

Lecture 3

Materials

Copyright 2005 ABAQUS, Inc.

ABAQUS/Explicit: Advanced Topics

L3.2

Overview

- Introduction
- Metals
- Rubber Elasticity
- Concrete
- Additional Materials

Copyright 2005 ABAQUS, Inc.

ABAQUS

Introduction

13.6

Introduction

· Material damping

- Most models do not require material damping.
 - Energy dissipation mechanisms—dashpots, inelastic material behavior, etc.—are often included as part of the basic model.
- Models that do not include other energy dissipation mechanisms, may require some general damping.
 - · For example, a linear system with chattering contact.
 - ABAQUS provides Rayleigh damping for these situations.
- There are two Rayleigh damping factors:
 - lpha for mass proportional damping and
 - β for stiffness proportional damping.
- With these factors specified, the damping matrix C is added to the system:

$$C = \alpha M + \beta K$$
.

L3.7

Introduction

$$\xi(\omega_{\alpha}) = \frac{\alpha}{2\omega_{\alpha}} + \frac{\beta\omega_{\alpha}}{2}.$$

- Thus, mass proportional damping dominates when the frequency is low, and stiffness proportional damping dominates when the frequency is high.
- Recall that increasing damping reduces the stable time increment.

Copyright 2005 ABAQUS, Inc.

#ABAQUS

ABAQUS/Explicit: Advanced Topics

Metals

L3.9

Metals

Elasticity

- The elastic response of metals can be modeled with either linear elasticity or an equation-of-state model.
- Linear elasticity
 - Elastic properties can be specified as isotropic or anisotropic.
 - Elastic properties may depend on temperature (θ) and/or predefined field variables (f_i).
 - Linear elasticity should not be used if the elastic strains in the material are large.
- The equation-of-state model is discussed later in the *Additional Materials* section.

- *Material, name=steel *Elastic
- 2.e11, 0.3

Copyright 2005 ABAQUS, Inc.

ABAQUS/Explicit: Advanced Topics

13.10

Metals

· Metal plasticity overview

- Plasticity theories model the material's mechanical response under ductile nonrecoverable deformation.
- A typical stress-strain curve for a metal is shown below.

stress B

A

E

1

C strain

Uniaxial stress-strain data for a metal

Features of the stress-strain curve:

- · Initially linear elastic
- Plastic yield begins at A
- Strain reversed at B
 - Material immediately recovers its elastic stiffness
- · Complete unloading at C
 - Material has permanently deformed
- Reloading
 - Yield at, or very close to, B

- For most metals:
 - The yield stress is a small fraction, typically 1/10% to 1%, of the elastic modulus, which implies that the elastic strain is never more than this same fraction.
 - The elasticity can be modeled quite accurately as linear.

Copyright 2005 ABAQUS, Inc.

ABAQUS/Explicit: Advanced Topics

Metals

- · Classical metal plasticity
 - The Mises yield surface is used in ABAQUS to model isotropic metal plasticity.
 - The plasticity data are defined as true stress vs. logarithmic plastic
 - ABAQUS assumes no work hardening continues beyond the last entry provided.

Plasticity data

#ABAQUS

- In ABAQUS/Explicit, the table giving values of yield stress as a function of plastic strain (or any other material data given in tabular form) should be specified using equal intervals on the plastic strain axis.
 - If this is not done, ABAQUS will *regularize* the data to create such a table with equal intervals.
 - The table lookups occur frequently in ABAQUS/Explicit and are most economical if the interpolation is from regular data.
 - It is not always desirable to regularize the input data so that they are reproduced exactly in a piecewise linear manner;
 - in some cases this would require in an excessive number of data subdivisions.
 - If ABAQUS/Explicit cannot regularize the data within a given tolerance using a reasonable number of intervals, an error is issued.

Copyright 2005 ABAQUS, Inc.

ABAQUS/Explicit: Advanced Topics

13.16

Metals

- Hill's yield potential is an extension of the Mises yield function used to model anisotropic metal plasticity:
 - A reference yield stress (σ₀) is defined using the Mises plasticity definition syntax.
 - Anisotropy is introduced through the definition of stress ratios:

$$R_{11} = \frac{\overline{\sigma}_{11}}{\sigma_0}, \quad R_{22} = \frac{\overline{\sigma}_{22}}{\sigma_0}, \dots$$

- The R_{ij} values are determined from pure uniaxial and pure shear tests
- This model is suitable for cases where the anisotropy has already been induced in the metal.
 - It is not suitable for situations in which the anisotropy develops with the plastic deformation.

#ABAQUS

- Johnson-Cook hardening.
 - The Johnson-Cook plasticity model is suitable for high-strain-rate deformation of many materials, including most metals.
 - This model is a particular type of Mises plasticity that includes analytical forms of the hardening law and rate dependence.
 - It is generally used in adiabatic transient dynamic simulations.
 - The elastic part of the response can be either linear elastic or defined by an equation of state model with linear elastic shear behavior.
 - It is only available in ABAQUS/Explicit.

Copyright 2005 ABAQUS, Inc.

ABAQUS/Explicit: Advanced Topics

13.22

Metals

- The Johnson-Cook yield stress is of the form:

$$\overline{\sigma} = \left[A + B \left(\overline{\varepsilon}^{\ pl} \right)^n \right] \left[1 + C \ln \left(\frac{\dot{\overline{\varepsilon}}^{\ pl}}{\dot{\varepsilon}_0} \right) \right] \left(1 - \hat{\theta}^m \right),$$
 optional strain rate dependence term

where $\hat{ heta}$ is the nondimensional temperature, defined as

$$\hat{\theta} = \begin{cases} 0 & \theta < \theta_{transition} \\ \frac{\theta - \theta_{transition}}{\theta_{melt} - \theta_{transition}} & \theta_{transition} \leq \theta \leq \theta_{melt} \\ 1 & \theta > \theta_{melt} \end{cases}$$

– The values of A, B, n, m, θ_{melt} , $\theta_{transition}$, and optionally C, and $\dot{\varepsilon}_0$ are defined as part of the material definition.

• Progressive Damage and Failure

- allows for the modeling of:
 - · damage initiation,
 - · damage progression, and
 - failure

in the Mises, Johnson-Cook, Hill, and Drucker-Prager plasticity models.

- A combination of multiple failure mechanisms may act simultaneously on the same material.
- These models are suitable for both quasi-static and dynamic situations.
- These options will be discussed later in Lecture 9, Material Damage and Failure.

Typical material response showing progressive damage

Projectile penetrates eroding plate

Copyright 2005 ABAQUS, Inc.

ABAQUS/Explicit: Advanced Topics

13.26

Metals

· Dynamic failure models

- The following failure models are available for high-strain-rate dynamic problems:
 - the shear failure model driven by plastic yielding
 - · the tensile failure model driven by tensile loading.
- These models can be used with Johnson-Cook or Mises plasticity.
- By default, when the failure criterion is met the element is deleted.
 - i.e. all stress components are set to zero and remain zero for the rest of the analysis.
- If you choose not to delete failed elements, they will continue to support compressive pressure stress.

#ABAQUS

Copyright 2005 ABAQUS, Inc.

ABAQUS/Explicit: Advanced Topics

1.3.30

#ABAQUS

Metals

· Annealing or Melting

- The effects of melting and resolidification in metals subjected to hightemperature deformation processes can be modeled.
 - The capability can also be used to model the effects of other forms of annealing, such as recrystallization.
- If the temperature at a material point rises above the specified annealing temperature, the material point loses its hardening memory.
 - The effect of prior work hardening is removed by setting the equivalent plastic strain to zero.
 - For kinematic and combined hardening models the backstress tensor is also reset to zero.
- Annealing is only available for the Mises, Johnson-Cook, and Hill plasticity models.

#ABAQUS

- If, during the deformation history, the temperature of the point falls below the annealing temperature, it can work harden again.
- Depending upon the temperature history, a material point may lose and accumulate memory several times.
- This annealing temperature material option is not related to the annealing analysis step procedure.
 - An annealing step can be defined to simulate the annealing process for the entire model, independent of temperature.

Copyright 2005 ABAQUS, Inc.

ABAQUS/Explicit: Advanced Topics

Rubber Elasticity

Rubber Elasticity

 Rubber materials are widely used in many engineering applications, as indicated in the figures below:

Copyright 2005 ABAQUS, Inc.

#ABAQUS

ABAQUS/Explicit: Advanced Topics

L3.36

Rubber Elasticity

 The mechanical behavior of rubber (hyperelastic or hyperfoam) materials is expressed in terms of a strain energy potential

$$U = U(F)$$
, such that $S = \frac{\partial U(F)}{\partial F}$,

where S is a stress measure and F is a measure of deformation.

– Because the material is initially isotropic, we write the strain energy potential in terms of the strain invariants $\overline{I}_1, \overline{I}_2$, and J_{el} :

$$U = U(\overline{I}_1, \overline{I}_2, J_{\varrho l}).$$

 \bar{I}_1 and \bar{I}_2 are measures of deviatoric strain.

 $J_{\it el}\,$ is the volume ratio, a measure of volumetric strain.

#ABAQUS

L3.48

Rubber Elasticity

- Compressibility
 - Most elastomers have very little compressibility compared to their shear flexibility.
 - Except for plane stress, ABAQUS/Explicit has no mechanism for enforcing strict incompressibility at the material points.
 - · Some compressibility is always assumed.
 - If no value is given for the material compressibility, ABAQUS/Explicit assumes an initial Poisson's ratio of 0.475.
 - This default provides much more compressibility than is available in most elastomers.
 - However, if the material is relatively unconfined, this softer modeling of the bulk behavior provides accurate results.

#ABAQUS

Rubber Elasticity

- The material compressibility parameters may be entered directly to override the default setting.
 - Limit the initial Poisson's ratio to no greater than 0.495 to avoid high-frequency noise in the dynamic solution and very small time increments.

Copyright 2005 ABAQUS, Inc.

ABAQUS

ABAQUS/Explicit: Advanced Topics

1.3.50

Rubber Elasticity

- Modeling recommendations
 - When using hyperelastic or hyperfoam materials in ABAQUS/Explicit, the following options are strongly recommended:
 - · Distortion control with
 - Enhanced hourglass control.
 - Adaptive meshing is not recommended with hyperelastic or hyperfoam materials.
 - Distortion control provides the alternative to adaptive meshing.
 - These options are discussed in Lecture 6, Adaptive Meshing and Distortion Control.

Concrete

Copyright 2005 ABAQUS, Inc.

ABAQUS/Explicit: Advanced Topics

13.52

Concrete

- · Brittle cracking model
 - Intended for applications in which the concrete behavior is dominated by tensile cracking and compressive failure is not important.
 - Includes consideration of the anisotropy induced by cracking.
 - The compressive behavior is assumed to be always linear elastic.
 - A brittle failure criteria allows the removal of elements from a mesh.
 - This material model is not discussed further in this class.
 - For more information see "Cracking model for concrete," section 11.5.2 of the ABAQUS Analysis User's Manual.

#ABAQUS

Concrete

· Concrete Damaged Plasticity Model

- Intended as a general capability for the analysis of concrete structures under monotonic, cyclic, and/or dynamic loading
- Scalar (isotropic) damage model, with tensile cracking and compressive crushing modes
- Main features of the model:
 - The model is based on the scalar plastic damage models proposed by Lubliner et al. (1989) and by J. Lee & G.L. Fenves (1998).
 - The evolution of the yield surface is determined by two hardening variables, each of them linked to degradation mechanisms under tensile or compressive stress conditions.
 - The model accounts for the stiffness degradation mechanisms associated with each failure mode, as well as stiffness recovery effects during load reversals.

Copyright 2005 ABAQUS, Inc.

ABAQUS/Explicit: Advanced Topics

13.54

Concrete

- Mechanical response
 - The response is characterized by damaged plasticity
 - · Two failure mechanisms: tensile cracking and compressive crushing
 - Evolution of failure is controlled by two hardening variables: $\tilde{\varepsilon}_{\iota}^{\ pl}$ and $\tilde{\varepsilon}_{\varepsilon}^{\ pl}$

$$\begin{split} & \sigma_t = \sigma_t(\tilde{\varepsilon}_t^{pl}, \dot{\tilde{\varepsilon}}_t^{pl}, \theta, f^\alpha) \\ & d_t = d_t(\tilde{\varepsilon}_t^{pl}, \theta, f^\alpha); \qquad 0 \leq d_t \leq 1 \\ & \overline{\sigma}_t = \sigma_t/(1-d_t) \end{split}$$

$$\begin{split} & \sigma_c = \sigma_c(\tilde{\varepsilon}_c^{pl}, \dot{\tilde{\varepsilon}}_c^{pl}, \theta, f^\alpha) \\ & d_c = d_c(\tilde{\varepsilon}_c^{pl}, \theta, f^\alpha); \quad 0 \leq d_c \leq 1 \\ & \overline{\sigma}_c = \sigma_c/(1 - d_c) \end{split}$$

₩ABAQUS

Additional Materials

Additional Materials

· User-defined materials

- You can create additional material models through the VUMAT user subroutine.
- This feature is very general and powerful;
 - any mechanical constitutive model can be added.
- However, programming a VUMAT requires considerable effort and expertise.
- For more information on userdefined materials refer to Appendix 3.

complex uniaxial behavior of Nitinol modeled in a VUMAT subroutine

Technology Brief example: Simulation of Implantable Nitinol Stents ABAQUS Answer 1959

