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Abstract
Selective oxidation induced void growth is observed in thermal barrier coating
systems used in gas turbines. These voids occur at the interface between
the bond coat (BC) and the thermally grown oxide (TGO) layer. In this
paper we develop the modelling framework to simulate microvoid growth due
to coupled diffusion and creeping in binary alloys. We have implemented
the modelling framework into an existing finite element programme. The
developed modelling framework and programme is used to simulate microvoid
growth driven by selective oxidation in a binary β-NiAl alloy. Axisymmetric
void growth due to the combined action of interdiffusion and creeping is
simulated. The sharpness of the void and direction of creeping are considered as
parameters in our study. Our simulations show that the voids dilate without any
change in shape when creeping is equally likely in all the directions (isotropic).
Void growth patterns similar to those observed in experiments are predicted
when the creeping is restricted to occur only along the radial and tangential
directions. A hemispherical void grows faster compared to a sharp void. The
sharpness increases in the case of a sharp void and could lead to interactions
with the neighbouring voids leading to spallation of the TGO layer as observed
in experiments.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Thermal barrier coatings (TBCs) are used in gas turbine engines to increase their thermal
efficiency by allowing an increase in the inlet gas temperature. These coatings are typically
made of a columnar ceramic layer that provides thermal insulation. A sacrificial metallic
bond coat (BC) layer, typically made of MCrAlY (where M is a metal namely Ni, Co,
Fe or other combinations) is deposited above the superalloy substrate and below the TBC.
The TBC provides insulation from high temperature, but is transparent to the flow of
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oxygen and hence, the underlying BC layer is susceptible to oxidation induced failure.
There are several studies both experimental and modelling that have addressed the issue
of failure of the TBC systems. The commonly observed failure mechanisms are BC
rumpling (Karlsson and Hutchinson 2002) and ratcheting induced cracking (Evans et al 2001,
Xu et al 2003). Rumpling of the TGO has also been observed during cyclic oxidation
leading to spallation of the TBC layer (Tolpygo and Clarke 2000, 2004a, 2004b, Balint
and Hutchinson 2005). The above mentioned spallation was described to be due to the
oxidation induced voids in the BC layer (Tolpygo and Clarke 2003). In a recent article,
Suo et al (2003) developed a framework to model the stresses generated due to the action
of non-reciprocal diffusion (Kirkendall effect). The so-developed framework was used to
model the selective oxidation in a semi-infinite binary alloy system. In their 1D analysis void
nucleation and growth was not considered. However, their analysis indicated that a tensile
mean stress is generated near the interface in a Ni rich alloy. When the generated mean tensile
stress is of sufficient magnitude voids could nucleate as observed in oxidation experiments
(Provenzano et al 1988, Brumm and Grabke 1993, Liu and Gao 2000, Svensson et al 2003,
Zimmermann et al 2003). During oxidation of NiAl, aluminium is depleted at the metal oxide
interface leading to a concentration gradient and thereby diffusing aluminium from the bulk
alloy to the interface. When a nickel rich NiAl is oxidized, Al gets depleted at the interface
and Ni diffuses into the bulk to compensate for the material loss. In such a scenario Ni diffuses
faster into the alloy than Al diffusing out (Shankar and Siegle 1978) causing a non-reciprocal
diffusion leading to an unbalanced dilatational field, which is accommodated by the creeping
of the surrounding metal. In the present paper we simulate the microvoid growth due to the
above mentioned non-reciprocal diffusion.

There are several numerical studies available in the literature that have addressed the
stresses generated and void growth due to diffusion. Needleman and Rice (1980) studied the
growth of cavities along the grain interface due to grain boundary diffusion. Suo (2004) has
formulated a continuum theory coupling creep and diffusion in pure metals. In the present
study, we have extended the modelling framework developed by Suo et al (2003) to a general
3D setting, particularly to an axisymmetric scenario. This developed modelling framework
is implemented into an existing finite element scheme, which is used to model the growth
of a microvoid driven by coupled diffusion and creeping in a binary alloy. The details of
the derivation of the axisymmetric modelling and the finite element scheme are presented
in section 2. In section 3, we have described the boundary value problem pertaining to the
selective oxidation of NiAl. The results obtained from varying the sharpness of the void and
the creeping behaviour are discussed in section 4.

2. Axisymmetric formulation

In a recent paper by Suo et al (2003), the one-dimensional formulation of the coupled diffusion
and creeping in binary alloys was described. Their formulation was used to analyse a 1D
selective oxidation process in β-NiAl. Their analysis showed that, a large magnitude tensile
stress is generated due to the selective oxidation of aluminium. Such large magnitude tensile
stresses could lead to the nucleation of voids in a binary alloy. In the present paper we aim at
simulating the growth of a microvoid thus created and subjected to further action of the coupled
diffusion and creeping. As a first step we extend the 1D formulation of Suo et al (2003) to
3D. The 3D framework is used to analyse the axisymmetric microvoid growth problem in a
binary alloy of metals A–B. In our formulation we assume that material A diffuses out of
the continuum to form an oxide AnOm. The axisymmetric domain considered in the present
analysis is defined in the r–z coordinates as shown in figure 2, with r being the radius vector and
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z being coincident with the axis of revolution. The static stress equilibrium for the axisymmetric
case can be written as
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In the equation above, s is the deviatoric stress. The deviatoric stress tensor (s) is related to
the stress tensor (σ ) and hydrostatic pressure (p) as s = σ − pI , with I being the identity
matrix. For an axisymmetric problem the hydrostatic pressure p is defined as

p = (σrr + σθθ + σzz)/3. (2)

In our formulation we assume that the total strain-rate (ε̇) to be infinitesimally small and hence
can be additively decomposed into the creep strain rate (ε̇c) and diffusional strain rate (ε̇d ).
The total strain rate can be written as

ε̇ = ε̇c + ε̇d = 1
2 (∇v + ∇vT ), (3)

where v is the particle velocity in the continuum. As described in Suo et al (2003) the
differential diffusion (Kirkendall effect) of the elements of a binary alloy gives rise to the
diffusional strain rate and is related to the gradient of the mass flux as

ε̇d = β∇ · v = −β�∇ · J, (4)

where β is the diagonal matrix describing the preferential placement of the atoms along the
r , θ or z directions, respectively. The diffusion flux J introduced in equation (4) is related to
both the concentration and hydrostatic-pressure gradients as

J = −�

�
∇c +

D̄

φκT
∇p, (5)

where D̄ = cDA + (1 − c)DB is the average diffusivity, � = DA − DB is the differential
diffusivity, φ is the Darken’s thermodynamic factor, � is the atomic volume, κ is the Boltzmann
constant and T is the absolute isothermal temperature of the continuum. In the definition of
the average diffusivity (D̄) and differential diffusivity (�), DA and DB correspond to the
individual intrinsic diffusivities of the atoms A and B, respectively. For example, in the case
of β-NiAl considered in the present study, B = Ni while A = Al as aluminium diffuses out
and forms an oxide (Al2O3) . As described in Suo et al (2003), the diffusional flux will have
a contribution from the concentration gradient only when DA �= DB (Kirkendall effect). In
the present formulation we have assumed the inelastic (creep) deformation to follow J2-flow
theory and hence the creep deformation is isochoric (volume preserving), which leads to the
continuity equation given by

∇ · v = ∇ ·
[
�∇c − D̄�

φκT
∇p

]
. (6)

The concentration evolution of the A atoms can be written as

∂c

∂t
− ∇ ·

[
(DA∇c) − cv −

(
cDA�

φκT
∇p

)]
= 0, (7)

where c is the non-dimensional concentration of A atoms. In our analysis we have allowed
the intrinsic diffusivities DA and DB to be functions of the current concentration c(t), which
are expressed as an expansion about the initial concentration co.
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Following the analysis of Suo et al (2003) we introduce scaling parameters, which are
then used to non-dimensionalize the governing differential equations. The stress components
scale with 
, which is related to the specific thermal energy as


 = φκT

�
. (8)

Using the equation above, the reference stress σo can be normalized as

� = σ0�

φκT
= σ0



. (9)

The coupled diffusion and creep problem has a characteristic (or natural) length scale, denoted
here as �, which is related to the normalized reference stress �, reference strain-rate ε̇o and
the interdiffusion coefficient at co, that is Do = (1 − co)D

A + coD
B . The length scale is given

by

� =
√

D0�

ε̇0
. (10)

The particle velocity is scaled by ε̇�/�. When the characteristic length � is large compared
to unity, then diffusion due to concentration gradient dominates over creeping (diffusion due
to hydrostatic pressure gradient). The coupled diffusion equation yields a time scale, which is
given by

τ = �2

D0
= �

ε̇0
. (11)

The field quantities are normalized using the above described normalizing parameters as:
spatial distance (r, z) → (r, z)/�, stress σ → σ/
, deviatoric stress s → s/
, hydrostatic
pressure p → p/
, strain-rate ε̇ → ε̇/ε̇0, velocity v → v�/ε̇�, concentration c → c/c0,
time t → t/τ and diffusivities D′s → D′s/D0. The weak-form of the governing differential
equations (1), (6) and (7) are obtained by the application of principle of virtual work. The
so-obtained weak-form was implemented in an existing finite element programme. Our
formulation is completed by a constitutive relation describing the stress–strain behaviour.
As mentioned earlier, we use the J2 flow theory based power-law viscoplasticity model, which
relates the deviatoric stresses and the corresponding creep strain rates as

s = 2ηε̇c. (12)

The nonlinear material parameter η in equation (12) is given by

η(ε̇e) = 1

3
ε̇

1
n
−1

e , (13)

where ε̇e is the equivalent creep strain-rate. In the present study, we assume that the material
power-law hardening index n = 1, that is a linear creep model (similar to a viscoelastic material
response). In our formulation we have assumed that the elastic strain rates to be negligibly
small in comparison with the creep (inelastic) strain rates. The assumption above requires the
hydrostatic pressure to be treated as an independent variable and is governed by the continuity
equation as described earlier. Though the hydrostatic pressure is an independent variable, it
is analogous to the gradient of the particle velocity field and hence needs to be interpolated
at a degree lesser than those used for the velocity field. In order to arrive at the discretized
finite element form we have followed the v–p formulation similar to the u–p formulation
described in Bathe (1996). In the present analysis the diffusion flux is dependent on both the
concentration and the hydrostatic pressure gradients. The above implies that one needs to allow
for the variation of the hydrostatic pressure in an element, which led to the choice of a 4-noded
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Figure 1. An isoparametric quadrilateral element used in our finite element simulations. Velocities
and concentration are interpolated using a 9-noded Lagrange polynomial while the mean stress is
interpolated using a 4-noded Lagrange polynomial. The matrices corresponding to the velocities
and concentration are integrated using the 3×3 Gauss-quadrature integration rule, while the 2×2
integration rule is used for the hydrostatic pressure.

bi-linear Lagrange polynomial interpolation for the hydrostatic pressure. As mentioned earlier,
the velocity field should be interpolated using a polynomial of a higher degree compared to
the pressure field and hence was interpolated on a 9-noded, two degree of freedom per node
element (figure 1). We have assumed the same 9-noded Lagrange polynomial interpolation for
the concentration field. The stiffness-matrices and load-vectors corresponding to the velocity
and concentration fields were obtained by using a 3 × 3 Gauss quadrature scheme. The
matrices and vectors for the hydrostatic pressure were obtained using the 2 × 2 integration
rule. We have used an implicit time integration scheme to update the concentration evolution
at every time step. The above formulated axisymmetric coupled diffusion and creep element
was implemented into an existing finite element programme. The implemented programme
was used to simulate the microvoid growth problem due to selective oxidation. The details of
the selective oxidation boundary value problem are presented in the next section.

3. Boundary value problem

We have simulated the selective oxidation problem analysed by Suo et al (2003) using the
axisymmetric finite element programme described in the previous section. The schematic of
the boundary value problem solved is depicted in figure 2. Following Suo et al (2003) we
assume the continuum to be comprised of a β-NiAl alloy used as the BC in TBC. In the BC Al
diffuses out and forms Al2O3 while Ni diffuses in the negative z direction at a rate different from
that of Al diffusing out. This differential diffusion leads to an unbalanced dilatational field,
that generates a large magnitude tensile stress that might nucleate a microvoid. In the present
analysis, we assume the presence of such a microvoid and aim to understand the mechanics
of its growth under the action of the coupled diffusion and creeping of the β-NiAl (binary
alloy) in the absence of any mechanical loading. As in Suo et al (2003) we assume that the
concentration of the point defects do not change due to straining, the amount of aluminuium
diffused does not lead to any phase changes in the alloy and the elastic strain-rates are negligibly
small. The axis of the microvoid shown in figure 2 is coincident with the axis of rotation z. In
the present analysis we have assumed the sharpness of void as a parameter. The sharpness of
the void is characterized by ψ , which is the angle made by the tangent of the void measured
from the r-axis. A hemispherical void is obtained when ψ = 90◦, while the void becomes
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Figure 2. The geometry of the microvoid modelled in our simulations. The interface between the
BC and TGO layer is represented by z = 0. The void is characterized by a radius rv and angle
(ψ) made between the tangent at the void corner with the interface. The diffusion flux J , which
is a function of interface velocity Ṡ is applied as a Neumann boundary condition at the interface.
Away from the interface a vanishing stress and flux field is assumed.

sharper for ψ < 90◦. A crack-like structure is obtained when ψ = 0 and is not considered here.
In this work we have assumed two degrees of sharpness, they are ψ = 90◦ (hemispherical)
and a sharp void with ψ = 60◦. The discretized domain is assumed to be a cylinder of radius
R = 10 � and height H = 10 �, with � being the length scale explained in equation (10).
The radius of the void is assumed to be rv = R/8 in our simulations. We assume that the initial
composition of aluminium in the cylinder to be uniform and is set to c(r, z, t = 0) = c0 = 0.48
(Suo et al 2003). The initial velocity and stresses are assumed to be zero at t = τ . The time
dependent boundary conditions are identical to those used in Suo et al (2003) and are given
as

NB(S, t) = 1

2
(1 − cs)

√
Kp

Dot
, (14a)

J (S, t) = −λ

2

√
Kp

Dot
, (14b)

where NB is the total atomic flux of Ni, cs is the number fraction of Al atoms with the alloy
at the interface. The position of the interface between the BC and the TGO can be written as
a parabolic law:

S =
√

Kpt

Do

, (15)

where Kp is the oxidation growth constant, which is set to 10−4Do (Suo et al 2003). In
equation (14b), λ is a dimensional-less constant which characterizes the oxide formation. A
positive value of λ denotes that new oxide layer forms at the interface of oxide and air whereas,
a negative value signifies the formation of oxide at oxide–alloy interface. The concentration
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at −H is assumed to be invariant with time and hence we assume a zero flux condition. The
above mentioned boundary conditions (equations (14a) and (14b)) have a stress singularity
in time (σ(t = 0) = ∞), which is accommodated by creeping. Further growth of the
microvoid is simulated by beginning our simulations at t = τ (Suo et al 2003). The applied
boundary conditions at the interface and recession of the interface at a velocity Ṡ drives the mass
transport, which leads to creeping of the material. The intrinsic diffusivities of the elements
are obtained from Shankar and Siegle (1978) for the present case of β-NiAl alloy. An implicit
time marching scheme is assumed for the concentration evolution equation. Using the initial
concentration variation and assuming the initial velocities and stresses to be zero at t = τ the
diffusion flux (J ) is obtained. The diffusion flux is used to obtain the spatial variation of the
velocity and stresses using the weak-form. The concentration at the next time step is obtained
by using the implicit time marching till we reach the desired time in our simulation. The
growth rate of the microvoid in our simulations was almost a constant after t = 9τ indicating
a quasi-steady-state, which was the basis for stopping the simulations at that time step. In our
formulation, we have assumed that the creeping due to the dislocation motion is anisotropic
and is characterized by the parameter βij . When βij = 1/3δij , with δij being the Kronecker’s
delta, the isotropic placement rule is obtained. In the case of isotropic placement, we assume
that an atom is likely to find a sink in the form of a line dislocation with equal probabilities
in all the three directions. We have performed a parametric study by varying the sharpness
angle ψ and the placement rule (β) in our study. The effect of varying these parameters on the
microvoid growth is described in the next section.

4. Results and discussion

In this section, we describe the results obtained from our simulations of microvoid growth due to
the combined action of diffusion and creeping in a β-NiAl alloy. The main focus of the present
study is to simulate the experimentally observed void growth pattern at the interface between
the bond coat (BC) and the thermally grown oxide (TGO). In order to achieve the above said
goal, we have re-simulated the selective oxidation problem solved by Suo et al (2003). As
mentioned earlier, the above paper (Suo et al 2003) illustrated that a large magnitude tensile
stress was generated due to the coupled diffusion and creeping driven by the selective oxidation
process. In the present study, we assume that a microvoid is already present and we try to
understand the mechanics of its growth due to the action of coupled diffusion and creeping of
the surrounding binary alloy. The results presented in this section were obtained by varying
the void sharpness and the placement rule as parameters. The void sharpness is characterized
by the angle the tangent of the void makes with the r-axis (figure 2) denoted by ψ . When this
angle ψ = 90◦, the void will be a hemispherical void, while the void is called a sharp void
for ψ < 90◦. Following the grain boundary diffusion analysis by Needleman and Rice (1980)
we have set the angle of the sharp void to be ψ = 60◦ in our analysis. The placement
rule is characterized by βij described in the previous section. Creeping is isotropic when
βrr = βθθ = βzz, which implies that creeping is possible with equal ease in all the three
coordinate directions. In other words an atom is likely to find a sink (line dislocation) with
equal probability in all the three directions. On the other hand, due to a constraint effect the
creeping can become restricted in any of the directions and will be treated as a parameter in
our study. We have assumed a set of β’s that can predict the experimentally observed void
growth trends. The effect of the void geometry on its growth can be understood by plotting the
void profiles (figure 3). An isotropic placement rule is assumed in obtaining this plot. These
profiles are snapshots of the void taken at regular intervals of time as the simulation progressed.
Both the hemispherical and sharp voids (ψ = 60◦) simply dilate without any change in shape.
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Figure 3. Snapshots of the void profiles recorded as the simulation progressed. The void profiles
are normalized with the initial void radius rv = R/8. The snapshots are obtained assuming an
isotropic placement rule (βrr = βθθ = βzz = 1/3). For the case of isotropic placement rule the
voids only dilate without any change in shape.

The hemispherical void grows faster in comparison with a sharp void, which is indicated by the
larger separation distance between any two successive void profiles. This will be illustrated
better by the void tip velocity history (figure 6). Isotropic creeping can occur only when the
thickness of the film is sufficiently large so as to allow creeping in the z direction. As observed
in the experiments by Tolpygo and Clarke (2003) a microvoid grows in the radial direction,
while the growth in the thickness direction is significantly lesser. In order to mimic such a
void growth pattern, we assumed a preferential placement rule by constraining the creeping to
occur only in the plane (that is r–θ plane). The void growth profiles at regular intervals of time
are shown in figure 4 assuming a preferential placement of βrr = βθθ = 1/2 and βzz = 0. The
profiles are shown for both the hemispherical (left of figure 4) and sharp voids (right of figure
4). Due to the assumed preferential placement rule, the voids grow only in the plane, which
is similar to the experimentally observed patterns (Tolpygo and Clarke 2003). As seen from
the figure, the hemispherical void gets stretched to become an ellipsoid, while the sharp void
increases in sharpness, which is characterized by a decrease in the angle ψ . In a limiting case,
ψ = 0 represents a sharp crack. It is important to note here that the reduction in the angle
ψ increases the stress concentration around the void and can lead to a stress singularity when
the sharpness angle tends to zero. This transition is important in understanding the spallation
failure mechanism observed in TBC systems. If the stress concentration due to the sharpness
of the void is sufficiently large, the void can interact with the neighbouring voids, thereby
creating a weak ligament and finally spalling (debonding) the oxide layer. In our simulations
we have also assumed an orthotropic placement rule setting βrr = 1/3 and βθθ = 2/3 with
βzz = 0, which resulted in a similar void growth profiles as seen with βrr = βθθ = 1/2. The
above mentioned orthotropic placement alters the change in sharpness of the void and void
growth velocity and is discussed later in figures 5 and 6.

As seen in figures 3 and 4, the void shape change also leads to a change in the sharpness of
the void. The history of the angle ψ for different placement rules is shown in figure 5. From our
simulations, we see that hemispherical voids do not become sharper, that is ψ(t) = 90◦ ∀t > 0,
and hence not shown in the figure. However the sharp voids do change their sharpness with
time and this is illustrated in the figure. The initial sharpness of all the voids shown in the
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Figure 4. Snapshots of the void profiles with anisotropic placement rule. This figure is obtained
by restricting the creeping to the plane by setting βzz = 0. Creeping is assumed to be equally likely
both in r and θ directions (βrr = βθθ = 1/2). The experimentally observed pancake-shaped voids
are predicted with an anisotropic placement rule as seen.
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Figure 5. History of the change in sharpness of a sharp void. The sharpness remains unaffected
when creeping is isotropic. The void becomes sharper (ψ decreases) for anisotropic creeping. A
sharp void could progressively transform into a crack-like structure (→ ψ = 0◦).

figure is ψ = 60◦. When we assume the placement to be isotropic, then the void just dilates
without any shape change indicated by the solid line that remains at 60◦ for any given time
during our simulations. When we constrain the creep deformation to occur only in the r–θ

plane, the sharpness of the void increases, indicated by the decrease in ψ < 60◦. As mentioned
earlier, when we assume the creep deformation to be larger in the tangential direction, the void
becomes sharper, that is the case when βrr = 1/3 and βθθ = 2/3. When the sharpness of the
void is sufficiently large the stress concentration can transform to a stress singularity leading
to interactions with the neighbouring voids and hence spalling the oxide layer.
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Figure 6. History of the void tip velocity for different void sharpness and placement rules. For
any given placement rule a hemispherical void grows faster than a sharp void. When the creeping
is restricted to the plane with βzz = 0, void growth is faster compared to the case of isotropic
creeping. The void growth is fastest in the case when βrr = 1/3 and βθθ = 2/3.

The void profiles assuming isotropic and anisotropic placement rules (figures 3 and 4)
showed that the distance between any two successive void profiles altered with time. This
difference in the distance of separation was indicative of the change in velocity of void growth.
Compared to all the points on the void, the equatorial position grows the fastest. In order to
understand the effect of initial sharpness and different placement rules on the rate of change
of void shape, we plot the history of the void tip velocities (figure 6). For any given placement
rule, a hemispherical void grows faster compared to the sharp voids. The void tip velocity
is slowest when the creep deformation is isotropic and fastest when the creep deformation is
planar with creeping more likely in the tangential direction than the radial (βθθ > βrr ). In
our study we have simulated the void growth pattern upto t = 9τ , at which the change in
void tip velocity almost reached a constant and hence attaining a quasi-steady-state of void
growth. Even though the void growth velocity is slower in a sharp void as compared with
a hemispherical void, it is important to note that the sharp void becomes sharper (figure 5)
and hence leads to a magnification of the stress concentration. As mentioned earlier, a sharp
void resembles the experimentally observed void shapes more closely, from which we could
explain the observed spallation mechanism in the failure of TBCs.

From the results discussed so far, the effect of the sharpness of the void and placement
rules on the void growth pattern were explained. In order to illustrate the effect of the presence
of a void on the diffusion mechanism we plot the contours of the aluminium atom concentration
in figure 7. The contours are shown for both hemispherical and sharp void shapes after the void
growth reached a quasi-steady-state (t = 9τ ). An anisotropic placement rule described by
βrr = 1/2, βθθ = 1/2, βzz = 0 was assumed, as this case closely resembles the experimentally
observed void growth patterns. As mentioned earlier, we have assumed the initial concentration
of Al to be co = 0.48, which is reached far away from the void. In all our simulations the Al
atom diffuses out along the positive z direction into the oxide layer to form a new oxide surface.
As can be seen from the contours, the shape of the void does not seem to affect the concentration
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Figure 7. Aluminium atom concentration at time t = 9τ . These contours were obtained with an
anisotropic placement rule assuming βrr = 1/2, βθθ = 1/2, βzz = 0. The void geometry and the
placement rule do not affect the variation of the concentration. The stress variations are affected by
both and are illustrated in figure 8. (a) Hemisherical void (ψ = 90◦) and (b) sharp void (ψ = 60◦).
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Figure 8. Radial stress (σrr/
) contours around the void at t = 9τ . These contours are obtained
assuming the same placement rule as in figure 7. The stresses are larger at the tip of the sharp void
in comparison with the hemispherical void. The stress concentration around a sharp void is spread
out to a larger radius indicating the effect of the void geometry. (a) Hemisherical void (ψ = 90◦)
and (b) sharp void (ψ = 60◦).

distribution. The variation of the concentration is on an average a one-dimensional diffusion
except close to the void as expected. It is important to note here that the mass transport occurs
due to both concentration and hydrostatic pressure gradients.

The change in the concentration of Al atoms leads to a change in the stress levels and
vice-versa. In order to describe the effect of the void geometry on the stresses generated,
we have plotted the contours of the normalized radial stresses (σrr ) in figure 8. The stress
contours presented here were obtained for the same anisotropic placement rule that was used
in obtaining the contours in figure 7. The stresses are plotted at t = 9τ when the simulation
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predicted a quasi-steady-state. As can be seen from the contours, the stresses reach a constant
homogeneous state (no variation in r or z) far away from the void. This state of stress
corresponds to that obtained from a one-dimensional analysis described in Suo et al (2003).
The magnitude of the stress increases near to the void and reaches a maximum at the tip of the
void (r = rv and z = 0) indicated by the dark region. The effect of the microvoid geometry
is more pronounced on the stress variations when compared to the concentration variations,
which are indicated by a large region of inhomogeneous stress variation as opposed to a smaller
area of inhomogeneous concentration variation (figure 7). Comparing the stress distribution
around a hemispherical void (figure 8(a)) and a sharp void (figure 8(b)), the region of stress
concentration is larger around the sharp void. This reinforces the notion that a sharp void is
more critical than a hemispherical void and can lead to the experimentally observed spallation
failure in TBCs.

5. Conclusions

In the present study we have extended the 1D formulation of the coupled diffusion and
creeping described by Suo et al (2003) to the axisymmetric case. We simulated the growth
of a microvoid subjected to coupled diffusion and creeping in the absence of any external
mechanical loading. The simulations were performed to understand the mechanism of the void
growth due to selective oxidation of β-NiAl used as a bond coat in thermal barrier coatings.
We draw the following conclusions from our parametric study.

(i) The void shape remains unaffected when the creeping is assumed to be isotropic in both
hemispherical and sharp voids.

(ii) Experimentally observed pancake-shaped void growth patterns occur only when creeping
is suppressed (anisotropic) in the z-direction.

(iii) Maximum void growth-rate is observed in the case of hemispherical voids (ψ = 90◦)
when creeping is assumed to be anisotropic.

(iv) The sharpness of a hemispherical void is independent of the placement rule. Sharp
voids become sharper when the creeping is constrained to be planar and hence the stress
concentration factor is magnified. In a limiting case a sharp void can transform into a
crack-like (ψ = 0◦) structure, leading to interactions with the neighbouring voids and
could spall the TBC as observed in experiments.
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