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Abstract

The anomalous propagation of short cracks shows generally exponen-
tial fatigue crack growth but the dependence on stress range at high stress
levels is not compatible with Paris’ law with exponent m = 2. Indeed,
some authors have shown that the standard uncracked SN curve is ob-
tained mostly from short crack propagation, assuming that the crack size
a increases with the number of cycles N as :—1‘\‘, = HAo"a where h is
close to the exponent of the Basquin’s power law SN curve. We there-
fore propose a general equation for crack growth which for short cracks
has the latter form, and for long cracks returns to the Paris’ law. We
show generalized SN curves, generalized Kitagawa-Takahashi diagrams,
and discuss the application to some experimental data. The problem of



short cracks remains however controversial, as we discuss with reference
to some examples.
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1 Introduction

The problem of propagation of cracks is central to fatigue, and despite the large
efforts, a universal picture of crack propagation is still elusive, particularly for
the problem of short cracks. Paris et al. [1] suggest that ’a specific accumulation
damage model for the computation of damage growth under a wide variety of
service loads is still lacking’. Short cracks are obviously more difficult to observe
experimentally due to their size, and tend to show a number of deviations from
"long crack” growth. This is partly due to the fact that long cracks have a size
which is much larger than the material length scales, and therefore are more
naturally amenable to a continuum mechanics treatment. In particular, when
long cracks are loaded under ”small scale yielding”, Linear Elastic Fracture
Mechanics (LEFM) becomes effective for growth rate prediction. Instead, the
propagation of short cracks typically occurs at stress levels above the fatigue
limit, hence often in the range of large scale yielding.

While all the fatigue models remain fundamentally empirical, there are
two main approaches which remain unfortunately separated: a ”stress-life” ap-
proach, which was developed by Wohler and others and for almost a century
was the only viable route to design, and the ”crack propagation” approach,
which originated the Damage Tolerance (DT) philosophy. The two approaches
contain two different sets of material properties and usually one set is not avail-
able when the other is measured, so that it is difficult a posteriori to make
estimates of unified approaches. They are generally applied to different types of
components, with the DT approach having a great success in aeronautical fields,
particularly for metals. The idea that it should be possible to take the best of
the two worlds and develop a ”unified” approach, and use both sets of mate-
rial constants, has been put forward in earlier studies [2-9]. However, a unified
theoretical framework capable of describing crack propagation, fatigue life of
uncracked specimens, with all the ”thresholds” and transitions clearly identi-
fied and modelled, is still not available. The present paper briefly discusses one
significant difficulty in dealing with the ”short crack” problem.

Pugno et al. [3] used a Quantized Fracture Mechanics (QFM) approach [10]
to obtain generalized crack propagation equations which, in the limit of short
cracks, permit to obtain a standard SN curve, independent on the crack size.
This early proposal will be revisited here, in view of obtaining a different limit
for short cracks. To this end, we first briefly review the literature on short crack
propagation laws, then on long cracks and the most well known laws used in
DT calculations. Finally, we make our proposal of a new unified approach.



1.1 Short cracks

Some authors have suggested that the crack propagation rate for a short crack
should be described by some power law of the stress range [11-16], and by the
crack length. Frost and Dugdale [17] were the first to propose a law of the type:

da

A HAc"a (1)
where da/dN is the advancement of fatigue crack per cycle, Ao the stress range
and h and H constants, with h being originally equal to 3 in the Frost-Dugdale
proposal (which perhaps was an approximation to the later proposal by Paris for
long cracks). In other cases, mostly discussed by japanese investigators [11-16],
a much higher h was found, of the order of i ~ 10. For steels, h decreases with an
increase of the ultimate strength of the material: Goto and Nisitani [18] report
data for S45C, SCr 440, SCM 435 and SNCM 439 steels showing, respectively
h=9.3,7.0,7.0 and 7.0.

Equation (1) is generally known as the ”exponential crack growth” and it
was proposed even earlier by Shanley [19] to justify a derivation of the strength
vs. number of cycles to failure (SN) curves, but not with reference to actual
crack sizes (which were not observed in those early times). Indeed, this is a
crucial point: the integration of Equation (1) leads obviously to a SN curve of
the type

1
Ac"N = const = i logay/a; (2)

and the typical value of h introduced above (i.e. h ~ 10) is consistent with
the Basquin exponent of the SN curves of metals [20], whereas Frost-Dugdale’s
cubic rule would not. Of course, in the classical ”stress-life” approach to fatigue,
the constant usually assumed on the right hand side of Equation (2) does not
recognize the dependence on initial and final crack sizes, ay and a;, respectively.
This could have occurred because of the logarihtmic weak dependence on the
ratio ay/a;, which means that the variation of the constant (close to 3-6 in
practice) may well have been confused with the well known large scatter in
fatigue SN curves.

In earlier studies by some of the present authors [3], however, we did not
include the short crack limit in generalizing crack propagation laws, and con-
sidered the limit to be that given by the standard SN Basquin’s law.

More recently, the exponential crack growth has been suggested in more gen-
eral contexts, and in crack growth of actual structures when fatigue originates
from material discontinuities, and even under spectrum loading [21,22]. How-
ever in the latter cases the exponent h probably returns to lower values, and
not much reference is made on SN curves and how they are obtained from crack
growth rates. Notice however that Berens et al. [21] refer to ”exponential fits”
either for short crack sizes, i.e. a < 0.005 in, or as an approximation in small
increments of propagation. Hence, it is not correct in general to conclude that
an exponential crack growth can be assumed for the entire lifetime.



1.2 Long cracks and Damage Tolerance

For long cracks, the fatigue crack growth can be obtained from the celebrated
Paris’ law [23], which is written in terms of the amplitude of the stress-intensity
factor AK = YAo\/ma where Y is a geometrical factor, as:

da m

N = CAK (3)
where C' and m are experimentally determined ”material parameters” (although
they depend also on geometry and other parameters, see [24]) and, in the fol-
lowing, we assume Y = 1, like in the case of a central crack in a infinite plate
under tension.

Figure 1 shows crack propagation curves in steel from [13] within smooth
specimen, or specimen with very small holes (diameter of 100 pm), which result
in crack propagation law of the type (1) when cracks are small (less than about
1 mm), and a Paris-like regime above this value. Intermediate crack sizes,
as can be expected, seem to follow an intermediate power law regime with a
slope nearly equal to 2. For long cracks, a Paris regime is found, for which
the dependence on the stress range is collapsed into the AK parameter, with
constants C' = 4.95-10~'3 (;élgiMméim and m = 3.7. Vice versa, for short cracks,
a strong dependence on the stress range is found, namely higher growth rates are
obtained with higher Ao, and the data depart from the Paris’ curve, including
propagation at much lower values than the long crack threshold (which, for this
material, is expected to be about AKy;, &~ 7 MPa,/m).
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Fig.1. The crack growth curves from Nisitani and Goto [13] clearly show an
exponential crack growth and a transition towards a Paris’ law regime when
the cracks are larger than about 1 mm.

A very important successful framework using Paris’ law concept is the well
known United States Air Force (USAF) DT methodology [25]. This approach



effectively avoids many sources of scatter by removing the uncertainty of short
crack growth problems. In fact, it considers that cracks of conservative de-
terministic dimensions are present after pre-service (in the order of 1 mm) or
in-service inspection techniques (up to 12 mm) at critical conditions. The DT
requirement consists in prescribing that crack propagation should not make the
structure at risk before the subsequent inspection. Few codes (NASGRO, AF-
GROW, NASTRAN) exist that utilize various forms of the long-crack Paris’
type of crack growth equations, taking into account various phenomena to some
degree of confidence, such as crack closure, crack retardation during spectrum
loading, etc. However, techniques also able to take into account of the short
crack effects may be relevant in some specific cases, particularly in military
contexts!.

1.3 Transition from short to long cracks

Some authors suggest that existing long crack equations can include short crack
effects without much modification. For example, Jones [26] suggests that the
NASGRO (specifically, Hartman—Schijve variant) Paris’ equation is quite gen-
eral and includes short crack effects:

da o D(AKeff — AKeffyth)p

dN (1 _ Kmax/A)p/2

(4)

where A, D and p are deterministic constants, while AK.ss corrects AK for
crack closure, and AK,ysy, is a threshold in terms of effective stress intensity
factor range AK.¢s. In particular, the author suggests that usually p ~ 2 (at
least for some alloys and steels used in aeronautical, railways and civil appli-
cations, see [27]), meaning that the crack propagation would be exponential if
AKcgrn = 0 so that the higher values of m typically recorded should be just
an effect of this threshold effect, in turn due to crack tip plasticity and closure
shielding.

1 Jones [26] argues this is because the requirement ’that aircraft cannot be flown once the
aircraft has exceeded half of the number of cycles seen in the associated full-scale fatigue test,
does not hold for military aircraft’.
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Fig.2. Example of the NASGRO Hartman-Schijve crack propagation equation
fitting both long and short crack data on 7050-T7451 (from [26], Figure 1).
Blue circles for long cracks, red triangles for short cracks, and the fit is done

. . . _ 79 m _ _
with Equation (4) using D = 2.1-10 evele (MPayim)” A =50 MPay/m, p = 2,

AK.sr = AK and AK.fs 4 from 0.1 to 2 MPay/m

Jones [26] suggests that short cracks see very little crack closure and Equa-
tion (4) can be further simplified by taking AK.s; ~ AK. Thus, for short
cracks an exponential law seems to be obtained, as introduced through Equa-
tion (1). In other words, for short cracks AKy, goes very close to zero and
the author concludes that ’small crack curves generally have a Paris like shape
with no clear threshold’ for which no need for the NASGRO Hartman-Schijve
variants is justified. Similarly, Appendix X3 of ASTM E647-13a [28] remarks:
it is not clear if a measurable threshold exists for the growth of small fatigue
cracks’. We report in Figure 2 some data for long and short cracks, on 7050-
T7451 Al alloy (data extracted from [26]). It is clearly visible that short crack
data present a higher grow rate with respect to long cracks for the same AK,
without showing a clear threshold. Even above the long crack threshold, short
cracks (within the experimental scatter) do not show a clear threshold while
they seem to suggest a power of m = 2, and no R-ratio effects. There seems
however not to be a dependence on a high power of the stress range, as we have
discussed before.

There remains therefore a controversy over the important issue of the stress
range power for short cracks: if it is 2 in the form suggested by Jones [26], this
in turn requires some additional explanation on how to obtain SN curves as
virtually no material shows a SN law with Basquin slope equal or close to 2. If
instead it is a higher power like h ~ 10 as in the references cited above [11-16], we
can conclude, as indeed these reference do, that SN curves are entirely explained
with short crack propagation, without much need to recur to initiation life and



long crack propagation. In the discussion we shall return to this point.

A quite successful distinction from short (i.e. fatigue-limit dominated) to
long (i.e. fatigue-threshold dominated) cracks, was introduced by various au-
thors to occur at crack sizes in the order of [29-33]:

1 (AKy\>
0= ( Aoy, > (5)
where Aoy is the fatigue limit range at a given load R-ratio and AKj, the
threshold at the same R-ratio. Kitagawa and Takahashi [29] introduced the
Ao — a diagram to show the transition which El Haddad et al. [30] formulated
in an empirical equation, simply adding ag as an “intrinsic” additional crack
size for the threshold equation:

Aoy, = _ AKwm (6)
7 (a+ ag)
and ag turned out to be linearly proportional to the grain size.

The El Haddad idea is one aspect of the ”Critical Distance Method” which
in turn originates in the very old days of fatigue, when Neuber [34] and Peterson
[35] introduced the fatigue knock-down factor Ky by averaging the stress over a
certain length scale, as summarized in a recent book by Taylor [33]. El Haddad
et al. [30] formulated also the extension of this idea to crack propagation laws,
suggesting however that ag should be added to the Irwin stress intensity range
in Paris’ law, independently on stress level, i.e.:

% =0 (Yaoy/m(a+ ao))m (7)

Note that this law leads, in the limit of very short cracks, to a constant crack
propagation rate. However, the accuracy of this assumption was not validated
extensively (some tests are used from a single reference which are very likely
under strain control, and the use of J-integral complicates the interpretation).
Again, it certainly suffers from the drawback that the SN curve of the uncracked
specimen is not obtained from integrating the crack propagation curve, because
the power on the stress range is not compatible with the Basquin typical values.

2 Model

El Haddad et al. [30]’s idea is a special case of what in previous works [3,4] has
been considered as generalized Paris’ laws in the context of the QFM approach
[10], and which we shall use again here, for different purpose of obtaining the
general exponential crack growth law (1) in the limit of short cracks. Let us
consider the expression of the stress-intensity factor in the Griffith’s case (i.e.
for an infinite elastic plate with a symmetric crack of size 2a). According to
QFM, we have [3,4]:

AK* — Aoy <+A2> _ Ao/A@ B (s)



where we use the ”fracture quantum” Ab = Aa/2, for clarity. When Ab > a,
Equation (8) becomes:

AK* =~ AoV TAb (9)

Considering the crack propagation rate da/dN according to the exponential
crack growth and the Paris’ law, from Equations (1) and (3) respectively, we
can write the equality:

HAc"a = CAK*™ (10)
We can now substitute Equation (9) into Equation (10), obtaining:
m H
Ab? =~ —Ac" ™ (11)
Cr=

hence the crack propagation rate is:

m
2

H h—m % _
a+ (07'(72" Ao a =

- (12
1+ (Hth_QAKQ_m> n]

m
2

da m

=CAK™
¢ Cr

Note that for m > 2 and AK — 400, Equation (12) tends exactly to the Paris’
law (3). Instead, for AK — 0, we get

da

H
dij\/v ~ ?AOJ—L_2AK2 (13)

which corresponds to the exponential crack growth law (1), written in terms of
the amplitude of the stress-intensity factor.

We have thus derived a generalized crack propagation law valid both for short
and for long cracks. Equation (12) can be integrated form the initial crack size
a; to the final crack size ay, obtaining, for m > 2:

af
Ny z/ da mj2 (14)
a; Aia (A2 + alfz/m)

2 1-m/2 m m 24+m 2 _q

- = 4 Fl= = 2t mTy

Al(m—2)al 2471 2a2a 2 y —a; 2| +

m_q
a; \ 2 m m 24+m 2 _q

- — Pl = ——,—ap A 15

(CLf) 2471 |:2 1Ty 9 af 2:| ( )

where oFi[a,b,c,z] = X732 (az(’j)(b)k%}? is the Gauss’ hypergeometric function
L K

(special results are obtained for m = 2,3,4), and for clarity we have intro-

duced the constants A; = CAc™7r™/2 and Ay = (%th_m)wm. Note

that, under the typical assumption Z—; < 1 Equation (15) reduces to:
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(16)
3 Examples
Going back to the experimental results by Nisitani and Goto [13], we show in

Figure 3 that a reasonable fit is obtained using Equation (13) with h = 8.6 and
H=1.04-10"27 L
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Fig. 3 - Experimental data from Nisitani and Goto [13] (markers) and fit
(dashed line) with Equation (13), with 4 = 8.6 and H = 1.04-10~%7 m.

In Figure 4 Equation (12) is plotted using the constants obtained from
the data in [13]. In particular, considering log Z—f = log 10%, we obtain H =

1-m/2

1.04 - 10727 m, h =86, C =4.95- 10*130%“}%71\“/)am and m = 3.7.
Figure 4a shows the crack growth rate curves for the levels of stress range in
the experiments Ac/Acy, = [0.9,1.03,1.10,1.14,1.30, 1.44] , being Aoy, = 445
MPa the fatigue range limit. As discussed above, the two limit cases are re-
trieved, while the complete expression of Equation (12) describes the behaviour
for intermediate values of AK. Note that we have plotted the equation only
for stress ranges higher than fatigue limit range, as we expect essentially this
is the condition where short cracks can propagate. As a result of the transition
the equation shows a crack growth rate, which is significantly higher than long
crack growth even above the "long crack threshold”, which here would be near



7 MPay/m. However, the crack growth equation should be changed to the long
crack growth form, perhaps in the form of Equation (4), showing the thresh-
old, for values of the stress range below the fatigue limit. The quality of the
fit, when seen in the form of crack growth rate of Figure 4a, is reasonable but
clearly some trends remain qualitative rather than quantitative. Note also that
we obtained the constants associated to the short crack law from the original
data and independently from the original Tables reported in [13], which seem
to fit the SN curve in Figure 9 of that paper: it is not clear if they represent the
same cases, given that in the paper there are a number of specimen, for differ-
ent loading conditions (rotating bending vs tension-compression) and different
materials, and some confusion may have arised. We therefore could not check
independently if the SN curves do show only short crack propagation lives, and
almost no initiation life, as the authors say.

10
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Fig.4. Example of the proposed Equation (12), plotted with the data from
Nisitani and Goto [13], in terms of crack growth rate (a), SN curve (b), and
extended Kitagawa diagram (c).

In Figure 4b we plot Equation (16) as a generalized SN curve for the same
parameters used in Figure 4a and four different a;/ag ratios (i.e.0.5,1,2,3). The
" fatigue limit” is added independently on our short crack law (which contains
neither of the two thresholds) and is imposed either at Ao = Aoy, or at AK =
AKyp. For comparison we have plotted the pure power law SN curve for the
example case material (dashed black line) i.e. Equation (2).

Finally, in Figure 4c, an extension of the celebrated Kitagawa-Takahashi di-
agram is presented. The infinite life region is bounded from above by the El
Haddad curve, while the finite life region is bounded from below by the El Had-
dad curve and superiorly by its extension (from [2]) that accounts approximately
for the static resistance of the material:

Aooy = L (18)

™ (a + ag )
2
being ag = % (%) . The solid red curves in the finite life region have been
drawn using Equation (15) (thus accounting for ay) for Ny = [10%,10%,10°]
cycles. Some uncertainty remains over the region near the treshold, which comes

from the fact that the size effect in the Paris’ law is intrinsically different from
that of the threshold.

4 Discussion

The different forms of short crack propagation laws that we discussed suggest
that probably there are various regimes of ”short cracks”, which require differ-
ent approaches. An illuminating map on the problem of short cracks perhaps
worth citing here is given by Miller [36], reproduced schematically in Figure 5.
It is clearly shown that short cracks can be divided into three categories: mi-
crostructurally short cracks (MSC), for a < d3 in the Figure where d3 identifies
microstructural length scales associated with inclusions or grain sizes; physi-
cally small cracks (PSC) below the size where LEFM can be safely applied;
and finally highly stressed cracks (HSC), i.e. those larger than ! but for which
elasto-plastic corrections are needed. Note that even for PSC and HSC, if the
stress levels are sufficiently high, in principle Elasto-Plastic Fracture Mechanics
(EPFM) should be applied.

We clearly see some possible motivations as to why there is not a single model
for short cracks, or why various models seem conflicting. While Jones [26] refers
probably to low stress levels, where short crack effects are limited to the removal
of crack tip closure effects, resulting in a ”clean” form of the Paris’ law for long
cracks, the japanese authors short crack type of law, and our paper, is rather
mainly an attempt to model the EPFM effects in a simple way.

12
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Fig. 5. Miller’s version of the extended Kitagawa-Takahashi diagram [36].

In these respects, it may be worth citing McEvily et al. [37] who, in a similar
attempt to model elasto-plastic loading of short cracks, introduced a correction
to the crack size which is vaguely similar to our attempt although more precisely
connected to the size of the plastic zone ahead of the crack tip.

5 Conclusions

There is some controversy in the literature about what should be the correct
model for the propagation of short cracks. El Haddad et al. [38] proposed the
addition of a fictitious crack length, which was obtained from fatigue limit and
fatigue threshold, and was independent on the stress level. Other authors used
a NASGRO equation in the Hartman-Schijve variant which, for short cracks,
returns very closely to a simple Paris’ law for m = 2 and particularly simple
behaviour (no crack closure, R-ratio effects, etc.).

We have proposed a new unified formulation for crack growth rate, which
leads in the limit of short cracks, to the form suggested by Frost and Dugdale,
and in the limit of long cracks to Paris’ simple type of equation. This form
is compatible with obtaining the SN curve of uncracked materials from the
simple integration of the crack growth equation. We have therefore provided
a unified equation for crack growth. Comparison with experimental data from
the literature is still difficult, and different authors seem to report different
behaviours.
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