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Abstract

The classical Palmgren-Miner’s rule (PM), despite clearly approxi-
mate, is commonly applied for the case of variable amplitude loading and
to date, there is no simple alternative. In the literature, previous authors
have commented that the PM hypothesis is based on an exponential fa-
tigue crack growth law i.e. when da/dN is proportional to the crack size
a, the case which includes also Paris law for m = 2, in particular. This
is because they applied it by updating the damage estimate during the
crack growth.

It is here shown that applying PM to the "initial" and nominal SN
curve of a cracked structure, results exactly in the integration of the sim-
ple Paris’ power-law equation, and more in general to any crack law in
the form da/dN = HAc"a™. This leads to an interesting new interpre-
tation of PM rule. Indeed, the fact that PM rule is often considered to
be quite inaccurate pertains more to the general case when propagation
cannot be simplified to this form (like when there are distinct initiation
and propagation phases), rather than in long crack propagation. Indeed,
results from well known round-robin experiments under spectrum loading
confirm that even using modified Paris’ laws for crack propagation, the
results of the "non-interaction" models, neglecting retardation and other
crack closure or plasticity effects due to overloads, are quite satisfactory,
and these correspond indeed very closely to applying PM, at least when
geometrical factors can be neglected. The use of generalized exponential
crack growth, even in the context of spectrum loading, seems to imply
the PM rule applies. Therefore, this seems closely related to the so called
"lead crack fatigue lifing framework". The connection means however that
the same sort of accuracy is expected from PM rule and from assuming
exponential crack growth for the entire lifetime.
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ear damage cumulation



1 Introduction

The classical approach to Variable Amplitude (VA) loading is to apply the
Palmgren-Miner’s (PM) linear damage rule, suggested by Miner [1] at Douglas
Aircraft in 1945, 21 years after Palmgren [2], which suggests for a given block
with a total number of cycles per block N, that damage will be
Uz
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where n; is the number of cycles spent at level ¢ on the stress amplitude, and
N; is the total number of cycles the specimen could resist at that level of stress,
according to the constant amplitude (CA) SN Wohler curve. Failure according
to PM should occur at critical damage of D, = 1. PM linear rule is obviously
quite approximate, does not consider load sequence or memory effects, and
could be both on the unsafe or on the safe side, but it is by far the most well
known and used damage summation law (see review in [3]). To design on the
safe side, handbooks suggest to simply assume a lower D.. For example, FKM-
Guideline [4] recommends D, = 0.3 for steels, steel castings, aluminum alloys,
while D, = 1 for ductile iron, grey cast iron malleable cast iron (for which
therefore PM seems to work quite well in general). Attempts to generalize PM
rule like e.g. Miller & Zachariah [5], Manson & Halford [6] have had limited
success, and anyway become very cumbersome when large number of blocks or
indeed random loading is considered.

For cracked structures, PM has been applied much less, because full inte-
gration of crack growth curves is generally attempted in the hope to be more
accurate [7, 8, 9], and the ultimate goal would be to obtain the full SN curve
from integration as a total-life analysis based solely on crack propagation, i.e. in-
cluding starting from very short cracks. This would hope to shed light on the old
problem of distinguishing between the initiation and propagation phases, which
generally has only a vague solution (the threshold "has often been defined as
a macrocrack, visible in a low-power microscope" [10]). However, unsatisfac-
tory prediction quality at times "stems from an inadequate conception of the
constraint factors incorporated in the NASGRO models" [7].

Clearly, PM is not the way forward for very advanced designs of light struc-
tures, although it remains the basis, for example, for the application where it
started from, rolling bearings, and many other applications. It is also commonly
used in design of welded joints (see [4] where variants are proposed to account
for cycles below the fatigue limit, if it exists).

In any case, it is appropriate to draw some possible conclusions, because
some confusion may have originated from the conclusion of some authors who
have noticed, like Miller & Zachariah [5], that "the Palmgren-Miner hypothesis
can be stated to be based on an exponential fatigue crack growth law". Indeed,
[5] notice that a law of the type

da/dN = LAc"a (2)



where in their case they refer to the type of equations originally proposed by
Frost and Dugdale [11], leads to PM rule. It should be noted immediately that
the "exponential crack growth" was proposed even earlier by Shanley [12] in his
eqt.4 in order to justify SN curves also under spectrum loading and his reference
to h ~ 8 without much reference to actual real crack, is rather similar to the
equations by few authors (Nisitani [13] Nisitani and Goto [14] Nisitani et al.
[15], Murakami et al. [16,17], see also Pugno et al. [17]).

Notice that integration of this type of crack growth laws leads to a SN curve
Ac"N = const where the typical value of h is of the order of that known
in textbooks as correspond to the Basquin exponent in the SN curves. The
logarithmic dependence on initial crack size which results from the integration
has been obviously not observed in the classical studies and textbooks (except of
course that empirical factors do take into account, for example, of surface finish
which may be an indication of a size of initial crack), until recently when it was
indeed observed [17]. The exponential crack growth is also recalled sometimes in
more general attempts to see unified procedures for crack growth under spectrum
loading [19, 20], but this requires some explanation. Indeed, the USAF report
[17] refers to exponential fits either for crack sizes a < 0.005in, which would be
probably called indeed short cracks, or as an approximation in small increments
of propagation. Indeed, we read explicitly (pag.A10) that exponential fits are
assumed only over small increments "Incremental crack growth is determined
through log-linear interpolation of the crack growth curve. Crack growth curves
typically increase at about the same rate as an exponential function. That is,
although an exponential function may not fit the crack growth curve exactly,
over a short interval the rate of increase of the crack growth curve is nearly
exponential. Crack growth calculation errors can occur using linear interpolation
even when a large number of points are included in the crack growth table."
Hence, it should not be concluded that exponential crack growth can be assumed
for the entire lifetime.

The present note starts from showing a disagreement with the Miller-Zachariah
[5] statement that PM should be valid only with exponential crack growth. This
erroneous conclusion is shown to clearly come from updating the damage in each
block starting from the initial crack size. This is not the correct interpretation
of the PM rule, which in general never updates the damage during the calcula-
tion — indeed, this simplification is the basis for the simplicity of PM rule. A
more correct interpretation of PM in the context of long cracks, leads to quite
more general conclusions. Indeed, it is here shown that a correct application of
PM rule follows directly from any propagation law of the form

da/dN = LAc"a™ (3)

which covers the equations for short cracks which we referred to as special cases,
as well as the more well known Paris’ law defines the advancement of crack in
terms of the range of stress intensity factor K

da’ m
= C(aK) (4)



where C and m are experimentally determined "material parameters". This is
of course just the basic form of the Paris equation, and strictly speaking, PM
does not follow from more elaborate versions, and from application of the PM
rule in range where Paris’ law show these deviations, like near threshold or near
static failure.

The note then concludes with a discussion about what may be the reasons
why PM doesn’t seem to work so well in general, and when instead could work.

2 PM rule as a consequence of crack propaga-
tion laws

We consider applying the PM rule to a crack of characteristic size a. We remind
that Paris’ rule or law defines the advancement of crack in terms of the range
of stress intensity factor AK = gAo/ma (4). The Paris crack growth law is
considered first, but then it will be recognized that this is a special case of
a more general set of propagation laws. Integrating Paris’ law (4) (assuming
geometrical factor ¢ is constant) within a block i gives a propagation from a;
to a;4+1 (assuming m > 2)

72 (m)2 —1)C (gAc)™ Ny = a; ™ —aj7* (5)

and hence summing up to failure, all the intermediate values of the crack cancel
out (we are neglecting interaction and retardation effects of course)
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Writing the factors «; = %L = &+ which is the proportion of cycles n;
spent at level ¢ on the total number of Ccycles of the base spectrum N, or else
the proportion of the total life Ny; spent at level ¢ with respect to the total life
N*, we get a sort of Gassner SN curve
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where it can be considered that an amplification factor for the base spectrum
S is defined such that Ac* = SAomax is a Gassner stress range, where Aopax
is the largest stress range of the spectrum, and so that each individual block
stress range is Ao; = Ao} . Finally, that the multiplicative factor

Ac; \™ Acr \™
GZ(TZ*) aiZ(F?ax) o (8)

can be computed from the base spectrum.



This result looks identical to the result that was recently obtained for the
SN "Gassner" curve (i.e. the Wohler SN curve for spectrum loading), see [21],
where it was found that Gassner curve are simply shifted CA curves starting
from power laws for the CA case, like Basquin’s law

N[Ac(N)]" = Cw (9)
and even much more in general. The integrated form of Paris’ law for CA

(7) with G = 1, is also a power law of the Basquin type, where m = k and
1—-m/2 1—m/2
(ll —a

Cw = WW' Hence, our result is exactly the same as obtained from

applying the linear damage sum rule of PM for which damage sum will be given
by
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and the result follows.

If G = 1, one simply has the SN curve for the Constant Amplitude (CA)
case. Indeed, in [21] it was also found that starting from a power law SN curve,
and applying PM, gives a Gassner VA curve which is shifted from the CA curve,
but here dealing with specimen with a long crack we have also the independent
integration of Paris’ law which results in the same final equation. For a plain
specimen or a notched one (if critical distance methods could be applied), [21]
proved only that Gassner curves were shifted CA curves with the factor G.

An important consideration is that the same procedure we just outlined
can be generalized for the law (3) as the exponent in Ao plays no role in the
summation, and the result carries over to the more general crack growth curves.

Therefore, it is concluded that in this general class of crack propagation laws,
including many short crack proposed in the past, as well as Frost-Dugdale, PM
follows naturally and is equivalent to integration of the crack growth. Further,
that the Gassner curve is a shifted CA curve with shift given by the factor G.

2.1 Applying PM in a refined sense?

The reason [5] suggested PM rule stems from the exponential crack growth, and
not from Paris’ law, may be that [5] computes the damage by considering at the

denominator the number of cycles J/\T\z which would lead to failure at the given
stress range level,

T2 (m/2 = 1)C (gAo))" Ny =a; " —a} " =0T (12)
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where we supposed that the final size is large enough for the term to be neglected.



Hence, dividing the actual number of cycles spent at each level N;, by ]/V\l
we obtain the total damage as

1 2 1— 2
m/ a m/

D= ZA =y = alfm/?l (13)
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which does not sum to 1. If we take small increments a;y1 = a; + da;, then
expanding in Taylor series

m/2

(m —2) (m—2)x—~da; (m—2) [*da (m—2)
D~ G AT E) g, = AN _ T4 “a_m-a,
Z al m/2 da 2 Z a; 2 /a a 2 08

1
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which in general is >> 1. For example, if ay = 1000a1, then log %f =log 1000 =
6.91. This is only valid for m > 2, and approximately as we have expanded in
Taylor series, and neglected the final values of the crack at failure at each stress
range level. For example, for m = 4, this means a spurious artificial increase of
damage of 7. There could be also an effect of load sequence for discrete spectra,
if we removed these approximations.

Miller & Zachariah [5] mention this interpretation of the PM rule, and there-
fore state that the PM hypothesis is based on an exponential fatigue crack
growth law i.e. Paris for m = 2, as in this case, repeating the process just
completed for m > 2, we obtain simply (like in their eqt.3)

D:ZA leogaz/al (15)

ogayi/ai

and neglecting the change of ay; with Ao (considering a given final crack
size which is dictated by static failure K. (1 — R) = gAo; /may; where R =
Omin/Omax 18 the load ratio, and K. is static toughness, and neglecting the
influence of Ao; on ay;)

1 K3 T 1 7
1ogaf/alz 08 ait1/ai = logay/a
(16)

which satisfies PM.

3 Discussion - validity of PM

In view of the general correct interpretation, PM should apply rather commonly,
including the case of short cracks. However, since we cannot state that "fatigue
life is dominated" by initiation, as it is often believed for constant amplitude
loading at low levels of stress range, in the case of short cracks we inevitably have
the sum of the two fatigue phases (initiation and propagation), and probably
this makes the PM invalid. Indeed, as reported in [22] [23] and see Fig.1,
Damage sum D¢, can be as low as Dy, = 0.001 in extreme cases, or as large

af

ai

(logas/ay +logas/as + ...logasi /an—1) =

1



as Diea1 = 10 in other extreme cases, although the distribution is rather of the
extreme values type, so that only 10% of cases, for example, Dyea < 0.1, or in
another 10% of cases, it is D,ea > 1. It is found that the median value is rather
0.4, from which the standards obtain the safety factors suggested for design
purposes, which we mentioned in the introduction.
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Fig. 1 — Adapted from [22] [23] - Damage sum D;ca1 can be as low as
Dyeal = 0.001 in extreme cases, or as large as Dyea; = 10 in other extreme cases.

It is interesting to note that in double linear damage rules like Miller Zachariah

[5], but also Manson and Halford [6], it is said that cycles at high strains tend to
decrease the initiation life at cycles at lower strains, so they introduce a negative
effect, accelerating failure. In crack propagation, the opposite is normally found,
as overloads give "crack retardation" effects. This means that even double linear
damage rules would need to be adapted to crack propagation effects and tuned
appropriately — and it is not clear if this could be done in the general context.
In the most common case, when there is crack initiation and propagation, it
is unclear what their benefit could be, and indeed, this may explain their very
limited success.

Real damage sum D

real




When dealing with long cracks, there have been very few investigations of
PM rule, perhaps because overload effects were found and an attempt was im-
mediately started to deal with them accurately. Not only Miller and Zachariah
[5], but also in this context early authors (Schijve & Broek [24]) interpreted PM
rule in the "refined sense", and therefore exacerbated the increase of damage.
Indeed, in [24] the ratio of final to initial crack length is 32 = 6 and hence the
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spurious artificial increase of damage (14) is (for their material having m = 4)
-2
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Therefore, their result that gust load fatigue tests the predicted damage at
failure was fairly high, viz. of the order of 2 to 4, should be significantly recon-
sidered to be not so high, of the order of 1 to 2, which will be very close to values
of a round-robin excercise we are about to describe in Tab.1. Therefore, despite
clearly there are overload effects as it is well known, and we are not saying this
is not a real effect, they do not produce such tremendous effect on the PM sum.
A fortiori one of the conclusions from Schijve & Broek [24] is valid, that "The
Palmgren-Miner rule will give conservative crack rate predictions ...it can be a
useful tool to fix inspection periods for ’fail-safe’ aircraft structure".

Today, NASGRO models [8] are considered to be among the best possible
calculation methods. They do attempt to consider load sequence effects with
"interaction models" of various complexity. However, as it can be read in the
paragraph "2.1.7.6 Notes on using the Load Interaction Models": "In general,
caution should be exercised when these models are used because they can be un-
conservative compared to the non interaction model. This is so because the
dominant effect modelled is retardation, even if accelerated growth is predicted
n a few cases. Before applying these models for life predictions, it is recom-
mended that the user gain sufficient experience and fine tune the various model
parameters based on comparisons with test data for the kind of spectra relevant
to the usage."

Obviously, a calculation based on PM rule would work similarly to integra-
tion of Paris’ law with "no-interaction" models, at least in the sense that no
overload effect and other memory effects are considered and within the assump-
tion that geometrical factors in the crack size do not change during propagation,
which is largely satisfied in cases when cracks are relatively small for much of
their life. Hence, with respect to a full NASGRO calculation without load in-
teraction, the PM rule will often be almost equivalent.

Based on Tab.4 of the NASGRO manual [8], which in turn reports a large
set of data from a round-robin exercise [9] with a material having a rather good
form of Paris law crack propagation law, with m very close to 3 (2219-T851 alu-
minum), some findings in the present paper seem confirmed. The paper deals
with a Center-Cracked Tension Specimens (so that geometrical factors are prob-
ably constant over much of the fatigue propagation), under Random Spectrum
Loading of interest of a typical fighter aircraft Air-to-Air (A-A), Air-to-Ground
(A-G), Instrumentation and Navigation (I-N), and Composite missions.



Spec. Loading Stress Test Non Int.  Non Int. Willenborg  Willenborg  Willenborg  Strip Constant
No. Spectrum ksi Cycles NASGRO  Walker Walker Generalized Modified Yeld Closure
R =3.0 R=3.0 Phi0 = 0.4 Cfspec = 0.5
M-81  3*Air-Air 20 115700 0.78 0.71 0.49 0.54 0.54 0.62 0.70
M-82 30 58585 1.27 0.92 0.62 0.87 0.92 1.27 1.15
M-83 40 18612 1.28 0.79 0.54 0.88 0.94 1.71 1.16
M-84  3*Air-Grn 20 268908 0.86 0.77 0.51 0.57 0.55 0.52 0.60
M-85 30 95642 1.25 0.98 0.63 0.81 0.82 0.98 0.87
M-86 40 36397 1.24 1.04 0.67 0.99 1.04 1.64 1.06
M-88  2*Ins-Nav 30 380443 1.36 1.19 0.56 0.66 0.59 0.51 1.23
M-89 40 164738 1.73 1.37 0.63 0.80 0.79 0.92 1.56

Table 1: Ratio test over predicted life Niest/Npreqa for ASTM Round Robin
Spectra. Material 2219-T851, L-T AL, Data in Tab.4 of NASGRO®) manual
[8] and in turn based on [9]. The non-interaction models prediction (which is a
form very close to applying PM rule to crack propagation) is extremely close to
real tests, and often conservative by a little margin. Instead, interaction models
predict often unconservative results and sometimes by larger margins.

Indeed, even though the round-robin exercise was made with slightly dif-
ferent forms of crack propagation law than Paris law, the results are very en-
couraging, and they are relevant for spectrum loading of engineering interest,
and with high quality data, although since 1981 of course the crack propaga-
tion codes may have improved. As in [8,9], load interaction models, despite
their complexity, lead to unconservative results unless the parameters are finely
tuned, the non-interaction assumption seem of more appeal (as indeed recom-
mended in the NASGRO manual after all). Indeed, they lead to errors which
are certainly not very large, with total life predicted very close to the real life
measured, as reported in Tab.1 (see second and third column). And what is im-
portant to notice, with respect to the PM rule, is that they are much closer to
correct than the real damage sum Dy, from Fig.1 was suggesting. Remarkably
the damage sums in this round-robin excercise are not too different from those
of Schijve & Broek [24], once the latter are corrected for the misinterpretation
of PM damage rule.

Hence, in general, the error in applying the PM rule in the most general
cases, could be attributed to various factors:

e Kither the laws governing crack propagations are not correctly of the form
above (separate variables power law forms) and in particular not of the
exponential type

e or they are correct for short cracks, but differ largely when propagation
stage is reached (and probably they are no longer exponential, but rather



of the form expected from the integration of Paris’ law), in which case a
single exponential law should not be used. These effects tend to make the
damage sum too low

e there are strong sequence effects (and in particular, overloads) which make
the damage sum too high

4 Conclusions

There has been a suggestion in the literature that PM should follow from ex-
ponential crack growth only (Miller and Zachariah, [5]). This is shown to stem
perhaps from an incorrect interpretation of PM rule, updating the damage dur-
ing the damage sum, which was repeated also in some early assessment of PM
rule for long cracks (Schijve & Broek [24]). In the correct version, PM follow
instead directly from a much more general crack growth law, where the crack
growth is proportional to the product of powers of stress amplitude and crack
length. This includes a number of laws proposed in the past for short or long
crack growth, and obviously Paris’ law. The reason why PM doesn’t apply very
accurately in general may stem from its use in context involving a change from
initiation to propagation laws (which tends to make the damage sum too low),
or obviously also sequence effects and in particular overloads effects in long crack
propagation, which tend to make the damage sum too high.

When correcting for the "refined" interpretation of PM rule for long crack,
PM may work not too bad, as for some important round-robin data on spectrum
loading of an aluminum alloy of military aircrafts, neglecting interaction effects
was found to be perhaps better than including them.

The application of PM as suggested by Ciavarella D’ Antuono & Demelio [21]
leads to VA SN curves which are shifted power laws of the CA curve, similarly
to what was found plain specimen having power law SN curves (Basquin’s law)
but also for notched cases, using critical distance approaches. Therefore, this
provides a general framework to consider Gassner curves.

The use of generalized exponential crack growth during the entire lifetime
(which seems closely related to the "lead crack fatigue lifing framework" [20]),
even in the context of spectrum loading, seems to imply the PM rule applies.
Therefore, the same sort of accuracy is expected as PM rule.
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