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This paper reviews the recent developments in the field of multiscale modelling of het-
erogeneous materials with emphasis on homogenization methods and strain localization
problems. Among other topics, the following are discussed (i) numerical homogenization
or unit cell methods, (ii) continuous computational homogenization for bulk modelling,
(iii) discontinuous computational homogenization for adhesive/cohesive crack modelling
and (iv) continuous-discontinuous computational homogenization for cohesive failures.
Different boundary conditions imposed on representative volume elements are described.
Computational aspects concerning robustness and computational cost of multiscale sim-
ulations are presented.
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1. Introduction

Many natural and engineering materials such as rock, concrete, metal, fiber-
reinforced composites etc. have a heterogeneous structure at a certain level of obser-
vation. These materials are often referred to as composite materials or multi-phase
materials or heterogeneous materials. In this paper, composite is usually used to
indicate two-phase materials with a regular structure. From an engineering point of
view, heterogeneous materials are desirable because they can be tailor made to take
advantage of particular properties of each constituent. For example, fiber reinforced
concrete is concrete containing fibrous material in which fibers are usually used to
control cracking.

It has been widely recognized that many macroscopic phenomena originate
from the mechanics of the underlying microstructure. The size, shape, spatial
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distribution, volume fraction and properties of the constituents making up the
microstructure all have a significant impact on the behavior of the material observed
at the macroscale. Furthermore, external loading applied on the materials at the
macroscale might in turn change the microstructural morphology e.g., void forma-
tion and coalescence in metals, cracking in cement matrix and interfacial transition
zone in concrete.

Finding the relation between microstructure and macroscopic properties (in
short structure-properties relation) is an essential problem confronting material
scientists as well as the computational mechanics community for decades. Such
relations, if found, might have a strong impact in many engineering fields. This
is because (i) the macroscopic behavior is much better captured compared to a
prediction based on phenomenological constitutive models and (ii) it provides an
alternative to design new materials of which desired macroscopic properties can
be obtained by adjusting the underlying microstructure. It is emphasized that the
development of new materials is basically done empirically, that is, a large number
of specimens with different microstructures are fabricated and tested, until specific
requirements on the behavior are fulfilled. Obviously, computational models are
preferable over this time consuming and expensive empirical method.

Brute-force approaches in which the microstructure is explicitly taken into
account at the coarse scale model are practically not feasible due to the prohibitive
computational expense they would lead to. Therefore, over the years, a number of
analytical/numerical models, that are usually referred to as multiscale models have
been developed. These models are based on the physics of microstructures, which
are able to predict, in an efficient manner, the macroscopic behavior of heteroge-
neous materials. In this paper, the terminology “multiscale” should be understood
as multiple length scales. The term “multiscale method” indicates a formulation in
which multiple length scales are resolved and there is an exchange of information
between the length scales.

Traditionally multiscale modeling of heterogeneous materials is performed either
within the framework of homogenization methods for problems in which the scales
are clearly separated or within the framework of concurrent methods when the
scales are coupled. The discussion is restricted to continuum/continuum coupling.
For atomistic/continuum coupling i.e., MD-FEM coupling, we refer to an overview
reported in Curtin and Miller14 and for discrete/continuum coupling i.e., DEM-
FEM coupling, see e.g., Refs. 4, 101, 113 and 153 and references therein where MD
stands for molecular dynamics, FEM is short for finite element method and DEM
is for discrete element method.

1.1. Homogenization methods

Homogenization is a method to determine the apparent or overall properties of
a heterogeneous material thereby allowing one to substitute this material with
an equivalent homogeneous material, see Fig. 1. Homogenization methods can
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Fig. 1. Homogenization of a heterogeneous material. Based on Temizer and Zohdi.141

be divided into three categories namely analytical/mathematical homogenization,
numerical homogenization and computational homogenization. In this paper, ana-
lytical/mathematical homogenization, albeit very useful in some circumstances, is
left out of consideration since this technique is usually restricted to simple micro-
scopic geometries and material models (mostly at small strains). A comprehensive
overview of analytical homogenization methods can be found in the textbook of
Nemat-Nasser and Hori.104

In numerical homogenization schemes, a macroscopic canonical constitutive
model e.g., a visco-plasticity model, is assumed with parameters determined by
fitting the data produced by FE (or any other numerical method) computations of
a microscopic sample where the microstructure is explicitly modeled. In the litera-
ture, those numerical homogenization techniques are known as unit cell methods,
we refer to Christman et al.,11 Nakamura and Suresh,103 van der Sluis et al.,146

Pettermann and Suresh,123 among others, and references therein. Unit cell meth-
ods are particularly useful in modeling composite materials since they enable the
development of the so-called homogenization-based or micromechanically derived
continuum damage and plastic models15,56,57,83,124 that can be used in structural
computations. Due to the assumption on the form of the macroscopic constitutive
law, the methods become less appropriate for nonlinear problems with evolving
microstructures. On the other hand, these methods are computationally attrac-
tive for large scale computations since microscopic FE computations are conducted
a priori.

In computational homogenization (CH) methods,137 the macroscopic constitu-
tive behavior is defined on the fly during simulation. Due to this flexibility, the
methods have been utilized to predict mechanical behavior of materials having
complex microstructures, see Guedes and Kikuchi,39 Fish et al.,26,27 Ghosh et al.,32

Smit et al.,130 Miehe et al.,100 Feyel and Chaboche,23 Kouznetsova et al.68 among
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others. Not only mechanical problems describing linear and nonlinear deforma-
tions but also thermal problems, see Özdemir et al.,119 Monteiro et al.,102 Lars-
son et al.77 and multi-physics problems (thermo-mechanical in Özdemir et al.,120

electro-mechanical in Schröder and Keip128) have recently been addressed with
this method. Other applications encompass thin structures,13,95,96,114,117 uncou-
pled consolidation in heterogeneous porous media76 and solidification problems.80

Computational homogenization models are also adopted in bioengineering, see e.g.,
Refs. 34 and 155. In Ricker et al.,126,127 the classical CH scheme has been extended
toward the homogenization of configurational quantities in the context of defect
mechanics. A unified variational basis of CH theory for bulk materials has been
recently presented in Perić et al.122 Implementation of CH models in ABAQUS was
presented in Yuan and Fish.157

1.2. Concurrent methods

The characteristic of concurrent methods is that the microstructural features are
resolved directly on the macroscopic model. Two basic issues involved in this kind
of method are (i) how to handle the coupling between the coarse scale mesh and the
fine scale mesh and (ii) efficient algorithms for adaptive addition of fine scale fea-
tures to the coarse scale model. Typical works on concurrent multiscale analysis of
material failure are given in Guidault et al.,40 Eckardt and Könke,19 Lloberas-
Valls et al.86 which are based on domain decomposition methods and Hettich
et al.,44 Loehnert and Belytschko87 which are based on the variational multiscale
method.52 Figure 2 gives some application examples of using concurrent models
for failure analysis of heterogeneous materials. Another multiscale method with
strong macro-micro coupling has been given in Ibrahimbegović and Markovič54 for
elasto-plastic multiphase materials and in Gitman et al.35 for quasi-brittle softening
materials. Multiscale methods that adaptively combine a (numerical) homogeniza-
tion technique and a concurrent method have been presented in, among others,
Ghosh et al.,33 Larsson and Runesson,75 Temizer and Wriggers140 and references
therein. A homogenized constitutive model (obtained via a numerical homogeniza-
tion) is utilized for domains having benign deformations while a concurrent formu-
lation is adopted in critical regions of high gradients where the macroscopic fields
vary considerably. The Arlequin method developed by Dhia and Rateau17 is yet
another framework that can be used in concurrent multiscale analyses. Lim et al.84

used variable-node finite elements to model a composite material. Variable-node
elements serve as transition elements that link the standard four-noded quadrilat-
eral elements to the domain in which the microstructure is explicitly meshed. The
mesh superposition method (or the s-version of FEM) proposed by Fish24 is used
in Kawagai et al.64 for multiscale modeling of complex and heterogeneous porous
microstructures.

A numerical multiscale method for modeling fracture of heterogeneous quasi-
brittle solids has been given in Kaczmarczyk et al.60 where the designation
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(a) (b)

Fig. 2. Concurrent multiscale models based on: (a) overlapping domain decomposition method
Eckardt and Könke19 and (b) variational multiscale method Hettich et al.44

numerical is used to indicate the use of a multi-grid solution strategy, that utilizes
scale transition techniques derived for computational homogenization pioneered by
Miehe and Bayreuther,98 to solve the very large system of algebraic equations that
emerges from a detailed resolution of the fine-scale structure. This method can be
viewed as a Direct Numerical Solution (DNS) with an efficient solution scheme.

1.3. Aims and outline

It should be mentioned that there exist excellent reviews on the subject of multiscale
modeling of heterogeneous materials. Kanouté et al.62 gave such a survey in 2009.
However, the review was focused more on analytical/mathematical homogenization
such as asymptotic homogenization methods, mean field approaches, transforma-
tion field analysis etc. A recent review of CH methods and applications has been
given by Geers et al.29 in 2010. A review of multiscale methods can also be found
in the textbook of Fish.25 The aim of this paper is to review recent developments
in the field which have not been covered in Refs. 25 and 29 and 62. The sur-
vey focuses on multiscale models for localization problems. Among other topics,
the following are discussed: (i) numerical homogenization or unit cell methods,
(ii) continuous computational homogenization for bulk modeling, (iii) discontinu-
ous computational homogenization for adhesive/cohesive crack modeling and (iv)
continuous-discontinuous computational homogenization for cohesive failures. Also
presented are commonly used boundary conditions and the issue of existence of
representative volume elements (RVE). The manuscript presents the current trends
in computational homogenization for heterogeneous materials. Unresolved issues
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are identified. Since homogenization is such a huge field of constant progresses, if
any paper is not discussed here, it is simply due to our limited knowledge.

The remainder of the paper is structured as follows. Section 2 presents the essen-
tial features of the continuous computational homogenization model. Section 3 dis-
cusses some hybrid homogenization methods that combine numerical homogeniza-
tion and computational homogenization. In Sec. 4, discontinuous homogenization
methods for modeling adhesive and cohesive failure are given. Section 5 is dedicated
to the so-called continuous-discontinuous computational homogenization methods
for multiscale modeling of cracks. Computational aspects are given in Sec. 6 fol-
lowed by a discussion on computational homogenization in a dynamics context in
Sec. 7. Section 8 concludes the paper by pointing out some potential future research
directions.

2. Continuous Computational Homogenization Model

This section briefly presents the continuous computational homogenization method.
Through this, basic concepts of CH methods are discussed. The material given
in this section is required in developing enhanced discontinuous and continuous-
discontinuous CH schemes, to be presented in subsequent sections, for strain local-
ization and failure phenomena.

2.1. General procedure

Continuous CH methods are utilized to define on the fly the macroscopic stress-
strain relation σM−εM for a macroscopic point from a microscopic sample attached
to this point. That is why CH is also referred to as multiscale constitutive modeling.
All the heterogeneities of the underlying microstructure are explicitly resolved in the
microscopic sample. The behavior of the microstructural constituents are modeled
by classic phenomenological constitutive laws.

The procedure is given in Fig. 3 which can be briefly described as follows. For
a point (e.g., an integration point in the spatially discretized macroscopic solid) in
the macro-solid with a strain εM, instead of inserting this strain into a (phenomeno-
logical) constitutive box to obtain the corresponding stress σM, the strain is used
as a boundary condition imposed on the external boundary Γm of the microscopic
sample Ωm with size lm. The equilibrium of this micro-sample is obtained after
solving the microscopic boundary value problem (BVP). The macroscopic stresses
σM are then defined as the volume average of the microscopic stresses over the
micro-sample. When implemented in a finite element (FE) framework, the method
is known as an FE2 scheme.21 The discussion here is confined to two-dimensional
quasi-static problems. For a treatment of computational homogenization in a three-
dimensional dynamic setting, we refer to Refs. 63 and 155. A comprehensive treat-
ment of the CH theory in the finite deformation regime is given in the dissertation
of Kouznetsova67 (see also the work of Ref. 16). Grytz and Meschke38 presented
a finite deformation CH theory in curvilinear convected coordinates for realistic
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Fig. 3. Multiscale modelling of a heterogeneous solid with the continuous/bulk computational
homogenization scheme.

biomechanical multi-scale simulations of shell-like soft tissues. Note that standard
CH models would require different RVEs at each macroscopic point (one single RVE
is rotated according to the curvilinear path of the physical material directions at
the macro-scale). In contrast, Grytz and Meschke38 introduced different physical
spaces at micro- and macro-scale, the same initial RVE can therefore be used for
every macroscopic point.

Given a macroscopic strain vector εM of an integration point (also called Gauss
point (GP) in this paper), one is seeking for the corresponding macroscopic stress
vector σM and the macroscopic material tangent DM. The procedure, usually
referred to as a multiscale constitutive box, is given in Box 1.

Box 1 Procedure of the continuous CH scheme (at level of macroscopic integration
points).

(1) Downscaling or macro-to-micro transition. The macroscopic strain vector εM

is transformed to the RVE as boundary conditions. Note that the specific BCs
must fulfill the strain averaging theorem.

(2) The BVP of the RVE (in short, the micro-BVP) is solved.
(3) Upscaling or micro-to-macro transition. The microscopic stresses are upscaled

to the macroscale as the macroscopic stress vector. This is achieved based on the
Hill–Mandel principle. Besides, the microscopic stiffness matrix is upscaled
to the macroscopic material tangent DM.
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2.2. Basic ingredients of CH theory

The theory of homogenization is based on the following ingredients

• Existence of a Representative Volume Element (RVE)
• Principle of separation of scales
• Averaging theorem e.g., strain and stress averaging theorems
• The Hill–Mandel macro-homogeneity principle
• Availability of constitutive behavior of RVE’s constituents.

For the subsequent discussion an assumption was made of the existence of
such an RVE. In the following discussion, for simplicity, it has been assumed that
the RVE does not contain cracks. Furthermore, voids, if present in the RVE, are
traction-free i.e., the traction vanishes on the surfaces of the voids. Relaxation of
the first assumption was made in for example Zohdi and Wriggers162 whereas the
extension of the CH theory to the case in which the second assumption is relaxed
has been given in Perić et al.122

2.2.1. Existence of a representative volume element

In homogenization methods, the macroscopic response is defined as the average of
the response of a microscopic sample with a finite size in which the microstructure is
explicitly resolved. This microscopic sample is referred to as unit cell for materials
with an ordered microstructure, see left part of Fig. 4, and as RVE (this concept
was introduced by Hill45) for materials having a random microstructure, see right
part of Fig. 4. Other names including Microstructural Volume Element (MVE),
Statistically Equivalent RVE (SERVE) are also used for this microscopic sample.

Fig. 4. Representative volume element for an ordered/structured composite material (left) and for
a disordered/random material (right).
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In brief, the RVE corresponds to a microstructural subdomain that is representative
of the entire microstructure in an average sense.

In general, the size of an RVE of a material depends on

• the sought for effective properties;
• the loading conditions;
• the boundary conditions imposed on the RVE;
• whether strain localization occurs.

The existence of an RVE and its size for random heterogeneous materials have
been addressed by several authors, see e.g., Refs. 18, 36, 61, 108, 118, 121, 136, 138
and 139 and references therein. Gitman et al.36 did an interesting study on the exis-
tence of an RVE for quasi-brittle heterogeneous materials that exhibit localization
of deformation. They found that an RVE does not exist for such materials since the
material loses its statistical homogeneity upon strain localization. Recently, Nguyen
et al.,108 via the failure zone averaging scheme, showed that there exists an RVE
for quasi-brittle heterogeneous materials exhibiting strain localization if a traction-
separation relation, not a stress-strain relation, is the homogenized property.

In a CH scheme, a microscopic sample is said to be an RVE when the following
conditions are satisfied

• an increase in its size (of the same structural realization) does not lead to con-
siderable differences in the homogenized properties;

• its size is much smaller than the characteristic length lM over which the macro-
scopic loading varies in space, lm � lM. This condition is known as the principle
of separation of scales.

2.2.2. Principle of separation of scales

According to Geers et al.,29 the principle of separation of scales is formulated
as follows: “The microscopic length scale lm is assumed to be much smaller than
the characteristic length lM over which the macroscopic loading varies in space”.
That is,

lm � lM (1)

which requires the RVE to be sufficiently small so that the macroscopic fields (stress
or strain) are uniform over it. Since the RVE’s volume is small (Ωm = O(l3m)),
the inertial and body forces can be neglected at the microscale. Therefore the
general dynamic equilibrium of the RVE reduces to the static equilibrium that
reads ∇ · σm = 0 in Ωm where σm denotes the microscopic stresses.

2.2.3. Strain averaging theorem

The strain at any point xM in the macroscopic solid is defined as the volume average
of the microscopic strain εm over the RVE that is associated with that point. That
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is at any instant t,

εM(xM, t) =
1

|Ωm|
∫

Ωm

εm(xm, t)dΩ (2)

where |·| denotes the measure of the domain e.g., the area in two dimensions and
the volume in three dimensions.

2.2.4. Hill–Mandel macro-homogeneity principle

Based on physical arguments, the Hill–Mandel macro-homogeneity principle46,88

establishes that the macroscopic stress power must equal the volume average of the
microscopic stress power over the RVE. That is, at any state of the RVE charac-
terized by a stress field σm in equilibrium,

σM : ε̇M =
1

|Ωm|
∫

Ωm

σm : ε̇mdΩ (3)

must hold for any ε̇m. The symbol: indicates the double contraction operator when
applied for two second order tensors A and B yields A:B = AijBij .

By substituting a specific boundary condition that fulfills the strain averaging
theorem given in Eq. (2) into Eq. (3), one obtains

σM(xM, t) =
1

|Ωm|
∫

Ωm

σm(xm, t)dΩ (4)

This indicates that the macroscopic stress tensor is defined as the volume average
of the microscopic stress tensor.

2.2.5. Availability of constitutive behavior of RVE’s constituents

Although the constitutive behavior of the material at the macroscale is not needed
a priori in a CH framework, the behavior of the microstructural constituents must
be identified prior to the simulation. This can be achieved with phenomenolog-
ical constitutive models of which parameters are determined using conventional
parameter identification processes e.g., experiments and/or inverse analysis (see
e.g., Ref. 53 and references therein) but now applied for individual microstruc-
tural constituents. Alternatively, constitutive models for the microscale phases can
be defined using a numerical homogenization procedure or even a computational
homogenization scheme by going one more scale down.

Remark 2.1. In contrast to mathematical homogenization that is based on the
assumption of global periodicity, see Fig. 5, CH only assumes a local periodic-
ity of the microstructure. This allows the modeling of effects of non-uniformity of
microstructure on the macroscopic response as e.g., in functionally graded materials.
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Fig. 5. Illustration of the concept of (a) local and (b) global periodicity.

2.3. Boundary conditions

An important aspect in RVE-based homogenization methods is the choice of bound-
ary conditions (BCs), which are imposed on the RVE’s boundary, used to capture
the effect of the surrounding medium. The choice of BCs affects the result of homog-
enization methods including homogenized properties i.e., macroscale constitutive
response, the required size of the RVE and the type (and extent) of localized failure
taking place at the microscale. To the best knowledge of the authors, the following
boundary conditions are commonly used in CH schemes

• Taylor BCs
• Linear BCs
• Constant traction BCs
• Periodic BCs
• Minimal kinematic BCs

Table 1 gives a summary of those BCs, see Fig. 6 for notations. More BCs
will be presented when discontinuous homogenization methods are discussed. In
literature, other BCs are also adopted such as the mixed-uniform BCs presented by
Hazanov and Huet.43 Mixed-uniform BCs, sometimes called mixed BCs, refer to the
use of linear BCs on some parts of the RVE boundary and constant traction BCs
on the remaining part. In Refs. 4 and 9, this BC is also adopted. The Taylor BC
yields a homogeneous microscopic strain field i.e., there is no interaction between
heterogeneities. This BC is therefore unrealistic and left out of consideration. Many
authors61,142,146 have proved that even for non-periodic heterogeneous materials,
periodic BCs provide reasonable estimates of the effective properties. Compared
to linear and constant traction BCs, periodic BCs give a faster convergence of the
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Table 1. Commonly used boundary conditions for RVEs.

Name Equation Location Localization

Taylor BCs um(x) = εM · x x ∈ Ωm −
Linear BCs um(x) = εM · x x ∈ Γm −
Constant traction BCs tm(x) = σM · n x ∈ Γm +

Periodic BCs u
Γ+
m,2

− u
Γ−
m,2

= u4 − u1

u
Γ+
m,1

− u
Γ−
m,1

= u2 − u1 +

uq = εM · xq , q = 1, 2, 4

Minimal kinematic BCs 2 |Ωm| εMij =

Z
Γm

(uinj + ujni)dΓ +

u1 = 0, uy
2 = 0

Fig. 6. Periodic representative volume element (left) and non-periodic RVE (right).

effective properties i.e., smaller RVEs can be used with periodic BCs. Periodic BCs
are therefore probably the most commonly used boundary conditions for RVEs to
date. For RVEs with strain localization, linear BCs should not be used as shown in
Fig. 7 since they prevent localization bands or cracks from approaching the RVE
boundary.

Fig. 7. A softening unit cell in shear: linear BCs prevent damage from occurring at the RVE
boundary (left) while periodic BCs allows this (right). The contour plot shows the damage profile.
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In Ref. 97, the authors argue that periodic BCs impose unphysical constraints
on the unit cell, for example periodic BCs result in a stiffer constitutive response
under shear loading. They propose the use of Minimal Kinematic (MK) BCs, in
which the macroscopic loading is satisfied in a weak sense through a boundary
integral, rather than at every point in the material domain. Inglis et al.55 presents
a comparative study of periodic and MKBCs for RVEs with interfacial debonding
between the matrix and the inclusions. They concluded that the MKBCs provide
the advantage of not requiring periodic RVE meshes; other than that localization
zones obtained with both BCs are comparable. Other discussions on different BCs
applied to the RVE can be found in Huet,51 Hori and Nemat-Nasser.50 Generally
the advantages of one BC over the other diminish when increasing the size of RVEs.
Note however that, in a CH-based simulation, small RVEs are preferable.

For two dimensional rectangular RVEs, the MKBCs read

|Ωm| ε11M =
∫

23

uxdy −
∫

41

uxdy

|Ωm| ε22M = −
∫

12

uydx +
∫

34

uydx (5)

2 |Ωm| ε12M = −
∫

12

uxdx +
∫

23

uydy +
∫

34

uxdx −
∫

41

uydy

we refer to Fig. 6 for notations. For RVEs subjected to linear, periodic and minimal
kinematic BCs, the discrete equations of the RVE equilibrium read

fint(um) = 0 (6)

Cub = b(εM) (7)

where um are the microscopic nodal displacements, fint denotes the microscopic
internal force vector, C is a constraint matrix, ub represents the displacements of
nodes residing on the RVE boundary and b(εM) is the applied BCs vector.

2.4. Limitation of continuous CH applied for softening materials

When strain localization occurs at the RVE level, the homogenized constitutive
equation σM−εM is a strain softening constitutive equation. The severe consequence
of this is that the macroscopic BVP is ill-posed or in mathematical terms, the
macroscopic BVP loses ellipticity. Therefore, the numerical solution obtained with
CH theory when softening materials are adopted at the microscale is sensitive with
respect to the macroscopic finite element discretization. This has been shown in
Gitman et al.35 and recently in Baz̆ant,6 where the author has even questioned the
applicability of the standard/conventional CH theory for softening materials.

One of the basic assumptions in homogenization theory is the existence of a
representative volume element. It means that when using a microscopic sample
which is larger than the RVE, the macroscopic response should remain unchanged.
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As shown in Ref. 36, this is the case for non-softening materials but not for softening
materials since the material loses statistical homogeneity upon strain localization.
In summary, when applied to softening materials, the continuous/bulk CH theory
suffers from two problems namely (i) the macroscopic BVP is ill posed and (ii) the
method is not objective with respect to the size of the RVE.

In recent years attempts have been made to overcome the aforementioned draw-
backs of continuous CH schemes for softening materials. They include the second-
order CH scheme presented in Kouznetsova et al.,69 the continuous-discontinuous
CH schemes (see Refs. 90, 94–96) for masonry materials, and Ref. 112 for random
heterogeneous materials,134 for viscoelastic heterogeneous materials), the Multiscale
Aggregating Method (MAD) presented in Belytschko et al.,10 Belytschko and Song9

and the discontinuous CH scheme for crack homogenization for random heteroge-
neous materials.109,110,148,149 The coupled-volume method35 also yields a response
that is insensitive to the macroscopic FE mesh and RVE size. However, no discon-
tinuities are introduced at macroscale.

Remark 2.2. The continuous CH scheme given in Fig. 3 is classified as a first-
order (i.e., only the first gradient of the macroscopic displacement field is trans-
ferred to the microscale) homogenization scheme according to Kouznetsova et al.69

in which the authors have presented a second-order CH method. Salient features of
the second-order CH model are (i) a high order continuum model is employed at
macroscale, (ii) first and second gradients of the macroscopic displacement field are
used for the BCs imposed on the RVE and utilization of the generalized Hill–Mandel
principle to define the macroscopic high order stresses. We refer to Kouznetsova
et al.,70 Larsson and Diebels,79 Kaczmarczyk et al.58,59 and references therein
for recent studies on the second-order CH method. Compared to first-order CH
schemes, the second-order CH model can model microstructural size effects and to
some extent macroscopic localization. Moreover, they are very useful for homoge-
nization of shells and beams. However, second-order CH schemes cannot properly
deal with softening materials exhibiting deformation beyond a quadratic nature in
the displacements.29 A discussion of the RVE in the context of the second-order
CH scheme was given in Kouznetsova et al.71

3. Other Homogenization Models

It is obvious that FE2 methods are very computationally expensive, thus they
are rarely used in large scale computations. Approximate multiscale constitutive
models, which are derived from accurate micromechanical analyses, are preferable
in structural computations. To this end, models that combine the best of numerical
homogenization and computational homogenization have recently appeared in lit-
erature. The basic steps involved in these models are (i) preliminary computations
wherein a large number of FE analyses realized on an RVE subjected to a wide range
of possible straining is conducted, (ii) construction of an effective constitutive law
in which the data obtained from step (i) are used to derive an effective stress-strain
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relation and (iii) macroscale computation wherein whenever a stress-strain relation
is required, the one in step (ii) is used rather than resorting to microscale compu-
tations. It should be emphasized that these models can be considered as extended
numerical homogenization models wherein a postulation of the form of constitutive
response at macroscale is bypassed.

Yvonnet et al.161 presented such a model for nonlinear elastic heterogeneous
materials. The strain space is discretized into a number of nodes. For each node
in the strain space, a microscale FE computation is performed and an effective
potential energy function is then computed. After this step, a discrete space of
potential energy is obtained. During the structural computation, at a Gauss point
with a given strain, the corresponding potential energy is obtained by interpolation
of the discrete potential energy functions.

Artificial neural network (ANN) has been used to define approximate consti-
tutive behavior, see e.g., Refs. 30 and 159 and references therein. Recently in
the works of Unger and Könke144,145 a homogenization scheme using an ANN
was presented. The basic idea is to combine numerical homogenization (efficient
but restricted) and computational homogenization (general but expensive) into
one common framework. To this end, an ANN is used as a material model on
the macroscale. The ANN is trained using microscale simulations. The proposed
homogenization scheme was used in a multiscale analysis of a reinforced concrete
beam. We refer to Lefik et al.,81 Hambli42 for related discussions on ANN and
homogenization.

A hybrid numerical-computational homogenization method was described
in Andrade and Tu4 for granular materials. For numerical homogenization, a
phenomenological plasticity model is assumed for the macroscopic behavior. For
computational homogenization, some key parameters of the plasticity model are
computed on the fly by resorting to microscale computations. More precisely, dur-
ing the macroscopic analysis, for an integration point, a strain is transferred to a
unit cell (where a discrete element formulation is used to model the grains); the unit
cell DEM problem is solved and the dilatancy and frictional resistance are upscaled
to that integration point. Then, a standard return mapping algorithm can be used
at macroscale to compute the stresses and the consistent tangent. A recent paper
on this method can be found in Andrade et al.5

For completeness, the multiscale continuum theory (also known as the multiscale
micromorphic theory) presented in McVeigh et al.,93 Vernerey et al.150–152 should
be mentioned here.

4. Discontinuous Computational Homogenization Models

Discontinuous CH models are developed to define the behavior of discontinuities
(usually cracks) at macroscale from nested microscopic FE computations. This
section describes two CH schemes for multiscale modeling of adhesive and cohesive
cracks.
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Homogenization towards intrinsic cohesive lawsa that govern the behavior of het-
erogeneous material layers has been presented in Matous̆ et al.,92 Kulkarni et al.72

where microscale failure is modeled by a continuum damage model. A multiscale
approach to capture the behavior of material layers that possess a micromorphic
mesostructure is presented in Hirschberger et al.48 Alfaro et al.2 presented a sim-
ilar work in which discrete cohesive cracks are adopted to represent microscopic
failure. Computational homogenization schemes (in the context of an FE2 method)
for heterogeneous material layers has been given in Hirschberger et al.49 for finite
deformation problems, Kulkarni et al.,73 Verhoosel et al.,149 Nguyen et al.109 for
small strain problems.

Homogenization towards extrinsic cohesive lawsb that govern the behavior of
cohesive cracks was presented for the first time in Verhoosel et al.148,149 for random
heterogeneous materials exhibiting discrete cracking and later in Nguyen et al.109

for random heterogeneous materials displaying a localization band.

4.1. Homogenization towards an initially elastic cohesive law

Let us consider a solid with a heterogeneous material layer, see Fig. 8. The thickness
of the layer is denoted by tadh. At the macroscale, the finite thickness layer is
modeled as a set of zero thickness interface elements (see e.g., Refs. 7 and 156).
The constitutive behavior of these interface elements — the so-called initially elastic
cohesive law is coming from microscale FE computations performed on a micro-
sample with the height being tadh, and in which the microstructure of the layer is
fully resolved.

The general procedure of the scheme is given in Fig. 9(a). Boundary conditions
applied on the RVE are shown in Fig. 9(b). It is emphasized that these BCs are
defined intuitively based on the geometry interpretation of the problem. Periodic

Fig. 8. A two-dimensional solid with a heterogeneous layer.

aAlso known as initially elastic cohesive laws.
bAlso known as initially rigid cohesive laws.
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(a) (b)

Fig. 9. Computational homogenization for material layers. Semi periodic BCs are imposed on the
RVE: (a) FE2 scheme for interface homogenization and (b) BCs for the RVE.

BCs on the left and right edges read uL = uR and tR = −tL. This BC is referred
to as an semi-periodic BC in Hirschberger et al.49

The micro-to-macro transition is also based on the Hill–Mandel principle that
now reads

tM · δ[[u]]M =
1
h

∫
Γm

tm · δumdΓm (8)

where h denotes the width of the micro sample. Note that since the material layer
is modeled as a line at the macroscale, homogenization of the material layer is one-
dimensional homogenization along the direction parallel to the layer. The above
equation can be rewritten as follows (see Fig. 9(b) for notations)

tM · δ[[u]]M =
1
h

[(∫
ΓT

tmdΓm

)
· δ[[u]]M +

∫
ΓR

tm(δuR − δuL)dΓ
]

=
1
h

(∫
ΓT

tmdΓm

)
· δ[[u]]M (9)

where periodic BCs of the displacements on the right and left edges together with
anti-periodicity of the traction on these edges have been used. Since this equation
holds for any δ[[u]]M, one obtains

tM =
1
h

∫
ΓT

tmdΓm (10)

This line of derivation shares similarity with the one given in Ref. 2.
As shown in Refs. 2, 72 and 92, when h is sufficiently large (note that tadh

is kept fixed), the homogenized initially elastic cohesive law (tM, [[u]]M) becomes
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independent of h. In other words, an RVE exists for this kind of homogenization.
Verhoosel et al.149 presented a formulation wherein the height of the RVE can be
smaller than the layer thickness tadh.

4.2. Homogenization towards an initially rigid cohesive

law from a microscale crack

The first discontinuous CH scheme for modeling cohesive failure in random hetero-
geneous solids, which is presented in Verhoosel et al.,149 is given in Fig. 10. The
macroscopic bulk is assumed to be linear elastic with effective properties computed
a priori using the continuous CH model presented in Sec. 2. When the macro-
scopic stresses satisfy a failure criterion, a crack is inserted at the macroscale. The
extrinsic cohesive law of the crack is computed from nested FE computations real-
ized on micro samples attached to Gauss points on the crack. Microscale failure
is represented by discrete cohesive cracks discretized using zero-thickness interface
elements.

The Hill–Mandel theorem for the micro-to-macro transition reads149

σM : δεM +
1
w

tM · δ[[u]]M =
1

wh

∫
Γm

tm · δumdΓ (11)

We are going to prove that Eq. (11) is equivalent to the following Hill–Mandel
equation which indicates that the behavior of the macro crack is coming from the
micro cracks

tM · δ[[u]]M =
1
h

∫
Γc

m

tm · δ[[u]]mdΓ (12)

The proof is as follows. The microscale virtual work equation reads∫
Ωm

σm : δεmdΩ +
∫

Γc
m

tm · δ[[u]]mdΓ =
∫

Γm

tm · δumdΓ (13)

Fig. 10. Discontinuous CH scheme for cohesive crack modelling in heterogeneous solids149 where
microscopic failure is represented by discrete cracks. Black circles denote bulk GPs while crossed
circles are cohesive GPs.
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where the first term represents the internal work done by the bulk material and
the second term expresses the internal work performed by the micro cracks and the
third term denotes the external work.

The Hill–Mandel condition for the bulk reads

σM : δεM =
1

wh

∫
Ωm

σm : δεmdΩ (14)

Substitution of Eqs. (12) and (14) into Eq. (13) yields Eq. (11). This concludes the
proof.

It has been shown, in Ref. 149, that when there is a dominant crack running
through the microscopic sample, the homogenized cohesive law is objective with
respect to the size of the microscopic sample. Note that Eq. (12) ensures the objec-
tivity of the homogenized cohesive law. The main features of this method are as
follows

• Failure at macroscale and microscale are modeled using cohesive cracks. Macro-
scopic cracks are treated using the extended finite element method (XFEM), see
e.g., Refs. 8, 28 and 154 while microscopic cracks are modeled using interface
elements;

• Macroscopic bulk behaves linear elastically with effective properties;
• Initiation/propagation and orientation of macroscopic cracks are determined on

the basis of the macro-stress field;
• The method allows for a definition of an RVE for softening materials exhibiting

discrete failure.

4.3. Homogenization towards an initially rigid cohesive

law from a microscale localization band

In Nguyen et al.109,110 an extension of the multiscale cohesive crack CH model,
presented in Sec. 4.2, was given. The major difference with the work of Verhoosel
et al.149 is that microscopic failure is modeled in a smeared fashion via a nonlo-
cal continuum damage theory. The method is based on the failure zone averaging
scheme proposed by Nguyen et al.108 wherein the averaging is not performed over
the entire RVE but over a propagating damaged domain. Figure 11 shows the tran-
sition from a microscopic localization band to a macroscopic crack and the scheme
of the method is given in Fig. 12.

Let us first denote Ωd as the active damaged domain i.e., the region containing
Gauss points which are damaged and loading. For an isotropic continuum damage
model, Ωd is mathematically defined as

Ωd = {x ∈ Ωm | ω(x) > 0, f(x) = 0} (15)

where ω is a scalar damage variable and f is the loading function.
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Fig. 11. From a microscale localization band to a macroscale equivalent crack via an energetic
equivalence consideration.

Fig. 12. Schematic representation of the multiscale cohesive crack scheme. Dotted lines represent
periodic boundary conditions.

The micro-to-macro transition is based on the following equation

1
wh

∫
Ωd

σm : δεmdΩ =
1
w

tM · δudam (16)

which states the equivalence of energy in the microscopic damaged domain and
energy of the macroscopic crack. Note the similarity of this equation with Eq. (12).
The final micro-macro linking is given by

uR = (w − l)C0 · tM + [[u]]M + ůdam (17)
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where uR is the total displacement of the RVE, and ůdam the compatibility dis-
placement. In the above, l = |Ωd| /h defines the averaged width of the microscopic
localization band, see Fig. 11. The matrix C0 is the projection of the compliance
D−1

0 on the crack plane (D0 is DM evaluated in the undeformed RVE).
During the macroscale analysis, for a Newton–Raphson iteration when the trac-

tion for an GP on the crack (having a jump [[u]]M) is needed (the macro-bulk is
assumed to be linear elastic, hence for bulk GPs there is no need to solve any RVE
problems), the following system of equations is solved for um and tM

fint(um) = fext([[u]]M) (18)

uR(um) = [w − l(um)]C0tM + [[u]]M + ůdam (19)

which consists of the micro equilibrium equation and the homogenization relation
Eq. (17). In the above, fint and fext are the microscopic internal and external force
vectors, respectively. This system of equations is solved iteratively in the sense
that a guess value for uR is assumed, Eq. (18) is first solved (again iteratively
using for instance the Newton–Raphson method) and then Eq. (19) is checked.
This process is repeated until both equations are satisfied. The convergence of
this process was studied in the paper of Nguyen et al.110 Note that in most of
FE2 methods, at a certain Newton–Raphson iteration used to solve the macroscale
problem, the microscale equilibrium equation (18) has to be solved only once. In
the MAD method,9,10 the microscopic equilibrium also has to be solved a couple of
times due to the use of mixed BCs (see Sec. 5 for details).

The models proposed by Verhoosel et al.,149 Nguyen et al.109 assumed that the
pre-failure nonlinear (hardening) part of the micro-model response, indicated in
Fig. 13 by the darker region, is negligible. Therefore, the macroscopic bulk always
behaves linear elastically and thus there is no need to solve any RVE problem to
compute the macroscopic bulk stresses. This assumption dramatically reduces the
cost of the method.

Fig. 13. Coupling between macro- and micro-models for cohesive crack modelling.
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5. Continuous-Discontinuous Computational
Homogenization Models

Continuous-discontinuous CH methods refer to CH models in which the macroscopic
bulk and discontinuities are coupled to RVE computations. These models were
developed to model the transition from micro-cracks to macro-cracks as usually
observed in reality. Basically, when material instabilities (in form of cracks and/or
shear bands) are detected at a certain RVE, a crack is injected at the macroscopic
point linked to this RVE. This section gives an overview of existing methods falling
within this category.

5.1. Work of Massart et al.

Probably the first CH model that works for strain localization problems was the
work of Massart et al.90,91 in the context of masonry cracking. To regularize the
macroscopic continuum, a strain discontinuity with a given width is introduced at
the integration point to which the associated RVE shows localization. The strain
discontinuity was, however, not explicitly incorporated in the coarse scale discretiza-
tion as such, but was rather embedded in the averaged behavior of the considered
quadrature point. Characteristics of the method are (see Fig. 14):

• Microscopic failure is modeled via a nonlocal continuum damage model;
• Macroscopic localization is represented by a strain discontinuity of finite width

that is defined from the periodicity of the considered masonry material;
• The onset of macroscopic localization is based on the loss of positive definiteness

of the homogenized material tangent matrix DM;
• The orientation of the macroscopic localization band is the averaged orientation

of the microscopic localization band that is determined using the acoustic tensor
associated to DM.

Fig. 14. Enhanced CH model for masonry failure-idealization of the constitutive response of a
macroscopic integration point: localization band width w associated to the microscopic failure
pattern (left) and two RVEs wherein one is associated to the band and one is associated to the
unloading surrounding volume (right). The thick black line denotes the localization band and the
dashed line represents unlocalized damage. Adapted from Massart et al.91
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Fig. 15. Schema of the continuous-discontinuous CH scheme for masonry developed by Mercatoris
and Massart.94 LVE stands for localizing volume element which is coupled to the macro-crack.
Note that damage is frozen in the RVE associated to the bulk of a cracked element.

Recently, the scheme in Massart et al.90 has been extended by Mercatoris and
Massart94 in which macroscopic localization is modeled with cohesive cracks, see
Fig. 15. The macroscopic discrete cracks are discretized using the embedded discon-
tinuity approach, see e.g., Ref. 85. The continuity of crack path across the element
boundary was not enforced. This work derived a macroscopic cohesive law from a
damaging RVE for masonry materials. Note that the macro-crack can rotate sub-
sequently after being inserted.

For a macro-element with a crack having a normal denoted by n and an opening
represented by [[u]]M, the strain field to be imposed on the localizing volume element
(LVE) is given by

εLVE =
1

2w
([[u]]Mn + n[[u]]M) (20)

Note that in their implementation, the crack jump inside one macro-element is
constant. Therefore, there is only one LVE associated to one cracked macro-element.
The strain corresponding to the crack εLVE is then imposed on the boundary of the
RVE using periodic BCs. After solving the RVE problem, the macro traction is
computed as

tM = n · σLVE (21)

5.2. Work of Belytschko et al.

In Belytschko et al.,10 Belytschko and Song9 the MAD method was presented of
which the essential feature is the injection of an equivalent crack at the macro-
scopic model when material instabilities (such as cracks or shear bands) occur at
the microscopic sample. Both micro and macro cracks are solved by the XFEM
approach. Compared to other CH based multiscale failure models, a substantial
difference is that the fine scale analysis determines an equivalent traction-free crack



2nd Reading

May 7, 2012 15:14 WSPC/245-JMM 00050

24 V. P. Nguyen, M. Stroeven & L. J. Sluys

(not a cohesive crack) to be injected at macroscale. In other words, unit cell com-
putations provide both the opening and orientation for the equivalent crack. The
nodal positions of macro-elements are adjusted to take this crack opening into
account. The bulk stress is the standard volume average of the microscopic stress.
No homogenized tangent moduli are needed since the macroscopic BVP is solved
using the dynamic relaxation method with an explicit time integrator. More appli-
cations of the MAD method were given in Song and Belytschko.132 Characteristics
of the MAD method are:

(1) Averaging operations are performed on the so-called perforated unit cells which
are unit cells that excludes cracks and localization bands;

(2) Continuous evolving cracks can be modeled at the coarse scale;
(3) An equivalent macro crack can rotate in time after being introduced in the

macro element;
(4) Utilization of hourglass modes to better capture the deformed shape for a rect-

angular unit cell with a growing crack.

In order to treat the hourglass modes, two generalized hourglass strains and two
corresponding generalized stresses are added to the kinematic and kinetic descrip-
tion at macroscale. These generalized stresses are defined by using a generalized
Hill–Mandel principle in the same spirit as in Kouznetsova et al.69

As boundary conditions are concerned, the MAD method employs two kinds of
BCs namely linear BCs for unit cells without cracks near to the unit cell boundary
and a combination of linear BCs and constant traction BCs for unit cells with a
crack going to reach the boundary. A constant traction BC is used for the portion
of the boundary in the neighborhood of a crack whereas a linear BC is adopted
for the remaining boundary. Note that the linear BCs are enriched with hourglass
modes.

However the current version of the MAD method has the following limitations

• The unit cell exactly matches the macroscopic element to which it is linked. In
this regard, the MAD method shares the same idea with the coupled-volume
method proposed by Ref. 37;

• Since RVEs are usually rectangles in two dimensions, the macroscopic domain
must be discretized by four-noded quadrilateral elements (with one point quadra-
ture rule);

• An explicit time integration scheme was used to solve the static equilibrium
problem at macroscale. This choice was needed to avoid the snapback behavior
on the equilibrium paths according to the authors. Therefore, an expression for
the homogenized material tangent (required if a Newton–Raphson method is
used) has not been provided.

Although the method is able, in principle, to compute an equivalent crack
injected at macroscale from a field of micro-cracks, numerical examples involving
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two scales deal only with one crack at microscale. This is due to the fact that, at
microscale, a simple unit cell was used (matrix reinforced by one fiber).

5.3. Work of Allen et al.

Allen and his co-workers have developed homogenization-based multiscale frame-
works for impact modeling of heterogeneous viscoelastic materials containing a field
of evolving micro-cracks.133,134 Crack propagation at microscale is modeled by a
micromechanically derived cohesive lawc presented in Allen and Searcy.3 Adaptive
insertion of zero-thickness interface elements was used to get a computationally
efficient scheme for modeling cohesive micro-cracks. In Ref. 133, inertial effects
were considered for the case of a statistically homogeneous field of micro-cracks
i.e., micro-cracks do not form a localization band and hence no crack is injected
at macroscale. Souza and Allen134 extended their model to allow localization of
micro-cracks into a macro-crack. However the formulation in Souza and Allen134 is
restricted to quasi-static conditions.

The method is summarized in Fig. 16. The characteristics of the method are as
follows

• The initiation of macro-cracks is based on a modified version of the loss of ellip-
ticity condition

det[Q0
ij(t)] ≤ Xc det[Q0

ij(t = 0)] (22)

where Xc is a critical percentage number, considered as a material constant and
Q0

ij(t) is the acoustic tensor defined in terms of the homogenized material tangent;

• The orientation of a macro-crack is determined by minimizing det[Q0
ij(t)];

• Once inserted, the macro-crack is not allowed to change its orientation;

Fig. 16. Schematic representation of the multiscale scheme of Souza and Allen.134 Short red lines
denote evolving micro-cracks and the long red line represents the equivalent macro-crack (color
online).

cThis cohesive law is derived taking into account the structure of the material at one length scale
lower. Therefore, in their work, three length scales are involved.
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• For cracked macro-elements, cohesive micro-cracks are not allowed to propagate
in RVEs associated to the bulk integration points;

• Constant strain triangular elements are used to discretize the macroscopic solid.

The last point deserves further explanation. As the XFEM method is used to
model macro-cracks, once a crack is inserted, new GPs are created including bulk
GPs locating on both sides of the crack and cohesive GPs on the crack surface, see
Fig. 17. Constant strain triangular elements are used since they need only one GP
for numerical integration purposes. The RVEs assigned to the newly created GPs
are simply copies of the original RVE (at the moment of macro-crack initiation).

5.4. Work of Nguyen et al.

As mentioned previously, the discontinuous CH scheme for cohesive failure mod-
elling presented in Refs. 109 and 110 assumes a linear elastic behavior of the macro-
scopic bulk. Recently, Nguyen et al.,112 Nguyen107 extended this CH scheme to a
continuous-discontinuous CH framework wherein the macroscopic bulk is also cou-
pled to RVEs. Figure 18 gives a sketch of the scheme.

The main features of this method are listed as follows

• Applied to random heterogeneous materials;
• The initiation of macro-cracks is based on the loss of positive definiteness of the

homogenized material tangent matrix DM;

Fig. 17. RVE cloning in a constant strain element: once a crack is inserted in the macro-element,
four new integration points are created. The RVEs for these points are simply cloned from the
original RVE. Short red lines denote evolving micro-cracks.
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Fig. 18. The fully multiscale homogenization scheme. Initially bulk GPs are coupled with RVEs.
When localization occurs in one of the RVEs, a macro-crack is inserted at the corresponding
macro-element. Henceforth, cohesive GPs are coupled to RVEs that are cloned from the localized
RVE. The bulk GPs of the cracked macro-element follow a secant unloading path. Dotted lines
denote periodic boundary conditions.

• The orientation of the macro-cracks is determined using a criterion based on the
macro-stress field;

• Allows a definition of an RVE for softening materials exhibiting localized
deformation;

• Macroscopic domain can be discretized by any type of continuum element such
as three-noded triangular or four-noded quadrilateral elements;

• An evolutionary BC for localized RVEs.

The final point deserves elaboration. At the start of the analysis, periodic BCs
are imposed on the bulk RVE. When localization occurs at this RVE, a macro-crack
is injected at the macro-element associated to this bulk RVE. The cohesive RVEs
attached to GPs on the crack are now subjecting to semi-periodic BCs, see Fig. 18.

A summary of continuous-discontinuous CH models available in the literature
is given in Table 2. Note that since the models of Massart et al.,90 Mercatoris and
Massart94 and Belytschko et al.,10 Belytschko and Song9 were applied to materi-
als having a well defined unit cell, therefore their methods allow for a definition
of an RVE. It has not been shown whether the model of Souza and Allen134 is
objective with respect to the size of the RVE. The method of Nguyen et al.112 is
objective with respect to the RVE size since it is based on the failure zone averaging
technique.
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Table 2. Overview of available continuous-discontinuous CH models for multiscale failure

modelling of materials.

Macroscopic Microscopic
Name Material failure failure Ma. elem. RVE

Massart et al. Masonry Embedded Localization T3 Yes
band/cracks band

Allen et al. Random Cohesive Field of cohesive T3 ?
viscoelastic cracks cracks

Belytschko et al. Composite Traction-free One cohesive Q4 Yes
cracks crack

Nguyen et al. Random Cohesive Diffuse Any Yes
heterogeneous cracks localization band

One common feature of the methods of Mercatoris and Massart,94 Souza and
Allen,134 Nguyen et al.112 is the use of two RVEs — one for the bulk material
homogenization and one for the crack homogenization. In the MAD method of
Belytschko et al.,10 Belytschko and Song9 there is only one unit cell associated
to a macro-element. However, the use of a perforated unit cell to provide stresses
for the macroscopic bulk and the fact that deformation of micro-cracks defines the
orientation and magnitude of the equivalent macro-crack make the MAD approach
equivalent to the other methods in Table 2.

6. Computational Aspects

6.1. Discretization methods for macro and micro problems

In principle any numerical method can be adopted at macro and micro scales.
In practice, FEM is the dominant method. At microscale, due to the complex
microstructures, making a compatible FE mesh is often a tedious task. For this
reason, specific FEM methods have been used to solve the microscale problems such
as the Voronoi Cell Finite Element Method (VCFEM) developed by Ghosh and his
co-workers, see Ghosh et al.32 and a recent monograph,31 and the XFEM approach,
see e.g., Refs. 47, 63 and 82 wherein the structured FE meshes are independent of
the microstructures. In a multiscale simulation of plant tissue deformation by Ghy-
sels et al.,34 while the macroscopic domain is discretized using FEM, at microscale,
a mass-spring model is employed to describe the geometrical structure and basic
properties of individual plant cells. The computation of the macroscopic stress ten-
sor is based on the definition of virial stress, as defined in molecular dynamics.

Sfantos and Aliabadi129 presented a multiscale boundary element method
(BEM) for modeling material failure. The method can be considered as an BE2

method since the BEM is adopted at both scales. This BE2 method was applied
to model the intergranular failure of polycrystalline brittle materials. The efficient
BE discretization at microscale allows the utilization of different RVEs for different
macroscopic points. Note that most of FE2 simulations assumed a single RVE for
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every macroscopic points. Macroscopic failure is modeled using a nonlocal integral
continuum damage model that requires a characteristic length parameter l. How-
ever a discussion on the relation between l and the RVE size was not provided.
Periodic BCs defined from a nonlocal strain field are imposed on the RVEs.

In the continuous-discontinuous CH model of Souza and Allen134 in which
the XFEM approach is used to discretize the macroscopic solid, the issue of
cloning RVEs associated with old integration points to new integration points upon
crack initiation was avoided by employing constant strain elements. In contrast
to the XFEM, embedded discontinuities approaches utilize a standard numerical
integration scheme before and after crack initiation. For this reason, embedded
discontinuities approaches are superior than the XFEM methods in a continuous-
discontinuous CH framework.

6.2. Boundary conditions

Implementation of linear BCs is straightforward and hence requires no further
discussion. Usually, periodic and minimal kinematic BCs are treated as non-
homogeneous multifreedom (or multipoint) constraints which can be enforced using
either a penalty method, the Lagrange multipliers method or the master-slave
method.20 Miehe and Koch99 presented a general implementation using Lagrange
multipliers for periodic and constant traction BCs. In Ref. 58, a unified treat-
ment of commonly used BCs (linear, periodic and constant traction) was given
following the work of Ainsworth.1 The aforementioned treatment of periodic BCs is
referred to as a strong format according to Larsson et al.78 This strong format
of periodicity requires periodic FE meshes that cannot be obtained for non-
periodic RVEs or when adaptive computations are about to be done on unstruc-
tured RVE meshes. A weak format of periodic BCs has been proposed in Larsson
et al.78 by which a periodic RVE mesh is no longer required. The FE formulation
employs a mixed format in the sense that the discretization of the displacement
field inside the RVE and the tractions on the boundary of the RVE are chosen
independently.

Another treatment of periodic BCs applied to RVEs made of fiber com-
posite materials can be found in Tyrus et al.143 The method is simple and
efficient. The RVE mesh is not required to be periodic and furthermore trian-
gular RVEs can be handled. However the microstructure distribution must be
periodic.

Boundary effects refer to cases wherein a single kind of boundary conditions is
applied to every RVE regardless the fact whether the RVEs are coupled to the
macroscopic boundary elements or to the interior elements, see Fig. 19. This issue
has been noted by Refs. 10 and 22. If AB is a free edge then edge 14 should be
free as well. An example taken from Nguyen et al.,110 which is shown in Fig. 20,
illustrates this boundary effect.
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Fig. 19. The same BCs imposed on boundary RVEs and interior RVEs are not consistent with the
free edge AB.

Fig. 20. Boundary effects in the discontinuous CH method: periodic boundary conditions are not
suitable for boundary RVEs. The top figure shows the damage pattern in a direct numerical
simulation. The bottom figure shows the damaging boundary RVEs.

6.3. Reducing the computational cost

CH models are naturally suitable for parallel computations since RVE computa-
tions are independent of each other. Each RVE is assigned to one processor and
the RVE computations are performed in parallel, see e.g., Refs. 9, 10 and 23. The
macroscopic computation is handled by a root (or master) processor in a sequen-
tial manner. Recently Nguyen et al.111 presented a parallel implementation of the
discontinuous CH method for modeling cohesive crack (see Sec. 4.3). According to
Rahul and De,125 the parallelization of multiscale CH models by using one root
processor for the macroscopic domain and multiple slave processors for the RVEs
is a naive and not efficient approach. To overcome this problem, they developed a
novel coarse-grained parallel algorithm wherein groups of macroscale GPs are dis-
tributed to a layer of processors. Each processor in this layer communicates locally
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with a group of processors that are responsible for the microscale computations.
The overlapping groups of processors are shown to achieve optimal concurrency at
signficantly reduced communication overhead. The conclusion made by Rahul and
De125 was, however, based on an explicit FE formulation employed at macroscale.

Another option for improving the speed of CH-based simulations can be based
on a selective usage of CH models. In non-critical regions, a phenomenological or
a micromechanically derived constitutive model is adopted whereas a CH model
is realized for hot spots.33,163 The partition of the macro solid into non-critical
domains and hot spots is usually realized adaptively based on error analysis in
quantities of interest. In the context of multiscale modeling of heterogeneous adhe-
sive layers, Kulkarni et al.73 also performed an adaptive homogenization scheme.
A coupled microscopic analysis is performed only for Gauss points of the macro-
scopic cohesive elements that are in the region near a crack tip, whereas a pre-
computed linear constitutive law is used at Gauss points away from the active
region.

Model reduction techniques provide an efficient tool to dramatically reduce the
computational expense of CH simulations. The first work that uses model reduction
methods in a CH context is done by Yvonnet and He.160 The authors proposed a
method coined R3M which stands for Reduced Model Multiscale Method. In a
recent work, the R3M was used to solve highly nonlinear conduction problems in
structures made of periodic heterogeneous materials.102 The main characteristics
of the R3M are as follows

• Continuous first-order FE2 framework for finite strain hyperelasticity problems;
• A reduced order model (ROM) using a proper orthogonal decomposition (POD) is

applied to the microscopic models. In other words, the equations of the linearized
micro problem are projected on a fixed reduced basis;

• The reduced basis is computed on the basis of a number of so-called snapshots.
Snapshots are determined from pre-computations on the RVEs.

Reduced order models have been developed so far mainly for problems with-
out damage and/or strain localization. The main challenge for damage and failure
problems is that a single reduced basis, which is computed a priori, is not suf-
ficient for representing the behavior of materials having an evolving morphology.
First attempts on extending ROMs to strain localization problems have recently
appeared, see Refs. 65 and 66. Recently, Lamari et al.74 used proper generalized
decomposition (PGD) to reduce the cost of computational homogenization models.
We refer to Néron and Ladevèze105 and references therein for a thorough presen-
tation of the PGD method for multiscale and multiphysics problems. It is our
belief that POD/PGD when used in a continuous-discontinuous CH scheme would
tremendously reduce the computational cost of multiscale simulations of material
failure.

Oskay and Fish,116 Yuan and Fish158 presented a novel model reduction
approach for periodic heterogeneous solids, which combines the asymptotic
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expansion method with the transformation field analysis (TFA) to reduce the com-
putational cost of a CH approach.

Finally, the artificial neural network discussed in Sec. 3 can be used to compute
effective cohesive laws from a large number of detailed micromechanical analyses.
This will enable large scale simulations of failure of structures.

6.4. Robustness issues

The robustness of FE2 simulations depend on the robustness of the nested micro-
scopic FE models. If one microscopic FE model fails to converge, the stresses at
the corresponding macroscopic integration point cannot be found and the multi-
scale simulation crashes. There are basically two cases wherein the divergence of
the microscopic FE problems occurs. In the first case, the macroscopic kinematic
variable transferred to the RVE boundary is too large and thus the microscopic
problem cannot be resolved in one single step. Somer et al.131 proposed a sub-
stepping scheme to solve this problem. In the second case, snapback is happening
at microscale. To the best of the authors’ knowledge, a treatment of microscopic
snapback in a FE2 analysis has not appeared yet.

Handling macroscopic snapback in a multiscale analysis has been presented in
Massart et al.,89 Nguyen et al.110 In Ref. 110, the simple yet efficient energy-based
arc-length control developed by Gutiérrez,41 Verhoosel et al.147 was used.

Nezamabadi et al.106 presented a combination of the FE2 method and the
asymptotic numerical method12 for modeling the geometrical instabilities of het-
erogeneous materials. The asymptotic numerical method allows for the treatment
of instabilities at both macro and micro scales without resorting to path following
(also known as arc-length) methods.

7. Dynamics Problems

Most of the multiscale CH models developed so far in literature neglect iner-
tial effects and are therefore not suitable for modeling heterogeneous materials
subjected to dynamics loadings. Souza et al.135 presented an FE2 model for hetero-
geneous viscoelastic materials which is probably one of the first multiscale models
that accounts for inertial effects. The most important assumption in this model
is that the length of the wave propagating on the macroscale is much larger than
the size of the microscopic length scale. Therefore, the microscopic initial bound-
ary value problem (IBVP) can be simplified to a quasi-static equilibrium equa-
tion. The macroscopic IBVP is solved by an explicit FEM while the microscopic
BVP is obtained by means of an implicit quasi-static FEM procedure. A two-
dimensional multiscale method for impact modeling of viscoelastic solids having a
random microstructure that contains a field of evolving micro-cracks has been given
in Souza and Allen.133 Although cracks are allowed at microscale, at macroscale,
continuous deformation is assumed. Recently, Wiechert and Wall155 presented a
similar method which was applied in the context of bioengineering problems. The
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novelty of this work is that a three dimensional formulation is considered for both
length scales. Yet another feature is the utilization of the generalized-α time inte-
gration scheme for both scales.

8. Concluding Remarks and Challenges

We have reviewed relevant works in the field of multiscale modeling of heterogeneous
materials. The emphasis was put on computational homogenization methods and
strain localization/failure problems. It has been shown that a couple of schemes
have been proposed to link microscopic localization to macroscopic failure. The
developed multiscale methods were applied to masonry materials, fiber reinforced
composite and random heterogeneous materials. Most of them are for quasi-brittle
fracture.

Although large steps have been taken, there are still a number of unresolved
issues that should be tackled in the years to come

• Dynamic problems;
• Boundary conditions and boundary effects;
• Robustness and efficiency issues;
• Uncertainty quantification;
• Continuous-discontinuous homogenization methods for ductile fracture;
• Model order reduction for strain localization problems at microscale;
• Validation of multiscale models against experimental results at multiple scales.

The final point deserves further discussion. The validation of a multiscale
method poses some unique challenges. Validation of multiscale models is achieved
when the discrepancy between experimental observations (of a quantity of interest)
and the predictions of a calibrated multiscale model is small enough. Calibration of
multiscale models is a difficult task since material constants used in multiscale mod-
els are defined at fine scales, often orders of magnitude smaller than the coarse scale
at which experiments are conducted. Note that advancement in experimentation
technologies can help to measure properties of the microstructural heterogeneities.
In this sense Oskay and Fish115 presented a calibration scheme for a particular
multiscale model, the eigendeformation-based multiscale model.
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1971).

89. T. J. Massart, R. H. J. Peerlings and M. G. D. Geers, A dissipation-based control
method for the multi-scale modelling of quasi-brittle materials, Comptes Rendus
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