
To appear in Journal of the Mechanics and Physics of Solids, doi: https://doi.org/10.1016/j.jmps.2023.105289.

Polymer networks which locally rotate to accommodate stresses, torques, and
deformation

Matthew Grasinger1, ∗

1Materials and Manufacturing Directorate, Air Force Research Laboratory

Polymer network models construct the constitutive relationships of a broader polymer
network from the behavior of a single polymer chain (e.g. viscoelastic response to applied
forces, applied electromagnetic fields, etc.). Network models have been used for multiscale
phenomena in a variety of contexts such as rubber elasticity, soft multifunctional materials,
biological materials, and even the curing of polymers. For decades, a myriad of polymer
network models have been developed with differing numbers of chains, arranged in different
ways, and with differing symmetries. To complicate matters further, there are also competing
assumptions for how macroscopic variables (e.g. deformation) are related to individual chains
within the network model. In this work, we propose a simple, intuitive assumption for how
the network locally rotates relative to applied loading (e.g. stresses, external fields) and
show that this assumption unifies many of the disparate polymer network models–while
also recovering one of the most successful models for rubber elasticity, the Arruda-Boyce
8-chain model. The new assumption is then shown to make more intuitive predictions (than
prior models) for stimuli-responsive networks with orientational energies (e.g. electroactive
polymers), which is significant for shape morphing and designing high degree of freedom
actuators (e.g. for soft robotics). Lastly, we unveil some surprising consequences of the new
model for the phases of multistable biopolymer and semi-crystalline networks.

I. INTRODUCTION

Constitutive models for (solid) polymer networks can roughly be divided into two categories:
1) phenomenological models based on strain invariants and/or principal stretches, and 2) microme-
chanically based models that aim to connect macromolecular and network structural properties to
the bulk, continuum scale. In the first category, the well known Neo-Hookean is among the simplest.
Other well known examples include Mooney-Rivlin type models [1, 2] and Ogden models [3, 4]. The
focus of this work will be on the latter category: micromechanically based models.

Entropy drives the elasticity of soft networks consisting of long polymer chains. As a result,
there is a rich history of statistical mechanics guiding our understanding of polymer networks [5].
Typically a continuum model derived from such principles starts at the scale of a polymer chain
where the free energy of a polymer, as a function of its stretch, is determined. Then the continuum
response to deformation can be constructed by using the single chain response in a so-called polymer
network model. These network models allow one to relate macroscopic state variables, such as
deformation, to individual chains within the network.

Many polymer network models exist in the literature. Some have a discrete number of chains
arranged in a representative volume element (RVE) (i.e. unit cell) while others model the network
via a probability density of polymer chains. There are also competing assumptions for how macro-
scopic deformation is related to the deformations of chains within the network. Historically, for
discrete network models, there are the 3-chain [6], the 4-chain [7] (i.e. Flory-Rehner model), and
the 8-chain [8] models. Continuous network models began with the full network model of Wu and
van der Giessen [9] which assumes that all of chains in the network are of the same length (in the
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reference configuration) and that the directions of chains are uniformly distributed over the unit
sphere. In response to the (at times) underwhelming fit of the full network model to benchmark
data in rubber elasticity, it was improved upon by the microsphere model of Miehe et al. [10]. A key
feature of the microsphere model was the development of a new assumption for how macroscopic
deformation is related to chains within the network. The assumption involved a so-called “stretch
fluctuation field” on the unit sphere of chain directions. The stretch fluctuation field is determined
by minimizing the average free energy of the network subject to homogenization-based constraints.
For certain fitted parameters, the microsphere model recovers the 8-chain model exactly. Around
the same time Beatty [11] suggested a different perspective on the full network model: it was shown
that if one takes the chain free energy for the average stretch of the full network model–as opposed
to the average chain free energy–one again recovers the 8-chain model.

Since these earlier developments, several variants have been proposed that aim to retain much of
the simplicity and physical-basis of earlier models while also providing a better fit to the S-shaped
stress-strain curves of the well-known Treloar data for rubber elasticity [12–17]. Many of these
variants decompose the free energy density of the network additively into a contribution which
represents the “cross-linked network”–often modelled using the 8-chain or a full network model–
and a topological constraint contribution due to chain entanglements within the network. The
topological constraint contribution has taken different forms: some based on chain statistics and
micromechanics [12, 15, 16] while others appear more phenomenological [13, 14]. For example, Bechir
et al. [13] argues that the standard 3-chain model can, phenomenologically speaking, be used to
model the topological constraint contribution. Whereas, alternatively, Miroshnychenko and Green
[14] models the topological contribution using strain invariants. For full network type models, a
new macro-to-micro kinematic assumption has recently been developed, based on an affine stretch
projection and a microscale analog of the Biot stress, which performs well for capturing complex and
multiaxial stress-strain relationships [17]. Many constitutive models for rubber-like elasticity exist
in the literature that attempt to balance between competing objectives: 1) contain as few fitting
parameters as possible, 2) have the ability to reproduce complex deformation behavior, and 3) in
the interest of informing material design, have model parameters which are physically interpretable
and can be reasonably connected to the underlying microstructure of the material. Comprehensive
reviews can be found in Hossain et al. [18] and Dal et al. [19].

Polymer network models have been applied to a vast number of different polymer networks
related to adhesives [20], biomechanics [21–24], magneto-active polymers (e.g. hard-magnetic soft
materials) [25, 26] and electro-active polymers [27–32]. Network models have also been used for
capturing phenomena such as viscoelasticity [20, 33], the curing of networks [34], excluded volume
induced strain-hardening and incompressibility [35], and chain scission and fracture [36, 37]. As a
result, continuous network models have been generalized to anisotropic chain distributions [24, 38]
and polydisperse networks (i.e. networks consisting of chains of different lengths) [36]. While it
is widely accepted that the 8-chain and microsphere models (and their variants) are among the
most accurate for the elasticity of rubber-like materials, the appropriate polymer network model
for stimuli-responsive [25–29], biopolymer [22–24], and semi-crystalline networks [39] are still active
areas of research; as is the appropriate polymer network model for fracture [36, 37, 40]. Recent
results suggest, for instance, that the 8-chain and microsphere models are inaccurate and make
nonphysical predictions for some biopolymer networks [22]. Similarly, theoretical predictions made
by the 3- and 8-chain model for certain stimuli-responsive polymer networks, where chains have a
free energy dependence on their orientation (relative to an applied electromagnetic field), can also be
counter-intuitive [27, 29]. Meanwhile, properly understanding biopolymer and stimuli-responsive
networks will be key to achieving breakthroughs in soft, biologically-inspired robotics [41, 42],
advanced prosthetics, wearable sensors [43, 44], and the interfacing of biology and electronics, more



3

broadly.

The primary focus of this work is on discrete network models. Numerical integration of the full-
network and microsphere models is nontrivial [45]. More importantly, discrete network models can
characterize the geometrical features of the network which are significant for the homogenization of
composites (e.g. [46]), strain gradient elasticity [47], and strain gradient couplings such as flexoelec-
tricity [28]. Finally, it will later be shown that, in certain contexts, discrete polymer network models
have an apparent advantage over their continuous counterparts because cross-links (i.e. junctions
between chains) in real polymer networks consist of a finite number of chains.

The standard macro-to-micro kinematic assumption for discrete polymer network models–
motivated by coordinate system invariance–is that the RVE rotates such that its edges lie along
the principal directions of stretch. However, recent theoretical work and experimental observations
suggest the importance of the local rotation of polymer network RVEs [23, 27, 31]. In section II,
as a preamble, some broadly used polymer chain models are reviewed. Then, in section III, we
develop a new macro-to-micro kinematic assumption for discrete polymer network models where
the rotation of the RVE is chosen such that it has minimal free energy upon deformation (i.e. the
network locally rotates to most efficiently accommodate stresses, torques, and deformation). In
section IV, it is shown that, for the broadly used polymer chain models (e.g. polymer chain models
for rubber elasticity), the new kinematic assumption recovers the successful Arruda-Boyce 8-chain
and microsphere models–for all of the 3-, 4-, 6-, and 8-chain RVEs. Thus, the new assumption
unifies disparate polymer network models and reproduces benchmark experimental data. Then in
section V it is shown that the new macro-to-micro assumption produces discrete polymer network
models which are more thermodynamically consistent and make more intuitive predictions for
stimuli-responsive networks. In section VI, surprising implications of the new model for biopolymer
and semi-crystalline networks are unveiled. Section VII concludes the work.

II. POLYMER CHAINS

The fundamental kinematic description of a polymer chain is its the end-to-end vector, r, which is
the vector that spans from the start of the chain to its end. Let r = |r| denote its magnitude. Many
polymers have a well defined maximum length, ℓ0, such that r ∈ [0, ℓ0]. We refer to γ = r/ℓ0 as the
chain stretch. A natural way to model the elastic response of a chain is through the specification of
its free energy as a function of its stretch, i.e. w = w (γ). Here we briefly review 3 examples of free
energy functions: the Gaussian chain (GC), the Kuhn and Grün chain (KGC), and the wormlike
chain (WLC).

In the freely jointed chain model, it is assumed that the polymer is made up of n rigid links
of length b–called Kuhn segments–so that ℓ0 = nb. The links are bonded end-to-end and links
are free to rotate about their neighboring bonds. Given the model assumptions, the free energy
response can be derived using statistical mechanics; however the exact solution is untenable. As
a result, approximations are derived in certain limits or by introducing additional simplifying as-
sumptions. One such approximation for the free energy of a freely jointed chain is the Gaussian
chain approximation:

wG (γ) =
3

2
nkTγ2. (2.1)

The GC approximation is derived using random walk statistics and is valid for small to moderate
chain stretches, but does not capture the finite extensibility of the chain. A better approximation



4

of freely jointed chain behavior is obtained by the KGC formula [5]:

wKG (γ) = nkT

(
γL−1 (γ) + log

( L−1 (γ)

4π sinhL−1 (γ)

))
. (2.2)

which does capture the finite extensibility of the chain (i.e. wKG → ∞ as γ → 1).
An alternative that describes many realistic and stiffer polymers is the wormlike chain model.

In contrast to the FJC, which consists of a discrete number of rigid links, the WLC is a kind
of continuously flexible rod. The bending stiffness of the chain per unit length is given by the
persistence length, p. A simple approximation for its free energy is [23]:

wwlc (γ) =
kTℓ0
4p

(
2γ2 +

1

1− γ
− γ

)
, (2.3)

which also captures the finite extensibility of the chain. The WLC has been used to successfully
model DNA and other biomolecules [23, 24].

Given the free energy response of a single chain, its elastic response can be obtained directly by
minimization:

min
r

{w − f · r} =⇒ f = −∂w

∂r
. (2.4)

III. NEW MACRO-TO-MICRO KINEMATIC ASSUMPTIONS

A. Continuum mechanics

To set notation, we introduce some fundamental concepts in continuum solid mechanics. Let x be
a material point of a solid body in the reference configuration and y = Φ (x) its corresponding point
in the deformed configuration. Here Φ is the mapping which describes the deformation of the solid
body. The deformation gradient, F = GradΦ, maps so-called line elements–which are infinitesimal
changes in position, δx–from the reference to the current configuration, i.e. δy = F δx. The right
Cauchy-Green tensor, C = F TF , describes the stretches of line elements under F . Physically, we
require that detF > 0. Then by the polar decomposition theorem F can be uniquely decomposed
into F = RV where R ∈ SO (3), V =

√
C is positive definite, and SO (3) is the group of 3

dimensional rotations. Moving forward, we refer to V as the stretch tensor and its eigenvalues and
eigenvectors as the principal stretches, λi, and principal directions, v̂i, respectively. Because V is
symmetric, the principal directions can be chosen such that v̂i · v̂j = δij and this set of directions
constitutes a principal frame. Analogous to the single chain case, the elasticity of the solid polymer
network can be modeled via a free energy density W = W (F ).

B. Classical polymer network models

The free energy density of a polymer network can be constructed from the behavior of a single
chain through the use of a polymer network model. Discrete polymer network models consist of
a representative volume element (RVE), polymer chains arranged within the RVE, and associated
assumptions for how F acts on the RVE. FIG. 1 depicts examples of classical polymer network
models: a) the 3-chain model [6], b) the 4-chain model [7], c) the 8-chain model [8], and d) the full
network model [9]. A key consideration for the assumed relationship between F and the deformation
of an RVE is that the resulting constitutive model be coordinate system invariant. The 3-chain and
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a) b) c) d)

FIG. 1. Classical polymer network models. The representative volume elements of the a) 3-chain model,
b) the 4-chain model, and c) the 8-chain model. The sphere in d) is representative of a continuous, uniform
density of chain directions constituent of the full network and microsphere models.

8-chain models handle this via the same kinematic assumption: 1) the RVE rotates such that the
edges of the cube stretch in the principal frame and 2) the edges of the cube stretch according to
the principal stretches. We refer to this as the principal frame assumption. The principal frame
assumption can be formulated as follows. Let r̃i, i = 1, 2, . . . ,M denote the chain end-to-end vectors
before deformation (where M is the number of chains in the RVE). Then

ri = V P r̃i (3.1)

where

P =




| | |
v̂1 v̂2 v̂3
| | |


 (3.2)

is an orthogonal transformation which aligns the edges of the RVE with the principal frame. The
stretches satisfy

γi =
1

ℓ0
|V P r̃i| =

1

ℓ0

√
r̃i · C̄r̃i (3.3)

where by C̄ we mean a similarity transformation of C. In this case, C̄ is a diagonalization of C.
Assuming the interactions between chains are negligible, the free energy density is approximated by
an average of the chain free energies over the RVE times the number of chains per unit volume, N .
Let ⟨2⟩ denote the quantity 2 averaged over the chains in the RVE. The 3-chain polymer network
model results in the constitutive relation

W (F ) = N

〈
w

( |V P r̃|
ℓ0

)〉
=

N

3

3∑

i=1

w

(
r̃

ℓ0
λi

)
; (3.4)

and the 8-chain network model results in a different constitutive relation

W (F ) = Nw

(
r̃

ℓ0

√
λ2
1 + λ2

2 + λ2
3

3

)
. (3.5)

It seems to be widely accepted that the 8-chain model produces more accurate constitutive
models for a wide array of real polymer networks [8, 10, 23]. It is noteworthy then that 1) there is
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such a stark difference between the 3-chain and 8-chain models and 2) that it is so widely accepted
that the 8-chain produces better constitutive models. One may ask: does this suggest that more
real polymer networks consist of cross-links of 8 chains as opposed to 3, 4, or 6? If not, what is it
that drives the success of the 8-chain model?

Further questions arise in the context of polymer networks with orientational energies. For
example, if the monomers in a chain have electrical dipoles and an electric field is externally applied,
then the chain free energy is not only dependent on the magnitude of stretch, but also the direction
of stretch, r̂ [28, 48, 49]. The 8-chain model with the principal frame assumption can lead to
counter-intuitive, and likely nonphysical, predictions in such cases [27, 29].

C. Free rotation assumption

Here we propose a new set of macro-to-micro kinematic assumptions for discrete polymer net-
works with an emphasis on correctly capturing the orientation of chains within the network after
some local macroscopic deformation F . Because we are interested in stimuli-responsive networks
with orientational energies, we assume from here on that the chain free energy is given as a function
of the end-to-end vector, i.e. w = w (r). The principal frame assumption ensures that the result-
ing constitutive relation is independent of a particular choice of coordinate system; however, there
does not appear to be strong physical justification beyond this and the assumption can breakdown
when chains have an orientational energy. To address this, consider the notion of locally rotating a
cross-link and its associated RVE by some arbitrary Q ∈ SO (3). According to the principal frame
assumption: Q = P . Here, however, we instead propose to choose Q such that the free energy
density is minimized. The principal argument is that the polymer network is able to locally, micro-
scopically rotate in order to accommodate the macroscopic deformation in the most energetically
efficient way possible.

Next we consider the deformation of the RVE via the stretch tensor, V . Although this provides
a clean geometric picture, it also seems to lack a strong physical justification. Instead we recall that
line elements get mapped from the reference configuration to the deformed configuration by the
deformation gradient, F . We posit that polymer end-to-end vectors are sufficiently “short” so as to
be considered line elements and assume that, after rotation by Q, end-to-end vectors are deformed
according to F .

A final consideration is the possibility of a nonlocal interaction energy associated with rotating
the cross-link relative to the broader network, Wnet. This rotation, for instance, may cause stresses
and deformations on neighboring cross-links. Considering this contribution, the new free energy
density is formulated as follows:

W (F ) = min
Q∈SO(3)

{
Ŵ (F ,Q) +Wnet (Q, . . . )

}
, (3.6a)

Ŵ (F ,Q) = N ⟨w (FQr̃)⟩ . (3.6b)

The notation Wnet (Q, . . . ) is used to emphasize that, because this contribution to the free energy is
nonlocal, it is possibly a function of F , GradF , and/or GradQ. As such, the form of Wnet (Q, . . . )
may be important when modelling strain gradient effects such as strain gradient elasticity [47]
or flexoelectricity [28]. These effects will be a topic of future work. In the interim, the issue of
compatibility when locally rotating networks are subject to an inhomogeneous deformation, and
its potential implications for Wnet, is briefly explored in appendix A. However, throughout the
remainder of the work, motivated by both simplicity and the success of the 8-chain model, we
will assume that the Wnet contribution is negligible and will not consider it further. The newly
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FIG. 2. Free rotation assumption. A solid polymer network (bottom row) is deformed according to the
mapping Φ. The RVE of the network at material point x, in the reference configuration, is shown in the
top left. In the deformed configuration, the RVE, now at y = Φ (x), first locally rotates to most efficiently

accommodate the macroscopic deformation F (i.e. rotates by argminQ∈SO(3) Ŵ (F ,Q)), then is deformed
according to F .

developed constitutive model–depicted in fig. 2–then reduces to a polymer network which is able
to locally rotate in order to accommodate the macroscopic deformation, F , according to what has
been referred to in previous work as the principle of minimum average free energy [10, 36, 39]. For
conciseness, we refer to this new model assumption as the free rotation assumption.

D. SO (3) representations and optimization

It is well known that there are numerical pathologies associated with the Euler angle represen-
tation when optimizing over rotations [50]. In this work, we instead use the exponential, or “axis-
angle”, representation. The Rodrigues vector, ω ∈ R3, describes the angle of rotation, φ = |ω| and
an axis about which to rotate û = ω/φ. The rotation, Q, is obtained by taking the exponential of
the generating skew-symmetric tensor

A =




0 −û3 û2
û3 0 −û1
−û2 û1 0


 ; Q = exp (φA) = I + sinφA+ (1− cosφ)A2. (3.7)



8

For the numerical examples presented herein, equation (3.6) takes on the form

W (F ) = min
ω

{
Ŵ (F ,Q (ω))

}
subject to |ω| < 2π (3.8)

which was solved in Mathematica using FindMinimum for local optimization and NMinimize for
global optimization. FindMinimum uses a series of interior point methods for constrained (local)
optimization; and NMinimize uses Nelder-Mead methods, supplemented by differential evolution.
These choices were made for simplicity of implementation; however, we remark that the exponential
representation is amenable to gradient-based methods as well [50].

IV. UNIFICATION OF DISCRETE POLYMER NETWORK MODELS

In the previous section, we questioned what specifically drives the success of the 8-chain model
relative to the 3-chain, full network, and other polymer network models. Here we explore this
in more detail through the lens of the newly proposed (local) free rotation assumption and the
principle of minimum average free energy. Towards this aim, we consider a trivial property of
convex functions that we refer to as the equipartition property.

Lemma (Equipartition property). Given a convex function f and a conserved quantity y which is
partitioned among n variables, i.e. y = x1 + · · ·+ xn, a solution to

min
x1,...,xn

n∑

i=1

f (xi) subject to
n∑

i=1

xi = y

is x1 = · · · = xn = y
n .

Proof. This follows directly from the definition of convexity:

n∑

i=1

f (xi) = n

(
1

n

n∑

i=1

f (xi)

)
≥ nf

(
1

n

n∑

i=1

xi

)
= nf

(y
n

)
.

The equipartition property is important when considering polymer network models because of the
results that follow. A standard assumption for isotropic polymer networks is that all of the chains
effectively have the same length end-to-end vectors in the stress free, undeformed configuration.
Let this length be denoted by r̃. For continuous network models (e.g. fig. 1.d), let ρ (υ̂) be the
probability density of a chain with r̃ = r̃υ̂ where υ̂ ∈ S2 and S2 is the unit sphere. Before proceeding,
we also introduce the 6-chain RVE (fig. 3) because, although its elastic properties are equivalent to
the 3-chain RVE (indeed, γ2i = (−r̃i) · C̄ (−r̃i) /ℓ

2
0 = r̃i · C̄r̃i/ℓ

2
0), its strain gradient and stimuli-

responsive properties may be different. For example, if the polymer chains in the network have a
electric (or magnetic) dipole which is linear in r̃ (e.g. Grasinger et al. [28]) then the polarization
(or magnetization) of the 3- and 6-chain RVEs will vary.

Proposition 1 (Conservation property). The sum of squares of the chain stretches, i.e.
∑M

i=1 γ
2
i ,

is conserved relative to general rotations

a) for all of the 3, 4, 6, and 8-chain RVEs and
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b) provided the RVE has reflection symmetries about planes (passing through the origin) normal to
three orthogonal directions, ν̂j , j = 1, 2, 3, and,

∑M
i=1 (r̃i · ν̂j)2 = C for all j. For continuous

networks,
∫
S2 dA ρ (υ̂) γ2 (υ̂) is conserved provided

∫
S2 dA ρ (υ̂) (υ̂ · ν̂j)2 = C for all j.

While there is some overlap between a) and b), they are considered separately because a) estab-
lishes the conservation property for well known discrete polymer networks while b) is a sufficient
condition for constructing new polymer network models with the same conservation property.

Proof. a) Let the coordinate systems for the RVEs be chosen such that

r̃i = r̃êi, i = 1, 2, 3, (4.1a)

for the 3-chain RVE;

r̃1 = r̃ (0, 0, 1) , r̃2 = r̃

(
0,

2
√
2

3
,−1

3

)

r̃3 = r̃

(√
2

3
,−

√
2

3
,−1

3

)
, r̃4 = r̃

(
−
√

2

3
,−

√
2

3
,−1

3

) (4.1b)

for the 4-chain RVE;

r̃i =

{
r̃êi, i = 1, 2, 3

−r̃êi−3, i = 4, 5, 6
(4.1c)

for the 6-chain RVE (shown in fig. 3); and

r̃i =
r̃√
3
(±1,±1,±1) , i = 1, 2, . . . , 8 (4.1d)

for the 8-chain RVE (see fig. 1, for example). In each case,

M∑

i=1

γ2i =
1

ℓ20

M∑

i=1

(FQr̃i) · (FQr̃i) =
1

ℓ20

M∑

i=1

r̃i · C̄r̃i. (4.2)

where again by C̄ we mean a similarity transformation of C. Using (4.1) and (4.2), it can be shown
directly that

M∑

i=1

γ2i = const× Tr C̄ (4.3)

for each case, which is invariant with respect to Q, as desired1.
b) First consider discrete networks. Expand each r̃ in the orthonormal basis, ν̂j , j = 1, 2, 3. Let

r̃k = r̃k1ν̂1 + r̃k2ν̂2 + r̃k3ν̂3 where r̃kj = (r̃k · ν̂j). Then

M∑

k=1

γ2k =
1

ℓ20

M∑

k=1

r̃k · C̄r̃k =
1

ℓ20

3,3∑

i=1,j=1

M∑

k=1

r̃ki
¯̄Cij r̃kj =

1

ℓ20

3∑

i=1

¯̄Cii

M∑

k

r̃2ki. (4.4)

1 The algebra is straight forward and was verified in the Mathematica notebook, MPS-D-22-01011.nb, which can be
found at https://github.com/grasingerm/MPS-D-22-01011/

https://github.com/grasingerm/MPS-D-22-01011/
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where ¯̄C is a similarity transformation of C̄ (and, consequently, is a similarity transformation of C)
and the last step is due to the reflection symmetries. Clearly

∑M
i=1 γ

2
i =

(
C/ℓ20

)
Tr ¯̄C =

(
C/ℓ20

)
TrC,

as desired. Similarly for continuous networks2, as a consequence of the assumed symmetries,

∫

S2
dA ρ (υ̂) γ2 (υ̂) =

r̃2

ℓ20

∫

S2
dA ρ (υ̂)

(
υ̂ · C̄υ̂

)
=

C

ℓ20
Tr C̄. (4.5)

Remark 1. The 8-chain RVE using the free rotation assumption recovers the Arruda-Boyce 8-chain
model (i.e. 8-chain RVE using the principal frame assumption) whenever 1) the chain free energy
is a convex function of γ2 and 2) the chain free energy is only a function of γ (i.e. does not depend
on r̂). This follows from the equipartition property, proposition 1, and the formula for the classical
8-chain constitutive model (3.5).

FIG. 3. The 6-chain RVE is introduced here because although its elastic properties are equivalent to the
3-chain RVE, regardless of frame (indeed, γ2

i = (−r̃i) · C̄ (−r̃i) /ℓ
2
0 = r̃i · C̄r̃i/ℓ

2
0), its strain gradient and

stimuli-responsive properties may be different. For example, if the polymer chains in the network have
an electric (or magnetic) dipole which is linear in r̃ (e.g. Grasinger et al. [28]) then the polarization (or
magnetization) of the 3- and 6-chain RVEs will vary.

Proposition 2. The Gaussian chain (GC), the Kuhn and Grün chain (KGC), and the wormlike
chain (WLC) free energies are all convex functions of ζ = γ2 ∈ [0, 1].

Proof.

2 A similar result, restricted to the case of a uniform distribution on the unit sphere, was previously shown by Kearsley
[51] and again later by Beatty [11].
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a. GC case The GC is a linear function of γ2.

b. WLC case Physically, it assumed that pkT > 0. Then

d2wwlc

dζ2
= pkT

(
1

4ζ3/2
− 1

4
(
1−√

ζ
)2

ζ3/2
+

1

2
(
1−√

ζ
)3

ζ

)
≥ pkT

2
(
1−√

ζ
)3

ζ
> 0. (4.6)

c. KGC case The KGC case is more difficult because an explicit expression for the inverse
Langevin function, L−1, does not exist. In terms of L−1 and its derivative,

(
L−1

)′
, we have that

d2wKG

dζ2
=

kT

4bζ

(
(
L−1

)′ (√
ζ
)
− L−1

(√
ζ
)

√
ζ

)
. (4.7)

By assumption, kT/4bζ ≥ 0; so it suffices to show that the quantity
(
L−1

)′ (√
ζ
)
− L−1

(√
ζ
)
/
√
ζ

is nonnegative. First, this is established numerically in fig. 4. This can also be (approximately)
supported analytically as follows. We use the approximation

L−1 (x) ≈
{
C1x+ C3x

3 + · · ·+ C59x
59 x ∈ [0, 0.843951)

1
1−x x ∈ [0.843951, 1]

(4.8)

which has negligible error [52, 53] (maximum absolute error ⪅ 10−8, maximum relative error ≤
0.064%) and where, importantly, Cj > 0 for all j = 1, 3, . . . , 59 3. For the ζ ∈ [0, 0.843951) case,

(
L−1

)′ (√
ζ
)
− L−1

(√
ζ
)

√
ζ

=
30∑

k=1

(2k − 2)C2k−1ζ
k−1 ≥ 0, (4.9)

because each term in the sum is nonnegative. Finally, for the ζ ∈ [0.843951, 1] case,

(
L−1

)′ (√
ζ
)
− L−1

(√
ζ
)

√
ζ

=

(
1

(
1−√

ζ
)2 − 1√

ζ
(
1−√

ζ
)
)

> 0, (4.10)

because
√
ζ >

(
1−√

ζ
)
.

Proposition 3 (Unification of discrete polymer network models). Let

γ∗ =
r̃

ℓ0

√
λ2
1 + λ2

2 + λ2
3

3
. (4.11)

Then given a polymer network which consists of chains whose free energy is 1) a convex function
of γ2 and 2) is only a function of γ (i.e. does not depend on r̂), the 3-chain, 4-chain, 6-chain, and
8-chain RVEs using the free rotation assumption all produce the same constitutive model because
for each RVE there exists a Q∗ ∈ SO (3) such that

γi = |FQ∗ri| = γ∗ (4.12)

for all i = 1, . . . ,M (where, recall, M is the number of chains in the RVE).

Proof.

3 See [53] for the exact coefficients.
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FIG. 4. The quantity is nonnegative which numerically establishes the convexity of wKG as a function of
ζ
(
= γ2

)
.

d. 8-chain case As discussed previously, a Q∗ which satisfies (4.12) exists for the 8-chain RVE
and is given by Q∗ = P where P rotates the RVE into the principal frame (see (3.5)).

e. 3-chain and 6-chain cases To show that the 3-chain and 6-chain RVEs produce equivalent
constitutive models, it suffices to show that there also exists a Q∗ with the same property; that is,
a Q∗ such that all of the chains in the RVE have the same stretch given by (4.12). The stretch for
each chain in the RVE can be formulated as

γi =
|ri|
ℓ0

=
1

ℓ0

√
r̃i · C̄r̃i, where C̄ = QTCQ (4.13)

is a real proper orthogonal similarity transformation of C. There exists a real proper orthogonal
similarity transformation where all of the elements on the diagonal are equal [54], which for the 3-
and 6-chain RVEs achieves equivalent stretches for all of the chains in the RVE, as desired. The
existence of this similarity transformation can be understood as follows. Consider rotating the
coordinate system about ê3 by φ. One can permute C̄11 and C̄22 by taking φ = π/2. Further, this
transformation of C̄11 and C̄22 is continuous with respect to φ so that there exists a φ such that
C̄11 = C̄22. Similar arguments can be made about C̄11 and C̄33 (by rotating about ê2), and about
C̄22 and C̄33 (by rotating about ê1). Thus, there exists a Q∗ such that C̄11 = C̄22 = C̄33 = 1/3TrC.
Clearly, in this case, the chain stretches–for both the 3- and 6-chain models–satisfy (4.12).

f. 4-chain case To show the 4-chain case, we decompose the rotation of interest Q∗ as Q∗ =
Q′P where, recall, P rotates the Euclidean basis to align with the principal frame such that
C̄ = diag

(
λ2
1, λ

2
2, λ

2
3

)
. Then it suffices to show that Q′ exists. Here it is solved for explicitly. Let

Q′ = Q (αê1)Q (βê2)Q (ξê3); that is, we formulate Q′ using the Euler angle representation and α,
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β, and ξ are the (Euler) angles of rotation about ê1, ê2, and ê3, respectively. Then the chain with
end-to-end vector r̃1 (= r̃ (0, 0, 1)) (see (4.1b)) is deformed such that r̃1 → FQ′P r̃1 and

γ1 =
r̃

ℓ0

√
λ2
1 sin

2 β + λ2
2 sin

2 α cos2 β + λ2
3 cos

2 α cos2 β. (4.14)

Here α and β can be chosen such that γ1 = γ∗. One such solution is α = π/4 and β = arccos
√

2/3.
Substituting this solution for α and β into Q′, we see that r̃2

(
= r̃

(
0, 2

√
2/3,−1/3

))
is deformed

such that

γ2 =
r̃

9ℓ0

√
3 (λ1 + 4λ1 sin ξ)

2 + λ2
2

(
6 cos ξ +

√
3 (1− 2 sin ξ)

)2
+ λ2

3

(
6 cos ξ −

√
3 (1− 2 sin ξ)

)2
.

(4.15)
Now ξ can be chosen such that γ2 = γ∗. One such solution is ξ = −π/2. Substituting into Q′ we
see that γ1 = γ2 = γ3 = γ4 = γ∗ 4.

A similar proof for the 4-chain case can be found in §4 of Beatty [11]. There it is argued (geo-
metrically) that the tetrahedron of the 4-chain model can be rotated such that its chain directions
lie along diagonals of the unit cube whose edges are aligned with the principal frame; such an ori-
entation of the tetrahedron results in γ1 = ... = γ4 = γ∗. The mapping which rotates the 4-chain
RVE into this orientation is Q′P , as expected.

As verification, we next provide some numerical results for simple deformations which agree with

the above proof. First consider the incompressible, uniaxial deformation F = diag
(
λ, 1/

√
λ, 1/

√
λ
)
.

Let the network consist of KGC chains with n = 100 monomers each. The free energy density, W,
as a function of λ for the 3-chain, 4-chain, and 8-chain RVEs using the free rotation assumption
are shown to agree in fig. 5, as expected. The deformed (and rotated) 3-chain RVE (inset), 4-chain
RVE (right panel, top row), and 8-chain RVE (bottom row) for λ = 0.5, 0.8, and 1.2 are also shown.
Note that the 3- and 4-chain RVEs rotate relative to the coordinate axes but the 8-chain RVE does
not. That is because, in this case, êi, i = 1, 2, 3 makes up the principal frame.

FIG. 5. Free energy density as a function of uniaxial stretch, λ, for the 3-, 4-, and 8-chain RVEs with the
free rotation assumption. Deformed (and rotated) 3-chain RVE (inset), 4-chain RVE (right panel, top row),
and 8-chain RVE (bottom row) for λ = 0.5, 0.8, and 1.2.

4 The algebra for the 4-chain case was verified in the Mathematica notebook, MPS-D-22-01011.nb, which can be
found at https://github.com/grasingerm/MPS-D-22-01011/

https://github.com/grasingerm/MPS-D-22-01011/
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Next consider the simple shear deformation F = I + sê1 ⊗ ê3. Again, the free energy densities
as a function of deformation are shown to agree in fig. 6.

FIG. 6. Free energy density as a function of shear, s, for the 3-, 4-, and 8-chain RVEs with the free rotation
assumption. Deformed (and rotated) 3-chain RVE (inset), 4-chain RVE (right panel, top row), and 8-chain
RVE (bottom row) for s = 0.5, 1.0, and 1.5.

Remark 2. Proposition 3 and the numerical results that follow are notable because they suggest
that isotropic, homogeneous polymer networks which 1) are free to locally rotate and 2) consist
of chains with convex free energies have an elastic response which is insensitive to–and potentially
invariant with respect to–network topology (i.e. number of chains joined at each cross-link in the
network). Common chain free energies are convex functions of γ2 (proposition 2). Thus, the success
of the Arruda-Boyce 8-chain model with the principal frame assumption may be due to the fact
that, coincidentally, the principal frame assumption is equivalent to the free rotation assumption.
The topology of the network is perhaps not the fundamental consideration; instead the choice of
macro-to-micro kinematic assumption and its correspondence with free energy minimization is more
fundamental. Concerning the topology of real networks: for chemical cross-linking, bonding typi-
cally occurs between intermediate points of a single pair of macromolecules so that it is natural to
assume that the number of chains meeting at a cross-link is 4 [5, 6]. As a result, it seems somewhat
standard to assume degree 4 cross-links (i.e. tetrafunctional cross-links) for many rubbers and elas-
tomers [5, 40, 55]. Other topologies, such as degree 3 (trifunctional) and degree 8 (octofunctional)
cross-links, can also be readily obtained from modern techniques in chemical cross-linking [56]. All
of the above cross-linkers may well approximately satisfy the conditions for equipartition of squared
stretch depending on their precise geometry. Notably, achieving higher degree cross-links (e.g. > 10)
is considered nontrivial [56].

While the above remark may seem initially surprising given recent results that support the
significance of network topology on its bulk, macroscopic properties (e.g. elastic moduli [40, 57]),
we note that these results are specific to heterogeneous networks where different cross-links may be
of different degree and different chains are generally of different lengths.

A. Discrete vs. continuous polymer network models

In contrast to discrete polymer network models, there are models which represent the polymer
network through a continuous probability density of chains. The full network model [9] is the
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simplest such example. It consists of a uniform distribution of chain end-to-end vectors on the
sphere of radius r̃, i.e. on S2 (r̃) =

{
r̃ ∈ R3 : |r̃| = r̃

}
(see fig. 1.d). Here chain end-to-end vectors

are often mapped under F –referred to as the affine deformation assumption [5]–so that the free
energy density is

W (F ) =
N

4π

∫

S2
dA w

(
r̃

ℓ0

√
υ̂ ·Cυ̂

)
, (4.16)

where υ̂ ∈ S2 is the chain orientation. It can be argued that, in most cases, the full network model
more accurately characterizes our lack of knowledge regarding the directions of chains at any given
material point of the solid body. However, experimental data more closely agrees with the 8-chain
model with the principal frame assumption [8, 10] (and, by extension, the 3-, 4-, 6-, and 8-chain
RVEs with the free rotation assumption). It is worth considering why.

The standard macro-to-micro mapping for the full network model, r = F r̃, is equivalent to the
free rotation assumption, r = FQr̃ because SO (3) is a subgroup of the symmetries of a sphere.
Instead the principal difference between the full network and discrete networks considered previously
(e.g. 3-chain, 4-chain, etc.) is that, for the discrete networks considered herein, there exists a Q
such that all of the chains in the RVE have the same stretch. By the equipartition property, this
has minimal average free energy for many popular chain free energy functions, and for any given
F . Obviously no such Q can exist for the full network model; and the full network model only has
equal stretch throughout the distribution of chains (i.e. satisfies equipartition of squared stretch)
for the special case of F = αI. Thus, in general, the full network model predicts a larger free energy
density than any of the discrete networks using the free rotation assumption. It is possible that
the predictions from discrete polymer networks match experiments more closely because they more
accurately model a real cross-link which has a finite, discrete number of chains. An interesting open
question is what are the necessary conditions for a polymer network model to be able to satisfy
equipartition of squared stretch (e.g. upper bound on the number of chains, symmetries, etc.)?

The microsphere approach [10] solves this issue for a uniform distribution of chains by modifying
the macro-to-micro kinematic assumption to include a “stretch fluctuation field”. The fluctuation
field, f : S2 7→ R, allows for fluctuations of macroscopic line-stretch throughout the distribution of
chain directions. Here the chain stretch for a given direction, υ̂, is

γ (υ̂) =
r̃

ℓ0
f (υ̂)

√
υ̂ ·Cυ̂ for υ̂ ∈ S2, (4.17)

and

W (F ) = inf
f

〈
w

(
r̃

ℓ0
f (υ̂)

√
υ̂ ·Cυ̂

)〉
(4.18a)

subject to
〈√

υ̂ ·Cυ̂
〉
p
=
〈
f (υ̂)

√
υ̂ ·Cυ̂

〉
p
, (4.18b)

where

⟨2⟩p =
1

4π

(∫

S2
dA2p

)1/p

. (4.18c)

and p > 0 is a tunable material parameter. Miehe et al. [10] show that–for chain free energies
which only depend on γ (and not r̂)–two different local extrema of (4.18) include f = const = 1

and γ = const =
〈√

υ̂ ·Cυ̂
〉
p
. The former also requires the condition w′ = const. × γp−1 and is



16

equivalent to the full network model with r = F r̃. The latter 1) is optimal for convex chain free
energies (due to conservation of γ2), 2) corresponds to constant stretch throughout the distribution
of chains and, 3) when p = 2, is equivalent to the discrete polymer network RVEs with the free
rotation assumption.

The microsphere model with the stretch fluctuation field is an elegant solution for simultaneously
allowing for equipartition of squared stretch while also capturing our general lack of knowledge of
the exact chain directions at a given material point. However, the numerical integration involved
is nontrivial [45] and solving (4.18) may be considerably more complex for chain free energies that
depend on r̂ as it is a constrained variational problem. In contrast, the proposed approach of using
discrete network models with the free rotation assumption (outlined in (3.6)) only requires mini-
mization over the compact, finite dimensional manifold SO (3). In addition, the discrete polymer
network models have a clear geometric interpretation provided by the RVE itself which is useful
for homogenization and modeling strain gradient effects. As a result, we will not consider the
microsphere model further in this work.

V. VOLUMETRIC TORQUE IN STIMULI-RESPONSIVE NETWORKS

As mentioned previously, the standard macro-to-micro kinematic assumption for discrete network
models, i.e. the principal frame assumption, can make nonintuitive predictions when the polymer
chains have orientational contributions to the free energy. Orientational energies often occur in
stimuli-responsive polymer networks such as networks consisting of monomers with magnetic dipoles
in an externally applied magnetic field [26, 58, 59], and networks consisting of monomers with
electric dipoles in an externally applied electric field [31, 48, 49]. Both theory and experiments
suggest that these orientational energies can lead to internal torques within the network which can
be used for shape morphing [26, 58, 59], asymmetric actuation modes [27], and architected polymer
networks with enhanced stimuli-responsive properties [38]. An important consideration then for
stimuli-responsive polymers is that macro-to-micro kinematic assumption properly represents–not
only the chain stretches, but also–chain orientations for a given F .

As an example stimuli-responsive polymer network, we consider dielectric elastomers. The me-
chanical properties of the monomers making up each chain in the network are assumed to follow
the freely jointed chain assumptions. Additionally, the monomers are assumed to be dielectric; that
is, bound charges on a monomer can be separated to form an electric dipole, µ. Let n̂ denote the
orientation of a monomer. Given that the dipole depends on the magnitude of the electric field and
the orientation of the monomer, n̂, relative to the direction of the electric field, we use a simple
anisotropic form [30, 60]:

µ (n̂,E) = ϵ0χE = ϵ0
[
χ∥n̂⊗ n̂+ χ⊥ (I − n̂⊗ n̂)

]
E (5.1)

where χ is the dipole susceptibility tensor, χ∥ and χ⊥ are the dipole susceptibility along n̂ and
the susceptibility in plane orthogonal to n̂, respectively, E is the local electric field, and ϵ0 is the
vacuum permittivity. We refer to monomers with χ∥ > χ⊥ as field-aligning (FA) and monomers
with χ⊥ > χ∥ as field-disaligning (FD).

The energy of a single monomer has two contributions: the energy associated with separating
charges and the electric potential of a dipole in an electric field [48, 49] 5:

u =
1

2ϵ0
µ · χ−1µ− µ ·E =

ϵ0∆χ

2
(E · n̂)2 − ϵ0χ⊥

2
E2, (5.2)

5 Where χ−1 denotes the generalized inverse of χ.



17

FIG. 7. Shear-mode actuation of a dielectric elastomer actuator constrained to only undergo shear deforma-
tion.

where ∆χ = χ⊥ − χ∥. We assume the monomer energy is such that u ∼ kT and that the energy of

dipole-dipole interactions are much less than the thermal energy, i.e. ϵ0
[
E ×max

({
χ∥, χ⊥

})]2
/b3 ≪

kT . The latter is therefore neglected.

Given the electrostatic energy of a single monomer, the free energy (assuming constant T , E,
and r) is derived using statistical mechanics [49]:

wDE (r,E) = wKG (γ) + we (γ,E) + wo (γ,E, r̂) (5.3a)

where wKG is the purely mechanical contribution to the free energy (see (2.2)), and

we = nkT

{
γκ

L−1 (γ)
− κ⊥ +

(
1− γ2

) [
−κ

3
+ ln

(
2
√
κ√

π erf (
√
κ)

)]}
(5.3b)

wo = nkT

{
κ

(
1− 3γ

L−1 (γ)

)(
Ê · r̂

)2}
(5.3c)

are the electric-stretch and electric-orientation contributions, respectfully; and where κ = E2∆χ/2kT
and κ⊥ = E2χ⊥/2kT . Now let θ be the angle between r̂ and Ê. The electrostatic torque on the
dielectric chain can be obtained by −∂wDE/∂θ. For chains consisting of FA monomers (i.e. κ < 0),
the torque is driving r̂ toward Ê when θ < π/2 and −Ê when θ > π/2–its directions of minimal
free energy. For chains consisting of FD monomers (i.e. κ > 0), the torque is driving r̂ toward
the plane orthogonal to Ê [48, 49]. Note that, in the absence of an electric field (i.e. κ = 0), wDE

reduces to the Kuhn and Grün approximation for a freely jointed chain. Given wDE, the free energy
density for the model developed in this work takes the form

W (F ,E) = min
ω

Ŵ (F ,E,ω) subject to |ω| < 2π, (5.4a)

Ŵ (F ,E,ω) = N ⟨wDE (FQ (ω) r̃,E)⟩ . (5.4b)

As an illustration, consider a thin DE film (thickness h) with compliant electrodes on its top and
bottom surfaces where the film is constrained such that it can only undergo homogeneous simple
shear deformation. We also assume that the electric field is fixed and across the thickness of the
film–which, neglecting fringe effects, would be realized by applying a voltage difference across the
electrodes, ∆ϕ. A schematic is shown in fig. 7.

Recall for simple shear, the deformation is of the form F = I+ sê1⊗ ê3. Let a traction, t = tê1,
be applied to the top surface of the film. The energy density of the electric field is neglected because
it does not do work on the DE. By homogeneity, the free energy is V × (W − ts) where V is the
volume of the body.
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a)

b) c)

FIG. 8. Shear-mode actuation of dielectric elastomers. a) Shear deformation, s, as a function of κ predicted by
the 3-, 4-, 6-, and 8-chain RVEs with the free rotation assumption and the full network model with the affine
deformation assumption. For networks with FD monomers (i.e. κ > 0), the shear deformation increases with
increasing electric field; and for networks with FA monomers (i.e. κ < 0), the shear deformation decreases
with increasing electric field. This is because the shear displacement serves to “flatten” chains into the plane
orthogonal to the electric field. b) Shear deformation as predicted by the classical 8-chain model with the
principal frame assumption is diametrically opposed to the intuitive results of a). c) Deformed RVEs for the
3- (top row), 4- (top-middle row), 6- (bottom-middle row), and 8-chain (bottom row) RVEs for κ = −3, 0,
and 3 (left column, middle column, and right column, respectively).

Let τ := t/NkT be the nondimensional applied traction and n = 25 monomers. Now, follow-
ing Grasinger et al. [27], consider the following in-silico experiment: 1) the traction is applied and is
held constant; 2) the traction causes initial shear deformation, s0; 3) a voltage difference is applied
across the electrodes such that there is electric field, E = (−∆ϕ/h) ê3, in the DE; 4) for each E, a
shear strain s is observed. The deformation as function of κ predicted by the 3-, 4-, 6- and 8-chain
RVEs with the free rotation assumption (depicted by magenta ‘△’, green ‘□’, red ‘D’, and blue ‘∗’,
respectively), and the full network model with the affine deformation assumption (yellow ‘#’), is
shown in fig. 8.a. For the solid lines τ = 1, and for the dashed lines τ = 2. There is near exact
agreement between the discrete network models, and the full network model also agrees well. One
can see that, for networks with field disaligning (FD) monomers (i.e. κ > 0), the shear deformation
increases with increasing electric field (i.e. |κ| ↑). In contrast, for networks with field aligning (FA)
monomers (i.e. κ < 0), the shear deformation decreases with increasing electric field. Physically,
this can be understood as follows. Intuitively, the shear displacement of the top surface relative
to the bottom surface serves to “flatten” chains into the plane orthogonal to the direction of the
electric field, ê3. Thus, the shear displacement is electrostatic-energetically favorable (i.e. decreases
we) for networks with FD monomers and unfavorable for networks with FA monomers [27].
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FIG. 9. Local RVE rotation of shear-mode actuated dielectric elastomers. |ω − ω0| as a function of κ for the
3-, 4-, 6-, and 8-chain RVEs where ω0 is the Rodrigues’ vector for the RVE rotation at zero applied electric
field. For the dash-dot lines τ = 0.5, and for the solid lines τ = 1. Whether the 4-chain or 8-chain RVE
experiences more rotation as a function of κ depends on τ ; and the rotation of the 3- and 6-chain RVEs
(relative to ω0) are 1) equal, and 2) not monotonic in |κ|.

The disagreement of the full network model (with respect to the discrete networks) is small
but significant. The full network model underestimates the deformation, relative to the discrete
networks, because the continuous uniform density of chains cannot reduce its free energy by a local
rotation. The free energy of the full network (for the same N) is greater so that, in balancing with
the work of the applied traction, less deformation occurs and the network is apparently stiffer.

Next consider the deformation predicted by the classical Arruda-Boyce 8-chain model; that is,
the 8-chain RVE using the principal frame assumption–as shown in fig. 8.b for τ = 1. This predicted
deformation is diametrically opposed to the predictions of the 3-, 4-, 6-, and 8-chain RVEs with
the free rotation assumption and is counter-intuitive. Not only is the free rotation assumption
more consistent with thermodynamic principles than the principal frame assumption, but this also
suggests that the free rotation assumption more properly represents chain orientations within the
network for a given F . FIG. 8.c shows the deformed RVEs for the 3- (top row), 4- (top-middle
row), 6- (bottom-middle row), and 8-chain (bottom row) RVEs for κ = −3, 0, and 3 (left column,
middle column, and right column, respectively).

A quantitative measure of the RVE rotations as a function of κ is given in fig. 9. Let ω0 be the
Rodrigues’ vector for the RVE rotation at zero applied electric field, κ = 0, and (nonzero) applied
traction τ . Then fig. 9 shows |ω − ω0| as a function of κ for the 3-, 4-, 6-, and 8-chain RVEs (depicted
by magenta ‘△’, green ‘□’, red ‘D’, and blue ‘∗’, respectively). For the dash-dot lines τ = 0.5, and
for the solid lines τ = 1. It is notable that whether the 4-chain or 8-chain RVE experiences more
rotation as a function of κ depends on τ ; and the rotation of the 3- and 6-chain RVEs (relative to
ω0) are 1) equal, and 2) not monotonic in |κ|. The rotations for the 3- and 6-chain RVEs agree
exactly in this case because the chain free energy has the symmetry wDE (r) = wDE (−r).
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VI. PHASES AND MULTISTABILITY IN NETWORKS WITH NONCONVEX CHAIN
FREE ENERGIES: BIOPOLYMERS AND SEMI-CRYSTALLINE POLYMERS

It was shown in section IV that, for chain free energies which are convex functions of γ2 (e.g.
GC, WLC, KGC), 1) the free rotation assumption unifies discrete polymer network RVEs and
2) rotations after which F stretches each of the chains equally (i.e. equipartition of squared stretch
is satisfied) minimize the average free energy. A natural question then is: “are there (physically
meaningful) nonconvex w for which either of the above results do not hold?”

Biopolymers Many biopolymers such as fibrin and collagen fibers are known to buckle in com-
pression [61, 62]; and, as a result, have a nonconvex free energy. Recently, fiber buckling has been
proposed as a mechanism for certain densification phase transitions that occur in biopolymer net-
works resulting in cell remodelling, tethering between cells, and the compression response of blood
clots [21, 61]. Here we follow recent work [21, 61] and assume that the chain free energy is a quartic
function of γ. Let γr = r/r̃ denote the relative chain stretch. We assume the form

wbio (γr) =
α

ϵ4
kT
(
(γr − 1 + ϵ)2 − ϵ2

)2
. (6.1)

where 0 < ϵ < 1. This wbio has local minima at γr = 1 and the compressed length γr = 1− ϵ such
that it captures fiber buckling. Here we choose ϵ = 0.05.

Next, consider the deformation gradient F = diag (λ, 1, 1) where 0 < λ < 1 characterizes the
compression of a biopolymer gel [61] with vanishing bulk modulus. FIG. 10 shows the free energy
density as a function of λ for the 3-, 4-, 6-, and 8-chain RVEs with the free rotation assumption,
and for the classical 8-chain model with the principal frame assumption (PFA) (i.e. all chains
have the same stretch). Local minima correspond with different phases. As can be seen in fig. 10,
the number of phases depends on the macro-to-micro kinematic assumption. The free rotation
networks all have 4 phases while the 8-chain with PFA has 2. Because the RVEs with the free
rotation assumption do not agree with the standard 8-chain model, we can conclude that there are
indeed interesting nonconvex chain free energies for which equipartition of squared stretch is not
satisfied. Specifically, not one of the RVEs considered satisfies the equipartition property within
approximately the domain of λ ∈ (≈ 0.75,≈ 0.95). Instead, the network obtains a lower energy by
relaxing to a state in which some biopolymers are buckled while others are less compressed. Recent
results suggest that realistic biopolymer networks may indeed not have equal stretch for chains in
various directions (i.e. not agree with equipartition) [22]. In contrast, all of the network models
agree when λ < 0.7 or λ > 0.96 which suggests the equipartition solution is the optimal one for
these ranges of λ. While all of the free rotation polymer networks have the same number of phases,
the location and depth of the phases depends on the network topology. The free energy response
of 4- and 8-chain RVEs agree and the 3- and 6-chain models agree; however, the 4- and 8-chain
differ from the 3- and 6-chain. Thus, there are instances for which, not only is the macro-to-micro
deformation relationship significant, but the network topology is significant as well. That the 3-
and 6-chain RVEs agree is a straight forward consequence of the fact that 1) wbio depends only on

chain stretch and 2) γi =
√
(−r̃i) · C̄ (−r̃i)/ℓ0 =

√
r̃i · C̄r̃i/ℓ0. Similarly, the 4- and 8-chain RVEs

agree because the 4-chain tetrahedron can be rotated (relative to the 8-chain RVE) such that its
chains lie along the diagonals–and, hence, chains–of the 8-chain RVE (see the proof of proposition 3
or Beatty [11]). We can conclude then that when the chain free energy is only a function of stretch,
the RVEs can be separated into two equivalence classes: one consisting of the 3- and 6-chain RVEs,
and the other consisting of the 4- and 8-chain RVEs. The two equivalence classes merge when the
chain free energy is a convex function of γ2.

It should be noted that the above model is minimal and likely missing key some elements needed
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FIG. 10. Densification phases of a biopolymer gel. Free energy response of a biopolymer gel (with fiber
buckling) to a 1 dimensional, vanishing bulk modulus, deformation as predicted by 3-, 4-, 6-, and 8-chain RVEs
with the free rotation assumption and by the classical 8-chain model with the principal frame assumption
(PFA). The number of predicted phases is shown to depend on the macro-to-micro kinematic assumption;
and the depth and location of the free energy wells depends on the network topology.

to characterize more general deformation modes in biopolymer networks. For instance, it is well
known that certain biopolymer networks have deformation regimes dominated by fiber bending
rather than affine stretching or compression [62–64]. Without considering nonaffine affects such as
the bending stiffnesses of the fibers or transmission of bending moments at cross-links [64], nor the
nonvanishing bulk modulus of the network, the resulting model can produce nonphysical results such
as zero resistance to infinitesimal simple shear [22]; and, in fact, the 3- and 6-chain RVEs become
mechanisms to pure shear [65]. Complicating matters further, connectivity in biopolymer networks
is sometimes subcritical and can be transient [62, 64]. We also emphasize that fiber buckling is not
the only mechanism relevant for the emergence of macroscale mechanical instabilities in biopolymer
networks. Instead the above model serves as a minimal example for instances where the equipartition
of stretch is not the optimal deformation of the network and associated consequences for certain
densification phases in biopolymer networks.

Semi-crystalline polymers As a final example, we probe the generality of the above result by
considering a chain free energy which, in addition to fiber buckling, also has a stretch-induced
crystallization phase.

wsemi-crystal (γr) =
α

ϵ6
kT
(
(γr − 1)2 − ϵ2

)2
(γr − 1)2 . (6.2)

where, again, ϵ = 0.05. For this case, the chain has three minima: γr = 1, 1 ± ϵ. In contrast to
the biopolymer gel with vanishing bulk modulus, we consider an incompressible deformation of the

form F = diag
(
λ, 1/

√
λ, 1/

√
λ
)
. Again, in fig. 11, we see similar phenomena such as 1) the free

rotation networks predict more phases than the 8-chain RVE with the PFA, 2) the free rotation
networks satisfy equipartition (i.e. are equivalent to the 8-chain with PFA) for certain intervals of
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FIG. 11. Phases of a semi-crystalline polymer network. Free energy response of a semi-crystalline polymer
network (with fiber buckling and strain-induced crystallization) to an incompressible, uniaxial deformation as
predicted by 3-, 4-, 6-, and 8-chain RVEs with the free rotation assumption and by the classical 8-chain model
with the principal frame assumption (PFA). The number of predicted phases, and the depth and location of
the free energy wells, depend on both the macro-to-micro kinematic assumption and on the network topology.

deformation, λ ∈ (0,≈ 0.71)∪ (≈ 0.89,≈ 1.15)∪ (≈ 1.33,∞), and 3) the 4- and 8-chain RVEs agree
well, and 3- and 6-chain RVEs agree well (as expected), but the 4/8 behaves differently than the
3/6 outside of the equipartition intervals.

VII. CONCLUSION

Recent work has highlighted the importance of polymer chain orientational energies and internal
torques within the network as they have the potential to be used for shape morphing [26, 58], asym-
metric actuation modes [27], and architected polymer networks with enhanced stimuli-responsive
properties [38]. However, two of the most important and successful polymer network models, the
8-chain with the principal frame assumption (i.e. Arruda-Boyce) and the affine full network models,
make contradictory predictions for stimuli-responsive polymer networks. This motivates the need
for new approaches to polymer network modelling.

In this work, we developed a new macro-to-micro kinematic assumption for relating macroscopic
deformation, F , to the deformation of chains within the polymer network. The newly developed
kinematic assumption, the free rotation assumption, posits that the network is free to locally rotate
(at material point x) in order to most efficiently accommodate some F . Importantly, the newly
developed model assumptions do not require any additional fitting parameters. We showed that the
free rotation assumption unifies discrete polymer network models (specifically, the 3-, 4-, 6-, and
8-chain RVEs) and recovers the successful 8-chain model with the principal frame assumption when
the network consists of chains which do not depend on r̂ and are convex functions of γ2.

Next we modelled the constitutive response of dielectric elastomers using the newly developed free
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rotation polymer network models and compared to classical polymer network models. It was found
that the free rotation assumption more closely agrees with intuition for an asymmetric, shear elec-
tromechanical actuation mode. Lastly, we explored the implications of the free rotation assumption
for phases and multistability in networks with nonconvex chain free energies; this included mod-
els for fiber buckling in biopolymer networks and strain induced crystallization of semi-crystalline
networks. It was found, in each case, that the number of phases depended on the macro-to-micro
kinematic assumption (i.e. free rotation vs. principal frame). Also, for certain ranges of defor-
mation, the network topology was significant as there was a difference in the free energy response
between the 3 and 6-chain RVEs, and the 4- and 8-chain RVEs. For the stimuli-responsive, biopoly-
mer, and semi-crystalline polymer networks considered in this work, the difference between the
newly developed discrete polymer network models and the classical 8-chain model with the prin-
cipal frame assumption were more than quantitative, they were also qualitative. This suggests it
may be possible to validate, via careful experimentation, which macro-to-micro kinematic assump-
tions are more or less physically accurate for a given polymer network; in other words, the inherent
physical phenomena may be isolated from the fitting of model parameters. While in some cases it
may be difficult to directly discern or differentiate stable phases of a multistable polymer network,
it may be possible to leverage new statistical techniques inspired by work on early warning signals
to aid in the measurement of phases [66].

Interesting topics for potential future work include the implications of the free rotation assump-
tion for liquid crystal elastomers, the fracture of polymer networks, and strain gradient effects like
flexoelectricity or strain gradient elasticity. Although excluded volume effects and chain entangle-
ment were not explicitly considered in this work, we do remark that the tube model (e.g. [10]), and
other, more physics-based approaches for excluded volume (e.g. [35]), may be naturally incorporated
into the developed network modelling approach.
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Appendix A: Inhomogeneous deformations and compatibility

In this appendix, the issue of compatibility in a polymer network undergoing inhomogeneous
local rotations is explored. Consider two 8-chain RVEs side-by-side along the ê1 direction, as
shown in fig. 12 (side view). The positions of the cross-links at the center or each RVE are x
(left RVE) and x + 2r̃/

√
3ê1 (right RVE). Four of the chains in the left RVE share a cross-link

with a corresponding chain in the right RVE. Let r̃1 and r̃2 be a pair of reference chain end-to-end
vectors from the left and right RVEs, respectively, which share a common cross-link. Given a general
deformation field F (x), letQ∗ = argminQ∈SO(3) Ŵ (F ,Q) be the corresponding local rotation field.
A standard assumption is that F varies “gradually” relative to the size of the RVE [28]. Otherwise
the continuum constitutive response to GradF produced by the network model can be nonphysical,

https://github.com/grasingerm/MPS-D-22-01011
https://github.com/grasingerm/MPS-D-22-01011
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and, in general, a continuum-scale description is likely infeasible [28]. A natural question then is
under what additional conditions a gradual change in F also implies a gradual change in Q∗; that
is, “when does ∥Grad F ∥r̃ ≪ 1 =⇒ ∥Grad Q∗∥r̃ ≪ 1?” For the special cases of the 4-chain
and 8-chain RVEs with chain free energies which are convex functions of γ2 and do not depend on
chain orientation, recall that Q∗ = Q′P (where Q′ is a constant) and Q∗ = P , respectively. The
principal directions of stretch are continuous functions of F [54] so that ∥GradQ∗∥r̃ can be made
small provided that ∥Grad F ∥r̃ is small enough. How generally this holds remains an open and
difficult question, however, this illustrates that there are indeed important physical cases for which
∥Grad F ∥r̃ ≪ 1 =⇒ ∥GradQ∗∥r̃ ≪ 1.

Motivated by the above discussion, assume that ∥GradQ∗∥r̃ ∼ ∥GradF ∥r̃ and ϵ = ∥GradQ∗∥r̃ ≪
1 (and ∥Gradn Q∗∥r̃n = O

(
ϵ2
)
). Assume further that Q∗ is a differentiable function of x. Then

Q∗
(
x+

2r̃√
3
ê1

)
= Q∗ (x) +

2r̃√
3
(GradQ∗) ê1 +O

(
ϵ2
)
. (A1)

Upon local rotation of the RVEs (and neglecting higher order terms, O
(
ϵ2
)
):

r1 = Q∗r̃1 (A2a)

r2 =

(
Q∗ +

2r̃√
3
(GradQ∗) ê1

)
r̃2. (A2b)

To satisfy compatibility (i.e. to ensure r1 and r2 still meet at a cross-link), we require that

x+ r1 = x+
2r̃√
3
Q∗ê1 + r2. (A3)

The condition (A3) is not satisfied for general GradQ∗. Its residual, the gap vector between r1 and
r2, is

E = (x+ r1)−
(
x+

2r̃√
3
Q∗ê1 + r2

)
= − 2r̃√

3
((GradQ∗) ê1) r̃2. (A4)

The gap vector, E, is then mapped under F into the deformed configuration. The magnitude of
this gap relative to r̃ provides us with a measure of incompatibility:

√
E ·CE
r̃

≤ 2√
3
∥C∥ϵ. (A5)

Depending on the mechanical properties of the polymer chains within the network (e.g. p/ℓ0 where,
recall, p is the persistence length), it is reasonable to assume that the small gap, FE, can be
absorbed into the local chain confirmations with a negligible change in free energy density. This
motivates the validity of the free rotation assumption for some physical systems of interest.

The above analysis, however, is not general. A more rigorous and comprehensive analysis of how
Wnet depends on inhomogeneous local rotation fields, Q∗ (x), presents an interesting topic for future
work. We note, parenthetically, that the free rotation assumption may have some similarities to
continuum field theory models for planar kirigami [67]6. Roughly speaking, the repeat unit for planar
kirigami consists of 4 stiff quadrilateral plates and 4 parallelogram slits that are connected to their
nearest neighbors by hinges. Theoretically, when the plates are rigid and the hinges are ideal, the

6 Kirigami is similar to origami but with holes. Kirigami is sometimes called “the art of paper cutting”–analogous
to origami also being known as “the art of paper folding”
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a)

b)

FIG. 12. Network incompatibility due to inhomogenous local rotations. a) Side view of two 8-chain RVEs
side-by-side along the ê1 direction (reference configuration). b) A gap, E, forms between r1 and r2 after
inhomogeneous local rotation where the cross-link at x (left RVE) rotates by Q∗ and its neighboring cross-
link (right RVE) rotates by Q∗ (x) +

(
2r̃/

√
3
)
(GradQ∗) ê1; for certain cases, ∥Grad F ∥r̃ “small” implies

that the magnitude of the gap, |E| /r̃, is also “small”.

rotation of a single repeat unit determines the deformation of the entire bulk metamaterial; that is,
the deformation is a global mechanism. However, in practice, deformations tend to be more localized
and consist of soft modes. In fact, Zheng et al. [67] showed that, in the limit of finely patterned
kirigami each repeat unit can be approximated by a deformation which is “locally mechanistic”;
that is, the effective deformation gradient can be decomposed into a field of local rotations and
distortions. We speculate that making a possible connection to locally rotating polymer networks
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more precise, or an analysis of locally rotating polymer networks along the lines of [67] or [65] may
prove fruitful.
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