*Elastic 
 2e+11, 0.3 
**  
**  
** STEP: Step-apply-constraint 
** 
** Create a load step to apply a prescribed disp value to dummy node                       
*Step, name=Step-apply-constraint 
**This step is used to apply constraint to dummy nodes 
*Static 
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1., 1, 1e-05, 1. 
** Apply prescribed boundary conditions as displacement or strain to dummy nodes      
** BOUNDARY CONDITIONS 
**  
** Name: BC-LR Type: Displacement/Rotation 
*Boundary 
Set-dummy-LR, 1, 1, -0.01  
** Name: BC-TB Type: Displacement/Rotation 
*Boundary 
Set-dummy-TB, 2, 2, 0 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
 

B. Matlab script to find paired nodes between two opposite surfaces of a three-
dimensional (3D) RVE : pbc.m  

 
%%pbc.m 
%%This script is to find out the pairs of nodes on two opposite surfaces 
% of a 3D RVE which can be used to define Periodic Boundary Conditions 
% by using "Equations" in FEA package Abaqus  
% Authors: Weidong Wu, Joseph Owino, University of Tennessee Chattanooga 
% Ahmed Al-Ostaz, The University of Mississippi,Oxford MS 
% Liguang Cai, Comau, Inc. Southfield MI 
%%  
% First the program will read the coordinates of the points on the two  
% sufraces in a text file 
clear all; 
fileID = fopen('coordinates.txt'); 
formatSpec = '%s'; 
N = 8; 
% reads file data, using the formatSpec N times 
% c_h: cell header 
c_h = textscan(fileID,formatSpec,N,'delimiter','|'); 
% Read coordinates for nodes on the two opposite surfaces 
% Save them in a cell array whose first and fourth columns are node # 
% rest columns are x,y,z coordinates 
% c_cord 
c_cord = textscan(fileID,'%d %f %f %f %d %f %f %f'); 
fclose(fileID); 
%%  
% Turn cell array which stored coordinates info. for points on left and  
% right side of RVE into a sorted matrix 
% Initialize matrix  
cordMatrix=[]; 
for i=1:N 
c1_cell=c_cord(1,i); 
c1_elem=c1_cell{1,1}; 
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cordMatrix(:,i)=c1_elem; 
end 
% Sort the matrix by the third column-Y coordinates 
% sortedMatrixByLy-sorted matrix by left y coordinates 
sortedMatrixByLy=sortrows(cordMatrix, 3); 
% sortedMatrixByRy-sorted matrix by right y coordinates 
sortedMatrixByRy=sortrows(cordMatrix, 3); 
%%  
% pairwise distance between left and right side sets of points 
% # of points on Left side and right side do NOT have to the the same 
Left=sortedMatrixByLy(:,1:4); 
Right=sortedMatrixByRy(:,5:8); 
% Fetch the x,y,z coordinates of left side points 
LC=Left(:,2:4); 
% Fetch the x,y,z coordinates of right side points 
RC=Right(:,2:4); 
% Compute all the distances between points on left and right side 
% i.e. left has M points, right has N points, size of D matrix is M*N 
D = pdist2(LC,RC); 
%%  
% Find the minimum distance value in each row of D and  
% return the corresponding indices 
DD=D; 
[Sml,ind] = min(DD,[],2); 
for j=1:size(DD,1) 
[Sml(j),ind(j)] = min(DD(j,:),[],2);  
% Replace the value in the same column of ind(j) by a very large number 
% eg.999999 in here to avoid duplicat indice (i.e. the same point on one  
% side used more than once) 
DD(:,ind(j))=999999; 
end 
% Based on the returned indices find the paired points on left and right 
% sides which has minimum distances   
% The paired nodes then can be incorporated into FEA package Abaqus input file to  
% define Periodic Boundary Conditions by using "Equations" in Abaqus  
% pn:parid nodes 
pn=[Left(:,1)  Right(ind,1)]; 
 
 
 

C. Sample coordinates for the points (nodes) on the two opposite surfaces of a 3D 
RVE: coordinates.txt 

 
L_Node_No |  x   |  y  |  z |   R_Node_No |   x   |     y    |      z 
1047 8.1688 17.6658   8.25E-01   323   20.4995    17.989401       8.24E-01 
1048 8.1647 17.5807   8.21E-01   324   20.4956   18.0783       8.29E-01 
1050 8.1662 17.680201  9.16E-01     325     20.4991   17.989401       9.07E-01 
1051 8.1555 17.578501  9.15E-01     326  20.495701  18.0783       9.05E-01 
1279 8.1657 17.4765   8.22E-01  565  20.498501  17.884399       8.24E-01 
1281 8.1569 17.476   9.15E-01  566  20.495899  17.884001       9.04E-01 
1519 8.1657 17.374001  8.22E-01  803  20.497801  17.782       8.22E-01 
1521 8.157 17.374001  9.15E-01  804  20.4965    17.7813       9.15E-01 
1757 8.1657 17.271999  8.22E-01  1045  20.4963    17.68       8.22E-01 
1759 8.157 17.271999   9.15E-01  1046  20.5068    17.6803       9.15E-01 
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