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cÉcole Nationale Superieure d’Arts et Métiers, Department of Mechanical Engineering,
Lille, France

dImperial College London, Department of Mechanical Engineering, Exhibition Road,
London, SW7 2AZ, UK.

eCornell University, Laboratory of Atomic & Solid Physics, 317 Clark Hall, Ithaca, NY
14853-2501, USA

Abstract

Experimental results on nonlinear vibration localization in a cyclic chain of
weakly coupled oscillators with clearance nonlinearity are reported. Numerical
modelling and analysis complements the experimental study. A reduced order
model is derived and numerical analysis based on the harmonic balance method
demonstrates the existence of multiple classes of stable spatially localized non-
linear vibration states. The experiments agree very well with the numerical
results. The findings suggest that vibration localization due to fundamentally
nonlinear effects may also arise in mechanical structures with relevance in engi-
neering.

Keywords: Vibration localization, Clearance, Cyclic structure

1. Introduction

Reducing the vibration amplitude of engineering structures is a common
goal for designers, who aim at improving fatigue life, reducing wear and mainte-
nance costs. In particular, in aerospace and aeronautical engineering vibration
mitigation of complex structures such as turbines [1–6], reflectors and anten-5

nas [7, 8] is a critical and often highly non-trivial task [9]. The mechanical
structures concerned are composed of ideally identical elements assembled in a
cyclic fashion. In such systems cyclic symmetry is sought for dynamic balanc-
ing of rotating structures and to equally distribute energy preventing fatigue
and degradation of individual components. Assuming linearity, structural sym-10

metry usually amounts to a symmetric, spatially homogeneous response under
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spatially homogeneous excitation. Underlying are modal deformation patterns
in the form of standing waves, varying periodically in the circumferential direc-
tion. Deviations from a spatially homogeneous response, which often manifest
themselves in the form of locally amplified vibration amplitudes, are usually at-15

tributed to symmetry-breaking inhomogeneities of the structure. The discovery
of linear localized vibration modes dates back to the early works in solid state
physics by Lifshitz [18], who studied the vibrational properties of inhomoge-
neous crystal lattice, and by Anderson [19] who showed that inhomogeneities
may strongly influence lattice transport properties. In turbo-machinery the20

effect of vibration localization due to inhomogeneities or symmetry breaking
may often be found under the name ’mistuning’, relating the inhomogeneity to
spectrally inhomogeneous sectors of the rotors, usually blades [10–15].

In engineering, considerable effort has been made theoretically and numer-
ically to estimate the maximum vibration amplification in bladed disks due to25

mistuning [12–15], nevertheless erosion and wear during service may result in
geometrical variations which are often difficult to account for. However, struc-
tures often also exhibit nonlinear effects, which may lead to various localiza-
tion mechanisms [20–28]. Turbines in aero-engines, for example, may comprise
nonlinearities due to internal mechanical joints, high amplitude response, or ge-30

ometrical effects like clearances [2–5, 14–17, 29]. Especially the need for new
lightweight designs may increase these effects even further as slender structures
may undergo large deformation during operation [28] and might require more
sophisticated damping strategies. In the nonlinear regime vibration localiza-
tion driven by nonlinear effects, and not inhomomogeneity, may arise due to35

the dependency of modal properties on response amplitude. Through internal
resonances nonlinear modes may interact and confine energy to a distinct part
of the system [20–24, 30]. In physics, analogous localized states are referred
to as Intrinsic Localized Modes (ILM) or Discrete Breathers (DB) [31–34]. It
has already been shown theoretically and numerically that in both self-excited40

[25, 26] and externally-excited [27, 28] nonlinear homogeneous weakly coupled
structures the vibration energy may strongly localize in space (see also [22, 37–
41]). For a given set of system parameters, multiple coexisting stable and unsta-
ble states have been detected [26, 35, 36], which may also respond in the form of
regular or irregular vibrations [42, 43] (so called “chimera states”) and in terms45

of bifurcation diagrams give rise to snaking-like patterns, similarly to what has
been observed in other fields of physics such as fluid dynamics [44, 46, 47] and
nonlinear optics [44].

The aim of this paper is to move the question on nonlinear vibration localiza-
tion a step closer to realistic engineering-like structures. Following earlier work50

on localization in a non-cyclic system of two coupled oscillators [45], here a cyclic
chain of three weakly coupled oscillators with on-site clearance nonlinearity is
considered. First, in Sec. 2 the reader is introduced to a lumped model with the
aim to show how the phenomenon of vibration localization takes place due to
the bistability of the single oscillator that composes the cyclic symmetric chain.55

The lumped model retains the essential features of the experimental structure
but without the uncertainties related to the real component (e.g. manufactur-
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ing tolerances and damping). Numerical simulations are conducted by means
of the harmonic balance method together with numerical continuation, which
show a multiplicity of localized coexisting stable and unstable states. Then an60

experimental cyclically symmetric test rig is presented, which consists of three
weakly coupled slender beams with clearance nonlinearity. By measuring the
system response at different excitation frequencies and excitation amplitudes,
spatially localized vibration is detected and characterized. It is shown that
the localized states are stable in time and robust, so that, keeping excitation65

frequency and excitation amplitude constant, it is possible to switch from one
state to the other by additional external perturbations. Finally, a conclusion on
the numerical and experimental results is given and potential perspectives are
outlined.

2. Model70

2.1. Equations of motion

We consider a chain of weakly coupled oscillators with a clearance nonlin-
earity. The clearance nonlinearity offers a simple way to introduce an amplitude
dependent stiffening of the individual oscillators, and at the same time actually
arises for example in turbomachinery when blade vibrations exceed a certain75

level. The equation of motion for the nth oscillator may be written down as

m
d2xn
dt2

+ c
dxn
dt

+ Fk (xn) + kc (2xn − xn+1 − xn−1) = F0 cos (ωt) , (1)

where xn is the position of the n-th oscillator, m is the mass, c the linear viscous
damping coefficient, kc the coupling stiffness, F0 the harmonic forcing amplitude
with frequency ω and d/dt stands for the derivative with respect to time t. An
amplitude dependent restoring force function can be defined as80

Fk (xn) =

{
kxn; xn < g
kxn + k2 (xn − g) ; xn ≥ g

, (2)

with the clearance or gap g, the linear spring constant k and the additional
spring constant k2, which is activated when the clearance is exceeded, or the
gap is closed. To obtain a dimensionless formulation of Eq. (1) we substitute
τ = ωnt and x̃ = x/x0 and introduce the following parameters:

ωn =

√
k

m
, x0 =

F0

k
, ηc =

kc
k
, η2 =

k2
k
, ξ =

c

2
√
km

, Ω =
ω

ωn
. (3)

The dimensionless equations now read85

··
x̃n + 2ξ

·
x̃n + F̃k (x̃n) + ηc (2x̃n − x̃n+1 − x̃n−1) = cos (Ωτ) , (4)
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with

F̃k (x̃n) =

{
x̃n; x̃n < g̃
x̃n + η2 (x̃n − g̃) ; x̃n ≥ g̃

, (5)

where a superposed dot denotes differentiation with respect to the dimensionless
time τ . The mechanical system (eq. (4)) hence is fully defined by the number
of oscillators M , and the dimensionless parameters ξ, η2, g̃, ηc and Ω.

2.2. Numerical tools90

A widely used method for the computation of periodic solutions is the har-
monic balance method, a spectral Galerkin method that employs harmonic base
functions as weights [48]. Therefore, the coordinates x̃i(t) are expanded in a
truncated Fourier series of order M:

x̃n(t) ≈ a0,n +

M∑
k=1

ak,n cos kΩt+ bk,n sin kΩt, (6)

with the fundamental frequency Ω and the Fourier coefficients a and b. Substi-95

tuting the expression for x̃n,
·
x̃n and

··
x̃n into the equations of motion results in

a nonlinear algebraic system of equations for the coefficients (ak,n, bk,n). The
nonlinear vibration analysis tool [49], which comprises numerical continuation
and Newton-like solvers was used to solve this system along solution branches
via predictor-corrector techniques.100

2.3. Single Degree of Freedom (SDOF)

First we validated the HBM results against time integration for a single
degree of freedom (SDOF) oscillator with clearance nonlinearity (i.e. set ηc = 0
in eq. (4)). The time integration is performed by using the MATLAB built-in
function “ode45” that is based on a Runge-Kutta (4,5) formula. The system is105

defined by the following parameters:

ξ = 0.05; g̃ = 2; η2 = 30; ηc = 0. (7)

Figure 1 shows the Frequency Response Function (FRF) in terms of amplitude
of the fundamental harmonic

∣∣x̃1∣∣ versus the excitation frequency Ω obtained
using the HBM with 9 harmonics (black solid line), which proved to be suf-
ficient to provide an accurate solution. Indeed, the restoring force in eq. (2)110

is nonlinear and non-smooth hence using a single harmonic to approximate the
system dynamics would have led to large errors. Red dots and blue squares were
obtained using Time Integration (TI) with sequential continuation, decreasing
and increasing the continuation parameter Ω in the range Ω = [1, 1.8]. Figure 1
shows the accuracy of the HBM implementation. Notice that, due to the clear-115

ance nonlinearity, the FRF strongly starts to deviate from the small amplitude
linear one at |x̃| ≈ |x̃1|= g̃ as the gap closes and the oscillator stiffness increases.
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Figure 1: FRF obtained for a single oscillator using the HB method with 9 harmonics (black
line). Red dots and blue squares represent time integration solutions obtained respectively
decreasing and increasing Ω. System parameters: ξ = 0.05, g̃ = 2, η2 = 30, ηc = 0.

2.4. Weakly coupled chain of oscillators

Now we consider a cyclically symmetric chain of N = 3 externally excited
oscillators with clearance nonlinearity. Assume that the elements are weakly120

coupled hence the system parameters in Eq. (4) are

ξ = 0.05; g̃ = 2; η2 = 30; ηc = 0.01; (8)

All the oscillators are excited with an identical external force, equal in magnitude
and phase. To visualize the status of the system a scalar parameter E is defined
as the sum of the amplitudes of the fundamental harmonics of each oscillator∣∣x̃1i ∣∣125

E =

N∑
i=1

∣∣x̂1i ∣∣ . (9)

Figure 2 shows the system response computed through HBM (9 harmonics, black
solid lines) as a function of the excitation frequency Ω, while the red dots have
been obtained through time marching simulations (taking the amplitude of the
fundamental harmonic via FFT) and help in individuating the stable branches.
For 1.2 . Ω . 1.5 a bifurcation diagram in the form of a typical snaking130

bifurcation pattern results. From the large and small amplitude homogeneous
states, where all oscillators have the same amplitude, a number of additional
solution branches arise, comprising both stable and unstable states.

It is revealing to examine the characteristics of these additional states in
terms of normalized vibration amplitude. We select six states, which are labeled135
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Figure 2: Left panel: FRF, or bifurcation diagram, of the cyclic symmetric chain of N = 3
externally driven weakly coupled oscillators with clearance nonlinearity. Red markers are
time integration results, indicating stable states, black solid line HBM results (9 harmonics).
System parameters: ξ = 0.05, η2 = 30, g̃ = 2, ηc = 0.01. For the solutions labeled with
numbers from (1) to (6) the normalized vibration amplitudes of each oscillator ξ̃n are shown
in the plots on the right.

with the numbers from 1 to 6 in Figure 2 (left panel) and plot the dimensionless
vibration amplitude of each oscillator defined as

ξ̃n =

∣∣x̃1n∣∣
Xmax

, (10)

where Xmax is the maximum vibration amplitude across all the six states se-
lected, so that the difference in amplitude between the different solutions can
be appreciated (Fig. 2, barplots on the right). Solutions (5) and (6) correspond140

to homogeneous solutions where the vibration energy is evenly distributed in
space, while solutions from (1) to (4) show varying degrees of localization. On
the lower branch, solutions (1) to (2), the vibration is mainly localized on a
single oscillator, while on the upper branch, solutions (3) to (4), the vibration
is mainly localized on two of the three oscillators.145
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3. Experimental investigation

3.1. System

The cyclic structure under consideration consists of three beams with a com-
mon center region, as depicted in Panel (a) of Fig. 3. The structure is made150

from a 1.5 mm thick aluminium sheet by means of water jet cutting. The beams
have width l1 = 22 mm and additional masses are attached to the tips of the
beams in a distance l2 = 172 mm from the assembly’s center to the centers of
the masses. The tip masses measure 25 mm in diameter and 9 mm in height, are
glued on both sides of each beam and weigh 35 g each. Two shafts are jointed155

across the center hole of diameter d1 = 13 mm, as depicted in Panel (a) and (b)
of Fig. 3 and thus clamping the center region of the structure while leaving an
overhang from d2 = 40 mm to d3 = 72 mm. Note that Panel (b) of Fig. 3 is
a schematic drawing of the assembly, and it e.g. leaves out any recesses on the
shafts as well as the threaded nuts. The beams are coupled through a slender160

connection ring, defined by the inner and outer diameters d5 = 124 mm and
d6 = 134 mm, respectively, as well as the overhang at the clamping. Increasing
the width of these coupling elements leads to an amplified coupling of the beams.
A thick disk with a diameter d7 = 190 mm is positioned on one of the shafts in a
distance g ≈ 1.5 mm to the structure. The disk can be positioned on the shafts165

through a threaded joint and is fixed by a threaded nut. The diameter of the
disk and the clearance or gap value control the level of nonlinearity applied to
the system. The nonlinearity increases if the clearance is imposed closer to the
free end of the beam, since this results in an effectively higher bending stiffness.

The rigid part of the system is built to be moved with a shaker, described170

in more detail below, to apply an out-of-plane excitation to the structure. Due
to the attached tip masses, the beams respond - in the frequency range un-
der consideration - predominantly in their first bending mode φi(x, z) so that
from Euler-Bernoulli beam theory their motion can be collected in yi(x, z, t),
where i is the beam number. When the response amplitude surpasses a certain175

threshold the beams start touching the rigid disks, which effectively increases
the restoring force. Hence, as in the model presented in Section 2, the system
comprises an amplitude dependent stiffening nonlinearity. Since the beams re-
spond predominantly in their first bending mode the cyclic chain of oscillators
in Eq. (1) is a reduced-order model of the system. It is derived by defin-180

ing yi(x, z, t) = φi(x, z)qi(t) with the modal coordinate qi(t) and applying the
Galerkin approximation to the beam equations as in [37].

The assembly is mounted on two plates by threaded nuts, as depicted in
Panel (a) and (b) of Fig. 4. The mounted system is excited by an electrody-
namic shaker (TIRA TV 51140-M) and vibrates harmonically due to the first185

bending mode of the supporting plates. A dSpace controller board (DS1104)
with a sampling frequency of 10 kHz processes the excitation signal which is
then amplified and fed into the shaker. To measure the response of the system,
accelerometers are glued to the three tip masses. Because of memory limita-
tions, appropriate downsampling is applied to the recorded signal. When the190
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system is excited close to the first eigenfrequency the structure starts touching
the disk.

To obtain the modal parameters of a single arm of the structure, a modal
hammer test is conducted. First, the disk was positioned far away from the beam
and the first eigenfrequency was found at 11.13 Hz with a damping ratio of 5.8%.195

Next, the disk is positioned in distance g which leads to an eigenfrequency of
13.00 Hz and a damping ratio of 6.0%. Due to manufacturing and assembling
a split in frequency was observed for the double mode of the coupled system at
11.04 Hz and 11.11 Hz, while the in-phase mode was identified at 11.24 Hz.

Figure 3: System with clearance nonlinearity. Panel (a) depicts a drawing of the mounted
structure with attached tip masses on each beam. Panel (b) depicts a schematic drawing of
the assembly consisting of the structure clamped by the shafts and the mounted disk.

8



Figure 4: Test rig with vibration exciter (shaker) attached. Panel (a) side view. Panel (b)
top view.

3.2. Results200

Panel (a) of Fig. 5 displays the frequency response of the system by plotting
the sum of the acceleration amplitudes of the three beams. Sine sweeps were
carried out with a sweep rate of ∼ 0.0133 Hz/min. The thick line shows the up-
sweep starting at 10.90 Hz. At a frequency of ∼ 11.08 Hz the structure starts
touching the disk and due to the increasing stiffness, a wide resonances shift205

up to ∼ 13.49 Hz is observed. By slight external pertubations of the system
at or near about 13 Hz, different stable solutions on different solution branches
were triggered. By frequency sweeps these new solutions were followed, and new
response branches, represented by the thin lines, were mapped out until they
lost stability around ∼ 12 Hz.210

Panels (b)-(e) show the steady state response of the four solutions marked
with crosses in Panel (a). For all states the shaker was driven at constant
frequency of 12.30 Hz and identical excitation magnitude. Both the temporal
evolution of the signals at the oscillators, as well as the time-averaged (root
mean square average) amplitude of the response is depicted. Panels (b) and215

(e) correspond to the homogenous states, where all beams are in high or low
amplitude, respectively. Panel (c) shows a vibration state where two of the
oscillators are in large amplitude response, while one is in small amplitude
response. Panel (d) shows a vibration state where only one oscillator is in
large amplitude response, while the other two are in small amplitude response.220

The spatial vibration localization caused by the nonlinear characteristics of the
system is clearly apparent.

While sweeping through the frequency, the homogeneous state can loose sta-
bility and the system configuration becomes localized. Panels (a) - (c) of Fig. 6
plot the acceleration of the three beams in time domain for a linear bidirectional225

sweep from ∼ 12.55 Hz up to 12.9 Hz and back to 12.5 Hz. Panel (d) plots the
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corresponding RMS in frequency domain, where the squares and triangles mark
the forward and backward sweep, respectively. Here, the RMS is computed
from the sum of the three acceleration signals and a window of 3937 samples,
which corresponds to fifty periods at 12.7 Hz approximately, as the downsam-230

pled sampling frequency is 1 kHz. The figure reveals a hysteresis behaviour of
the system. At 12.55 Hz the blades are vibrating in high amplitude (“111”)
up to about t ' 1100 s, when the third blade vibration amplitude decreases
suddenly to a low value. The system remains in the “110” configuration up to
the end of the measurement while the excitation frequency sweeps up to 12.9235

Hz and goes back to 12.5 Hz.
Next, another linear bidirectional sweep was conducted starting with a con-

figuration of only two beams in high amplitude (“110”) from ∼ 12.92 Hz up to
13.1 Hz and back to 12.9 Hz, as depicted in Fig. 7. Around t ' 420 s the second
beam suddenly decreases to a low value and the system remains in the “100”240

configuration up to the end. In here, the RMS was computed by 3846 samples,
which corresponds to fifty periods at 13 Hz approximately.

One should note that the revealed types of localization can experimentally
be observed on any of the beams, leading to in total six different localized
configurations between the two homogenous states. Panels (a) to (c) in Fig. 8245

depict the first, second and third beam in large amplitude, while the other
beams are in small amplitude. Panels (d)-(f) depict the first, second and third
beam in small amplitude, while the other beams are in large amplitude.

To experimentally show that the localized states found are stable and some-
what robust, the system was excited at a constant frequency 12.30 Hz and250

brought in a localized solution. Then it was perturbed so that a different lo-
calized solution was reached. Figure 9 shows the transition in time domain by
plotting the upper envelope of the beam acceleration. The envelope is computed
as the RMS of the signal with a window of 831 samples, which corresponds to
ten periods approximately, as the signal in this experiment was downsampled255

to a frequency of 1 kHz. Panel(a) and (b) depicts the transition from the ho-
mogeneous state with all beams in low amplitude (“000”) to the localized state
with beam 1 in high amplitude (“100”) and back, respectively. The transition
from the state “100” to “110” and back is depicted in Panel(c) and (d).
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Figure 5: Frequency response in the nonlinear regime. Panel (a) depicts the different solution
branches. Shown is the sum of acceleration amplitudes over the three oscillators. Panel (b)-(e)
give the steady state reponse of the four branches in time domain and the RMS of each signal.
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0 200 400 600 800 1000 1200 1400 1600 1800

-50
0

50

 a
 (

m
/s

2
) (a)

0 200 400 600 800 1000 1200 1400 1600 1800

-50
0

50

 a
 (

m
/s

2
) (b)

0 200 400 600 800 1000 1200 1400 1600 1800

t (s)

-50
0

50

 a
 (

m
/s

2
) (c)

12.9 12.92 12.94 12.96 12.98 13 13.02 13.04 13.06 13.08 13.1

f (Hz)

40
60
80

 R
M

S
 (

x
) (d)
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Figure 8: Different localized configurations in time domain and the corresponding RMS of
each signal: Panel (a) to (c) depict the first, second and third beam in large amplitude, while
the other beams are in small amplitude. Panel (d)-(f) depict the first, second and third beam
in small amplitude, while the other beams are in high amplitude.
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Figure 9: Transition of localized states in time domain: Panel (a) and (b) depict the transition
from the state “000” to “100” and back. Panel (c) and (d) depict the transition from the state
“100” to “110” and back.

4. Conclusion260

In this work, a cyclic chain of weakly coupled oscillators, exposed to a clear-
ance nonlinearity was investigated. A reduced-order model was derived from
a structure of three coupled beams through standard Galerkin approximation.
Numerical simulation indicated the existence of stable spatially localized vibra-
tion states in the nonlinear regime. Motivated from the numerical findings, a265

test-rig was designed, consisting of three weakly coupled slender beams, each
subjec ted to a clearance nonlinearity. Experimental measurements from the
test rig confirm the numerical findings. A frequency sweep displayed the ho-
mogenous states with all beams in large or small amplitude, respectively. By
deliberate perturbation of the system in the nonlinear regime, all possible con-270

figurations of localization could have been obtained. These comprise states with
one or two beams in large amplitude and the other beams in small amplitude,
accordingly.

The present work has attempted to contribute to the ongoing research on
nonlinear vibration localization in cyclic systems. The work provides evidence275

that the phenomenon of nonlinear vibration localization might actually arise in
structures of engineering interest, e.g. turbo-machinery, aero-engines, or wind
turbines. Still, more work is needed to better understand the specific conditions
of its potential emergence.

As for future work, there are many directions. The present test rig was devel-280

oped so that it can be adapted to accommodate a larger number of oscillators,
which would mean to improve the approximation to realistic system geometries.
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But also other sorts of nonlinearity will need to be studied, like geometric non-
linearity for large displacements, nonlinear coupling of neighbouring oscillators,
or nonlinear aeroelastic coupling by fluid forces.285
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N. Hoffmann, Nonlinear vibration localisation in a symmetric system of two425

coupled beams. Accepted for publication in Nonlinear Dynamics.

[46] O. Thual, & S. Fauve, Localized structures generated by subcritical insta-
bilities. Journal de Physique 49.11 (1988) 1829-1833.

[47] C. Beaume, A. Bergeon, E. Knobloch, Homoclinic snaking of localized
states in doubly diffusive convection. Physics of Fluids, 23(9) (2011) 094102.430

[48] J. S. Hesthaven, G. Sigal, & G. David . Spectral methods for time-
dependent problems. Vol. 21. Cambridge University Press, 2007.

[49] M. Krack, J. Gross, Harmonic balance for nonlinear vibration problems.
New York: Springer (2019).

18

View publication statsView publication stats

https://www.researchgate.net/publication/348538538

	Introduction
	Model
	Equations of motion
	Numerical tools
	Single Degree of Freedom (SDOF)
	Weakly coupled chain of oscillators

	Experimental investigation
	System
	Results

	Conclusion

