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Nanoscale incipient asperity sliding and interface micro-slip
assessed by the measurement of tangential contact stiffness
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Experiments with a multidimensional nano-contact system have shown that, prior to kinetic frictional sliding, there is a
significant reduction of the tangential contact stiffness relative to the elastic prediction. The reduction occurs at contact sizes below
about 50-200 nm for aluminum single crystals and several other materials. Using a cohesive interface model, we find that this reduc-
tion corresponds to a transition from a small-scale-slip to large-scale-slip condition of the interface.
© 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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The development of the load and displacement sens-
ing indentation techniques such as nanoindentation has
led to a myriad of experimental and theoretical studies
on small-scale mechanical behavior [1,2]. Typical
indentation depths in such studies range from several
nanometers to tens of micrometers. Sliding contact
behavior in the same range of length scales, however,
has received less attention because of the lack of quanti-
tative measurement capabilities in the tangential direc-
tion. Although techniques such as the atomic force
microscopy (AFM) [3] and the surface force apparatus
(SFA) [4] can quantitatively measure the friction force
and tangential contact stiffness, the range of measured
contact stiffnesses is then either too small (less than
about 100 N/m for AFM) or too large (greater than
about 10°N/m for typical SFA). These limitations
severely restrict the use of the AFM and SFA in the
study of nano- and meso-scale mechanical properties
during multiaxial contacts.
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In order to bridge the gap between the length scales, a
multidimensional nano-contact system [5] has been
developed based on state-of-the-art nanoindentation
technology. This instrument provides tremendous
opportunities for the fundamental investigation of inter-
face plasticity and mechanisms of friction and wear at
small scales. The 3D system was produced by coupling
three 1D nanoindentation actuators in orthogonal direc-
tions. Each axis of the system maintains the quantitative
measurement capabilities (i.e. resolution, accuracy and
reproducibility) of the 1D system with a range of
measured normal/tangential contact stiffnesses between
about 100 and 10° N/m. It is thus suitable for studying
elastic and plastic deformation properties during nano-
and micro-scale sliding contact. The unique aspect of
the system is that the force along each axis can be inde-
pendently controlled and the displacement along each
axis of motion independently measured. Additional de-
tails of the experimental setup can be found in [5].

Figure 1 gives the measured contact stiffness along
three directions against the penetration depth for a
Berkovich diamond indenter driven into single-crystal
aluminum. It should be pointed out that the multiaxial
contact stiffnesses were measured by employing the
continuous stiffness measurement technique in the three
orthogonal directions [1,2,6]. This is a frequency-specific
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Figure 1. The measured contact stiffness in three dimensions plotted
against the penetration depth of a Berkovich indenter into the surface
of a bulk aluminum single crystal [5]. The two solid lines fit the elastic
solutions. The transient region at small indentation depths (<100 nm
for this material) is due to the interface slip (or called interface micro-
slip).

testing method in which a small harmonic force is ap-
plied to the indenter and the harmonic response of the
displacement and the phase angle shift are measured;
the stiffness can be deduced by vibrational analysis.
The harmonic force is controlled such that the ampli-
tude of the resulting displacement oscillation is main-
tained at a constant value, that being 0.7 nm in the
experiments presented in Figure 1. It is typically believed
that, for such a small amplitude of displacement oscilla-
tion, the contact stiffness should be a constant value
given by the elastic solution. The normal contact stiff-
ness in Figure 1 is indeed linear with the contact pene-
tration depth (that is, linear with the contact size for a
Berkovich indenter); however, the tangential contact
stiffness is only so when the penetration depth is larger
than about 100 nm. Elastic contact mechanics predicts
that the ratio of the tangential to normal contact stiff-
ness is given by 2(1 — v)/(2 — v). A Poisson’s ratio of
0.346 + 0.017 is deduced by fitting the data at large
indentation depths (>100 nm). This paper is concerned
with the transient region at small indentation depths.
A micromechanical model is developed next to explain
the significant reduction of the tangential contact stiff-
ness at contact sizes of about 50-200 nm.

Consider an axisymmetric indenter sliding against a
half-space as shown in Figure 2. The contact size is as-
sumed to be determined solely by the normal load, since
the applied tangential load is too small to cause the
growth of the contact area during sliding. When adhe-
sive forces play a significant role, this assumption still
holds when the contact behavior approaches the John-
son—Kendall-Roberts limit [7]. Because the dissimilarity
in the elastic constants of the two solids gives only a
minor correction and the diamond indenter is much
stiffer than the deforming material, we assume for
simplicity that the two materials have the same elastic
properties by using the composite moduli [6].

Assume that the two solids are bonded perfectly to-
gether, i.e., the two surfaces inside the contact zone have
no relative tangential motion. The elastic solution [6]
gives the traction distribution ¢**%(r) inside the contact

zone and the tangential stiffness S
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Figure 2. Schematic of incipient asperity sliding and the conventions
used in its analysis. Because of the circumferential shear stress
singularity predicted by the elastic solution, the two contacting
surfaces slip against each other at the contact edge (i.e., causing a
relative motion), and stick inside (i.e., undergoing the same tangential
displacement).
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where T and ¢, are the tangential force and displace-
ment (applied at distant reference points) respectively,

a is the contact size, r=+/x>+)? is the radial
coordinate, and the composite shear modulus is u* =
[(2 — v)/uy + (2 — v2)/un]" with shear moduli g, and
U, and Poisson’s ratios v; and v, for the two contacting
solids. Consequently, the tangential contact stiffness is
directly proportional to the contact size and the com-
posite shear modulus, and is independent of the tangen-
tial load and the tangential displacement. The normal
contact stiffness is given by S = dP/ds. = 2aE",
where E* = [(1 — v?)/E, + (1 — v3)/E,]”" with Young’s
moduli £, and E, for the two solids. For a rigid inden-
ter, we get SetC/gelstic — (1 — ) /(2 — v), where v is
Poisson’s ratio of the deforming material. This is the
theoretical foundation for the method used to obtain
the Poisson’s ratio in Figure 1.

As shown in Eq. (1), the interface shear stress field
has an inverse-square-root singularity at the contact
edge (r — a~), which must be regularized, possibly by
interface slip or shear-induced plastic deformation.
The latter is usually difficult at small scales, so the focus
here is on interface slip. For a slipping contact, the tan-
gential shear stress at the contact edge may be limited by
the Coulomb friction (i.e., o,. < —¢o.. with the friction
coefficient ¢), as described in the classic Cattaneo—Mind-
lin model [6]. However, Coulomb friction is a macro-
scopic phenomenon due to rough surface contacts;
that is, it arises from a statistical average of multiple
asperities in sliding contact [6,8]. The study presented
in this paper is concerned with single-asperity frictional
behavior, for which Coulomb friction does not formally
apply. The micromechanical model we envision is
similar to the Cattaneo—Mindlin model except that the
mechanism of interface (micro-)slip is fundamentally
different. We assume that the interface shear stress is
limited by a shear strength 7. This strength is similar
to that used in the cohesive interface model for a mode
IT crack [9]. Stress-field solutions for the cohesive inter-
face model are well documented for various crack
shapes [10]. This model has also been used to explain
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the coupling between adhesion and friction [11], but its
utility in modeling the tangential contact stiffness has
not been fully addressed before.

Referring again to Figure 2, the boundary value
problem to be solved is an externally circular crack sub-
jected to a faraway tangential force and crack interface
shear traction, o..(r) =19, at ¢ <r < a. From [9-11],
the interface shear stress distribution, the total applied
force, and the tangential displacement at the reference
point are given by

T (2P —a -1
O'xz(}") = ; COS {W s r < c, (2)
T =2t |cost S+ /1 (€ 3
fod [COS a * a (a) ’ (3)
Tod c\?2
= 1—1(-). 4
2u* (a) “)

The tangential contact stiffness can be computed from
Egs. (3) and (4), namely, S, = d7/dd, = 8cu”, which is
proportional to the stick zone size c.

If 2u*6./ary is small (in comparison to unity), the
tangential contact stiffness is indistinguishable from
the elastic contact solution in Eq. (1), and the size of
the stick zone approaches the contact size, i.e., ¢/a —
17. The interface is then characterized by the small-
scale-slip (SSS) condition. On the other hand, for a large
2u*d./ary, even an infinitesimally small tangential load
can cause a large slip zone size (¢ < a), and the tangen-
tial contact stiffness can be significantly lower than the
elastic solution. The interface is then in the large-scale-
slip (LSS) condition. When ¢/a = 0, the whole interface
slips and the sliding is controlled by kinetic friction. The
maximum shear force prior to the kinetic friction is
Trinetic = TToa’, and the corresponding tangential dis-
placement is d, kinetic = aTo/244".

The contact stiffness in Figure 1 is measured by the
continuous stiffness measurement method, in which an
oscillation between 0 and J,,.x is prescribed for the tan-
gential displacement. Defining ac;; = 21" 0max/T0 and
Sert = 8ac”, the stiffness can be written as

S i 1— (acrtéx)z7 aémax > 17
LI a0max ertOx (5)
Sx,crl 0 aémax < 1
’ acrtéx .

In order to describe the stiffness measured by the contin-
uous stiffness measurement method [1,2], we approxi-
mate it by a weighted average over J, € [0, dmaxl,
namely,

_ 1 Omax
Sy = / wS, doy, (6)
0

5max

where the weight function can be chosen as w =1 (uni-

form weighted average) or w =7 sin (zgiﬂ) (biased
weighted average). '

The transient region in Figure 1 can now be quantita-
tively described as the transition from the SSS condition
to the LSS condition. When the contact size is below
deri, €ven a small displacement oscillation 0,,,x, relative

uniform weighted average
biased weighted average

Figure 3. The tangential contact stiffness (normalized by Sy =
8a. 1) plotted against the contact size (normalized by ac¢ = 21" Omax/
70). The two types of weighted-average values are defined in Eq. (6).
Curve fitting gives . = 192 nm using the data in Figure 1 (circles,
aluminum single-crystal). Small-scale slip (SSS) occurs for large
contact sizes, while large-scale-slip (LSS) is the opposite.

to the contact size, is large enough to give rise to LSS
in the interface, and the tangential contact stiffness be-
comes much smaller than that predicted by the elastic
no-slip solution. Figure 3 plots the measured tangential
contact stiffness (data marked by circles in Figure 1 for
single-crystal aluminum) and the predictions of Egs. (5)
and (6) against the contact size. The composite shear
modulus u* and Poisson’s ratio v can be obtained from
the elastic sliding contact in the large indentation-depth
range in Figure 1. Consequently, the only adjustable
parameter in fitting the measured data in the small
indentation-depth range in Figure 1 is .. Since the
weighted average in Eq. (6) is only an approximation
of the continuous stiffness measurement technique, the
critical contact size is fitted so that the circles in Figure
3 are bounded by the two dashed curves. For single-
crystal aluminum studied in Figure 3, we obtain a., =
192 nm, 7y = 116 MPa, and u*/to = 137. For fused sil-
ica, v =0.17, ag = 104 nm, 1o = 226 MPa, and u"/to =
74.2. For polycrystalline gold, v =0.42, a. = 103 nm,
19 = 187 MPa, and u*/ty = 73.5.

To this point, the interface slip phenomenon has been
assumed to be governed by the interface shear strength
7o. Based on a recent dislocation plasticity model
[12,13], a possible physical origin for this rather phe-
nomenological parameter is now presented. Because
the contact size is in the range of 10-1000 nm, the inter-
face slip and the sliding-contact strength are determined
by the collective behavior of dislocations at the meso-
scopic length scale. This being the case, the interface
shear strength would be size-dependent. A dislocation
can be nucleated from the contact edge if the stress
intensity factor reaches a critical value, K. =

Wras/ (1 — v), where 7y, is the unstable stacking energy,
a material parameter [14]. Elastic solution in Eq. (1)
gives the stress intensity factor Ky = T cos0/2a\/na
and Ky = Tsin0/2a/ma at the contact edge where
0 = tan~!(y/x), implying that the interface shear
strength 7, is proportional to 1/y/a. The size of the dis-
location nucleation process zone can be estimated as
1h*/8y4s [14,15], so that dislocation nucleation cannot
occur when the contact size is less than this critical value
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(on the order of several to ten nanometers). Conse-
quently, the upper bound of 7, is the theoretical shear
strength (about one tenth of the shear modulus). On
the other hand, for large contact sizes, it is anticipated
that the incipient asperity sliding is accommodated by
gliding multiple dislocations. The classic analysis of dis-
location pileup against an obstacle (a grain boundary,
for example) shows that the number of dislocations is
Ngis = toa(1 — v)/ub for an applied shear stress 7, [16].
A scaling relation of 75 o< 1/4/a clearly indicates that
the number of dislocations will increase with increasing
contact size. Thus, the lower bound of 7, is the lattice
resistance stress (often called the Peierls stress) of the
interface.

The size-dependence of 7 indicates that its measure-
ment by AFM [3] should approach the theoretical
strength (i.e., u*/to ~ 10) while that by SFA [4] would
be the effective Peierls stress (i.e., u*/to~ 1000). Our
experiments give u*/to~ 100. However, considering
two other points, the fitted values of 7y in Figure 3
should be viewed as only qualitative in nature. First,
the above size-dependence of 7, is predicted to occur
at a length scale a ~ 10005 (assuming a pileup of 10 dis-
locations), roughly on the same order of magnitude as
the critical contact size for the transition from SSS to
LSS. Second, in our experimental work to date, the mea-
sured tangential contact stiffness has been an average
quantity derived from the continuous stiffness measure-
ment technique, which averages over a large variation of
the slip-zone size. If the relation between a.. and dpax 1S
found to be nonlinear (., can be easily varied in the
continuous stiffness measurement method), it is antici-
pated that one can quantify the size-dependence of 7.
This is amenable to experimental study and verification.

The micromechanical model presented above is essen-
tially a way of regularizing the stress singularity at the
contact edge. The validity of assumptions in this model
is discussed below. First, solutions in Eqs. (1)-(4) are
valid regardless of the indenter shape, as long as the
indenter is smooth and axisymmetric [6]. Second, sur-
face roughness may significantly change the contact
pressure distribution, but will not change the contact
stiffness noticeably since the root-mean-square rough-
ness (less than a few nanometers for our samples) is
much less than the indentation depth [8,17]. Third, the
tangential contact stiffness can be fitted nicely by the
elastic Mindlin solution in (1) at large indentation
depths, which indicates that the tangential load (corre-
sponding to a tangential displacement of 0.7 nm) is very
small and cannot cause any noticeable plastic deforma-

tion. The normal contact, whether being elastic or
elastic—plastic, will not affect the solutions in the tangen-
tial direction given earlier.

In summary, this paper gives a theoretical analysis for
nanoscale incipient asperity sliding, especially for the
dependence of the tangential contact behavior on the
contact size. Comparing a cohesive interface model to
experiments performed using a multidimensional nano-
contact system, the significant reduction of the measured
tangential contact stiffness, relative to the elastic predic-
tion, is found to correspond to a transition from small-
scale-slip (SSS) to large-scale-slip (LSS) condition of the
interface.
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