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Abstract

The common practice of ignoring the elastic strain gradient in measurements of geomet-
rically necessary dislocation (GND) density is critically examined. It is concluded that
the practice may result in substantial errors. Our analysis points to the importance
of spatial variations of the elastic strain field in relation to its magnitude in inferring
estimates of dislocation density from measurements.

1 The role of elastic strain gradients in measurement of

“geometrically-necessary” dislocation (GND) density

In the standard operating procedure for measuring (and thinking about) the mesoscale dis-
location density tensor field, it is generally assumed that the curl of the elastic strain may be
ignored [EDAR03, Pan08, FTWK05], presumably because the elastic strain field is of small
magnitude in a plastically deformed material. For example, it is concluded in [SO12] that
a small lattice strain and its associated gradient field may be neglected in the evaluation of
the dislocation density, whenever the rotation field is non-uniform. In this short note, we
demonstrate circumstances in which this conclusion is erroneous. Our discussion depends
upon the fact that a function of small magnitude may not possess a derivative that is of
equally small magnitude. Concerns similar in spirit arise in considering the range of physical
validity of solutions in linear elasticity [Car11].

The main argument is the following. Consider a skew-symmetric tensor field ω(x1, x2, x3),
a symmetric tensor field e(x1, x2, x3) and a small nondimensional parameter 0 < ν � 1. We
assume that the ratio of the magnitude of curl e to that of curlω is approximately unity or
less. We define the elastic distortion U e as

U e := ω + νe.
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The Kröner-Nye dislocation density field, defined as

α = curlU e

may be approximated by curlω provided that curl e is not of a higher order of magnitude
than curlω. For example, let the only non-vanishing components of ω be ω12 = −ω21 = kx1.
Also, let the only non-vanishing component of e be e11 = kx2. Then, the magnitudes
|curlω| = k, |curl e| = k, and the only non-vanishing component of α = curlω + curl (νe)
is α13 = k−νk u k. However, it is equally clear that if the ratio | curl e|/|curlω| were to be
large (e.g. u 1/ν), then such an approximation does not hold. In what follows, we illustrate
these remarks with explicit counterexamples.

2 Micro, and meso-macro scalings

For simplicity, we consider simply-connected domains for all arguments that follow. Consider
a symmetric tensor field εij(y1, y2, y3) as a function of the rectangular Cartesian coordinates
(yi, i = 1 to 3), where the components of εij are also expressed with respect to the basis of
the same coordinate system (as well as all tensor components below). Let us assume that
the tensor field is twice-differentiable and bounded, and, without loss of generality, that the
maximum magnitude of any of the components of the εij field does not exceed unity for all
values of (y1, y2, y3). The field is also assumed to be compatible in the sense of satisfying the
Saint-Venant compatibility conditions, i.e. it can be expressed as the symmetrized gradient
(or the strain tensor) of some vector field (the corresponding displacement field):

∂2εil
∂yk∂ym

− ∂2εkl
∂yi∂ym

− ∂2εim
∂yk∂yl

+
∂2εkm
∂yi∂yl

= 0. (1)

We regard this field as an elastic strain field viewed at the microscopic scale. The terms micro,
meso, macro here refer to the length-scale of variation, and therefore of measurements, of
various fields. Let us define a small-magnitude, compatible elastic strain field eij at the
meso/macroscopic scale according to the following definition:

eij(x1, x2, x3) := νεij

( x1
νm

,
x2
νm

,
x3
νm

)
, (2)

where 0 < ν � 1 is the same non-dimensional scale factor introduced previously and m ≥ 2
is, say, an integer. We use the scaling

yi =
xi
νm

;

consequently, yi is a fine (magnified) length scale of observation that resolves the microscopic
fields of, say, wave-length l, and xi is a coarse length scale of observation resolving meso-
macro fields of wave-length L� l. We think of ν = l/L.

It is now easy to see that

∂2eil
∂xk∂xm

− ∂2ekl
∂xi∂xm

− ∂2eim
∂xk∂xl

+
∂2ekm
∂xi∂xl

=
1

ν2m−1

(
∂2εil

∂yk∂ym
− ∂2εkl
∂yi∂ym

− ∂2εim
∂yk∂yl

+
∂2εkm
∂yi∂yl

)
= 0.
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Thus, the elastic strain field eij is compatible, meaning that there exists a displacement field
ui(x1, x2, x3) such that

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
= eij.

But then, defining the elastic rotation field as

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
= ωij,

we note that the αij field, corresponding to the elastic distortion field ui,j, vanishes but the
curl of the elastic rotation field is in general large:

0 = αil = εlkj
∂2ui
∂xj∂xk

= εlkj
∂ωij
∂xk

+ εlkj
∂eij
∂xk

⇒ εlkj
∂ωij
∂xk

(x1, x2, x3) = − 1

νm−1
εlkj

∂εij
∂yk

( x1
νm

,
x2
νm

,
x3
νm

)
,

where εijk are components of the alternating tensor. An example of a displacement field
ũi whose displacement gradient obviously has vanishing curl but whose strain and rotation
fields do not is given by ũ1 = kx2x1, ũ2 = −kx21/2, ũ3 = 0, k a constant. Then, in an
obvious notation, ẽ11 = kx2 and all other strain components are zero, while ω̃12 = kx1 and
ω̃13 = ω̃23 = 0.

In the next Section, we explicitly construct strain (εij) and rotation (ωij) fields that
provide counterexamples to the claim that small strains necessarily mean that the strain
field can be neglected in the determination of the dislocation density field.

3 Counterexamples

For the considerations of the previous section to be relevant, it remains to be shown that
strain fields εij satisfying (1) in fact exist. But this, of course, is a simple matter. Consider
any smooth displacement field vi(y1, y2, y3) on a domain, viewed at a resolution of, say, a
tenth of a micron. By this we mean that when yi are plotted on a scale of a tenth of a
micron, an unambiguous specification of vi as a function of these coordinates can be made.
We require at least that some of the components of the vi’s third-order spatial derivatives do
not vanish. For example, we could take each vi, i = 1 to 3, to be a fourth degree polynomial
in (y1, y2, y3) or trigonometric functions. We then define

εij(y1, y2, y3) :=
1

2

(
∂vi
∂yj

+
∂vj
∂yi

)
(y1, y2, y3).

By construction, any such field εij is guaranteed to satisfy (1). In terms of this εij(y1, y2, y3)
field, define the eij(x1, x2, x3) field from (2) for ν = 0.01 and m = 2. Roughly, this amounts
to viewing the same strain field at a scale of a millimeter. Thus, when for example the
field εij(y1, y2, y3) contains well-resolved sinusoidal oscillations, the field eij(x1, x2, x3) would
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appear highly oscillatory. The field ui of the construction above corresponding to this choice
of eij field would be

ui(x1, x2, x3) = ν3 vi

(x1
ν2
,
x2
ν2
,
x3
ν2

)
.

This construction is an explicit example for which there is no dislocation density in the body
but if approximated by the elastic rotation gradient, can be erroneously calculated as being
(arbitrarily) large, depending on the rapidity of the spatial fluctuation of the small-magnitude
elastic strain field.

In this counterexample, the dislocation density is exactly zero. However, a small mag-
nitude, but rapidly oscillating, elastic strain field at the mesoscale would seem to be a
common occurrence in the presence of a large number of dislocations in the body. Ele-
ments of the above example show that the curl of the elastic strain in such cases can be
large in magnitude so that its neglect can lead to substantial underestimation of the ac-
tual (excess/polar/geometrically-necessary) dislocation density. To illustrate this remark,
let the elastic distortion be composed of a rotation tensor ω with only non-zero compo-
nents ω12 = −ω21 = kx1 as before, and let the only non-vanishing component of e be
e11 = νk sin(x2/ν

2), which is a small-magnitude, very high frequency oscillation. Then, the
only non-vanishing component of α = curlω + curl e is α13 = k − (k/ν) cos(x2/ν

2), while
|curlω| = k.

4 Concluding remarks

The discussion so far has been confined to linear kinematics, but even in the geometrically
nonlinear case we may treat a Right Cauchy Green tensor (RCG) fieldC = F TF of a smooth
deformation field with deformation gradient F . Consequently, its Riemann-Christoffel tensor
is zero, and its essentially unique rotation field R that also satisfies F = R

√
C (up to a

rigid rotation) in general is not curl-free. Thus, in general, a compatible, i.e. curl-free, F
field has a non-uniform rotation field with non-vanishing curl. In particular, Shield [Shi73]
shows that this result holds for compatible finite strain fields of small magnitude with large
gradients:

Cik − δik = O(ν), Cik,l = O(1)

and

Rmn,k =
1

2
Rmp(Cpk,n − Cnk,p) +O(ν).

Of course, the curl of an RCG field arising from a smooth deformation does not necessarily
vanish.

A second remark pertains to the fact that experimental estimates of GND density are
based on a difference approximation of the derivative where the spatial step-length on the
mesoscale does not really tend to zero. One may then ask whether the ‘discrete’ deriva-
tive, based on a small, but finite, mesoscale step-length ∆x, of a continuously differentiable
function with small magnitude, say,

g(x) = νf
( x

νm

)
, 0 < ν � 1,m ≥ 2,
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is small (we assume f to be a bounded by unity, nondimensional, continuously differentiable
function). If so, then such a definition would allow the neglect of the small magnitude strain
field. But even this proposition appears to be untenable. Defining a discrete derivative
g′(x,∆x) as

g′(x,∆x) =
ν
[
f
(
x
νm

+ ∆x
νm

)
− f

(
x
νm

)]
∆x

=
ν
[
f
(
x
νm

+ ∆x
νm

)
− f

(
x
νm

)]
∆x
νm

1

νm
,

it can be observed from the middle expression that the term multiplying ν is in general not
going to be small in magnitude since, even for ∆x small, the arguments of f are not close.
Hence, g′(x,∆x) is not going to be small and cannot be ignored. The extreme right-hand-side
expression shows that for ∆x→ 0, 0 < ν � 1 fixed, lim∆x→0 g

′(x,∆x) is actually large.
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