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Abstract

The utility of the notion of generalized disclinations in materials science is discussed within
the physical context of modeling interfacial and bulk line defects like defected grain and phase
boundaries, dislocations and disclinations. The Burgers vector of a disclination dipole in linear
elasticity is derived, clearly demonstrating the equivalence of its stress field to that of an edge
dislocation. We also prove that the inverse deformation/displacement jump of a defect line is
independent of the cut-surface when its g.disclination strength vanishes. An explicit formula for
the displacement jump of a single localized composite defect line in terms of given g.disclination
and dislocation strengths is deduced based on the Weingarten theorem for g.disclination theory
(Weingarten-gd theorem) at finite deformation. The Burgers vector of a g.disclination dipole at
finite deformation is also derived.

1 Introduction

While the mechanics of disclinations has been studied [DeW69, DeW71, DeW73a, DeW73b, Nab87,
HPL06, Zub97, RK09, FTC11], there appears to be a significant barrier to the adoption of discli-
nation concepts in the practical modeling of physical problems in the mechanics of materials,
perhaps due to the strong similarities between the fields of a disclination dipole and a dislocation
[RK09]. Furthermore, the finite deformation version of disclination theory is mathematically intri-
cate [Zub97, DZ11], and does not lend itself in a natural way to the definition of the strength of a
disclination purely in terms of any candidate field that may be defined to be a disclination density.
This has prevented the introduction of a useful notion of a disclination density field [Zub97, DZ11],
thereby hindering the development of a finite deformation theory of disclination fields and its com-
putational implementation to generate approximate solutions for addressing practical problems in
the mechanics of materials and materials science.

A recent development in this regard is the development of g.disclination theory (generalized
disclination theory) [AF12, AF15], that alleviates the significant road-block in the finite deformation
setting mentioned above. It does so by adopting a different conceptual standpoint in defining the
notion of g.disclinations than what arose in the works of Weingarten and Volterra (as described by
Nabarro [Nab87]). This new standpoint also allows the consideration of phase and grain-boundaries
and their terminating line defects within a common framework. Briefly, Weingarten asked a question
adapted to the theory of linear elasticity which requires the construction of a displacement field
on a multiply-connected1 body with a single hole, and the characterization of its jumps across any
surface that renders the body simply-connected when ‘cut’ by it. An important constraint of the
construction is that the strain of the displacement match a given symmetric second-order tensor field
on the simply-connected body induced by the cut; the given symmetric second-order tensor field

1We refer to any non simply-connected body as multiply-connected or multi-connected.
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is assumed twice-differentiable on the original multiply-connected domain and to satisfy the St.-
Venant compatibility conditions. There is a well defined analogous question at finite deformations
[Cas04]. The constructed displacement field on the simply-connected domain will in general have a
jump (i.e. difference) in the values of its rotation field at corresponding points across the surface but
the jump in its strain (similarly defined) necessarily vanishes by definition. However, when viewed
from this perspective and keeping physically abundant objects like (incoherent) phase boundaries
in mind across which strains are discontinuous as well, there seems to be no reason to begin from
a starting point involving a continuous strain field; it is just as reasonable to ask that one is given
a smooth third-order tensor field that is curl-free on a multiply-connected domain with a hole
(this condition replacing the given strain field satisfying the St.-Venant compatibility condition),
and then ask for the construction of a displacement field whose second gradient matches the given
third-order tensor field on a cut-surface induced simply-connected domain, and the characterization
of the jump of the displacement field across the surface. This allows the whole first gradient of the
deformation/displacement field (constructed on the simply-connected domain) to exhibit jumps
across the surface, instead of only the rotation. Moreover, this whole argument goes through
seamlessly in the context of geometrically nonlinear kinematics; the g.disclination strength is defined
as a standard contour integral of the given third order tensor field. The framework naturally allows
the calculation of fields of a purely rotational disclination specified as a g.disclination density
distribution.

The principal objectives of this paper are to

• review the physical situations that may be associated with the mathematical concept of discli-
nations (considered as a special case of g.disclinations). Much is known in this regard amongst
specialists (cf. [RK09]), and we hope to provide complementary, and on occasion new, per-
spective to what is known to set the stage for solving physical problems related to disclination
mechanics in a forthcoming paper [ZAP16] within the framework of g.disclinations.

• Establish the connection between the topological properties of a g.disclination dipole and a
dislocation at finite strains by deducing the formula for the Burgers vector of the g.disclination
dipole.

• Interpret the Weingarten theorem for g.disclinations at finite deformation [AF15] in terms of
g.disclination kinematics.

This paper is organized as follows. Section 2 provides a review of related prior literature. A brief
Section 3 introduces the notation utilized in the paper. In Section 4 we discuss various physical
descriptions for disclinations, dislocations, and grain boundaries as well as the interrelations between
them. In Section 5 we derive the Burgers vector of a disclination dipole within classical elasticity
theory, making a direct connection with the stress field of an edge dislocation. Section 6 provides
an overview of generalized disclination statics from [AF15]. In Section 6.1, the Weingarten theorem
for generalized disclination theory from [AF15] is recalled for completeness and a new result proving
that the displacement jump is independent of the cut-surface under appropriate special conditions
is deduced. In this paper, we refer the Weingarten theorem for generalized disclination theory from
[AF15] as the Weingarten-gd theorem. In Section 7 the Weingarten-gd theorem is interpreted in
the context of g.disclination kinematics, providing an explicit formula for the displacement jump of
a single g.disclination in terms of data prescribed to define the two defect densities (g.disclination
and dislocation densities) in g.disclination theory. Finally, in Section 8 we derive the Burgers vector
for a g.disclination dipole.

2



2 A brief review of prior work

In this section we briefly review some of the vast literature on the mathematical modeling of
disclinations and grain boundaries. An exhaustive review of the subject is beyond the scope of this
paper.

The definition of the dislocation and the disclination in solids2 was first introduced by Volterra
(as described by Nabarro [Nab87]). Nabarro [Nab87] studied geometrical aspects of disclinations
and Li [Li72] presented microscopic interpretations of a grain boundary in terms of a dislocation and
a disclination model. The static fields of dislocations and disclinations along with applications have
been studied extensively within linear elasticity by DeWit [DeW69, DeW71, DeW73b, DeW72], as
well as in 2-d nonlinear elasticity by Zubov [Zub97] and the school of study led by Romanov [RK09].
In [RK09], the elastic fields and energies of the disclination are reviewed and the disclination concept
is applied to explaining several observed microstructures in crystalline materials. In [RV92], the
expression for the Burgers vector for a single-line, two-rotation-axes disclination dipole appropriate
for geometrically linear kinematics is motivated from a physical perspective without dealing with
questions of invariance of the physical argument w.r.t different cut-surfaces or the topological nature
of the displacement jump of a disclination-dipole in contrast to that of a single disclination.

In Fressengeas et al. [FTC11], the elasto-plastic theory of dislocation fields [Ach01] is non-
trivially extended to formulate and study time-dependent problems of defect dynamics including
both disclination and dislocation fields. Nonlinear elasticity of disclinations and dislocations in
2-d elastic bodies is discussed in [Zub97, DZ11]. Dislocations and disclinations are studied within
Riemannian geometry in [KMS15]; Cartan’s geometric method to study Riemannian geometry
is deployed in [YG12] to determine the nonlinear residual stress for 2-d disclination distributions.
Similar ideas are also reviewed in [CMB06], in a different degree of mathematical detail and without
any explicit calculations, in an effort to develop a time-dependent model of mesoscale plasticity
based on disclination-dislocation concepts. Another interesting recent work along these lines is
the one in [RG17] that discusses ‘metrical disclinations’ (among other things) that are related to
our g.disclinations. The concerns of classical, nonlinear disclination theory related to defining the
strength of a single disclination in a practically applicable manner, and therefore studying the
mechanics of interactions of collections of individual such defects, remains in this theory and the
authors promote the viewpoint of avoiding any type of curvature line-defects altogether.

From the materials science perspective, extensive studies have been conducted on grain bound-
ary structure, kinetics, and mechanics from the atomistic [SV83a, SV83b] as well as from more
macroscopic points of view [Mul56, CMS06, Cah82]. In [KRR06, SElDRR04, Roh10, Roh11], the
grain boundary character distribution is studied from the point of view of grain boundary mi-
crostructure evolution. In [KLT06, EES+09], a widely used framework for grain boundary network
evolution, which involves the variation of the boundary energy density based on misorientation, is
proposed. In most cases, these approaches do not establish an explicit connection with the stress
and elastic deformation fields caused by the grain boundary [HHM01]. Phase boundary mechanics
considering effects of stress is considered in [PL13, AD15], strictly within the confines of compatible
elastic deformations.

One approach to study a low angle grain boundary is to model it as a series of dislocations
along the boundary [RS50, SV83a, SV83b]. In [DXS13], a systematic numerical study is conducted
of the structure and energy of low angle twist boundaries based on a generalized Peierls-Nabarro
model. The dislocation model has also been applied to study grain boundaries with disconnections
[HP96, HH98, HPL06, HPL07, HPH09, HP11, HPH+13]. In these work, disconnections are modeled

2There is a difference in meaning between disclinations in solids and in nematic liquid crystals as explained in
[RK09, KF08, PAD15].
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as dislocations at a step and the grain boundaries are represented as a series of coherency disloca-
tions. Long-range stress fields for disconnections in tilt walls are discussed from both the discrete
dislocations and the disclination dipole perspectives in [AZH08]. In [VD13, VAKD14, VD15] a com-
bination of the Frank-Bilby equation [Fra50, Fra53, BBS55, SB95, BB56] and anisotropic elasticity
theory is employed to formulate a computational method for describing interface dislocations. In
[DSSS98] atomic-level mechanisms of dislocation nucleation is examined by dynamic simulations of
the growth of misfitting films.

Although low angle grain boundaries can be modeled by dislocations, the dislocation model
is no longer satisfactory for describing high-angle boundaries because the larger misorientations
require introducing more dislocations along the boundary interface which shortens the distance
between dislocations [BAC05]. Thus, it is difficult to identify the Burgers vectors of grain boundary
dislocations in high angle grain boundaries. Alternatively, a grain boundary can also be modeled
as an array of disclination dipoles [RK09, NSB00]. In [FTC14], the crossover between the atomistic
description and the continuous representation is demonstrated for a tilt grain boundary by designing
a specific array of disclination dipoles. Unlike the dislocation model for a grain boundary, the
disclination model is applicable to the modeling of both low and high angle grain boundaries.

3 Notation and terminology

The condition that a is defined to be b is indicated by the statement a := b. The Einstein summation
convention is implied unless otherwise specified. Ab is denoted as the action of a tensor A on a
vector b, producing a vector. A · represents the inner product of two vectors; the symbol AD
represents tensor multiplication of the second-order tensors A and D. A third-order tensor is
treated as a linear transformation on vectors to a second-order tensors.

We employ rectangular Cartesian coordinates and components in this paper; all tensor and
vector components are written with respect to a rectangular Cartesian basis (ei), i=1 to 3. The
symbol div represents the divergence, grad represents the gradient on the body (assumed to be a
domain in ambient space). In component form,

(A× v)im = emjkAijvk

(B × v)irm = emjkBirjvk

(divA)i = Aij,j

(divB)ij = Bijk,k

(curlA)im = emjkAik,j

(curlB)irm = emjkBirk,j ,

where emjk is a component of the alternating tensor X.
F e is the elastic distortion tensor; W := (F e)−1 is the inverse-elastic 1-distortion tensor; S is

the eigenwall tensor (3rd-order); Y is the inverse-elastic 2-distortion tensor (3rd-order); α is the
dislocation density tensor (2nd-order) and Π is the generalized disclination density tensor (3rd-
order). The physical and mathematical meanings of these symbols will be discussed subsequently
in Section 6.

In dealing with questions related to the Weingarten-gd theorem, we will often have to talk
about a vector field y which will generically define an inverse elastic deformation from the current
deformed configuration of the body.
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(a) A compatible/coherent phase bound-
ary, where all atomic planes from either
side match along the interface.

(b) An incompatible/incoherent phase
boundary. There are some mismatches of
the atomic planes along the interfaces.

Figure 1: Illustration of a compatible/coherent and an incompatible/incoherent phase boundary.

4 Basic ideas for the description of g.disclinations, dislocations,
and grain boundaries

In this section we will discuss various aspects of modeling g.disclinations and their relationship to
dislocations, mostly from a physical perspective and through examples. Beginning from a geometric
visualization of single disclinations, we will motivate the physical interpretation of such in lattice
structures. The formation and movement of a disclination dipole through a lattice will be motivated.
Descriptions of a dislocation in terms of a disclination dipole will be discussed. Finally, we will
demonstrate how the description of a low-angle boundary in terms of disclination dipoles may be
understood as a dislocated grain-boundary in a qualitative manner.

In many situations in solid mechanics it is necessary to consider a 2-D surface where a distortion
measure is discontinuous. In elasticity a distortion corresponds to the deformation gradient; in
linear elasticity the distortion will be gradu, where u is the displacement. However, there are
many cases where the distortion field cannot be interpreted as a gradient of a vector field on the
whole body. In such cases, the distortion will have an incompatible part that is not curl-free.
One familiar situation is to consider the presence of dislocations modeled by the elastic theory of
dislocations [Krö81, Wil67]. A 2-d surface of discontinuity of the elastic distortion is referred to
as a phase boundary, of which the grain boundary is a particular case. Based on whether atomic
planes from either side of the interface can match with each other at the interface or not, a phase
boundary is categorized into a compatible/coherent or an incompatible/incoherent boundary, as
shown in Figure 1. A special compatible phase boundary is called a twin boundary with a highly
symmetrical interface, where one crystal is the mirror image of the other, also obtained by a
combination of shearing and rotation of one side of the interface with respect to the other. A grain
boundary is an interface between two grains with different orientations. The orientation difference
between the two grains comprising a grain boundary is called the misorientation at the interface,
and it is conventional to categorize grain boundaries based on the misorientation angle. Low angle
grain boundaries (LAGBs) are defined as those whose misorientations are less than 11 degrees and
high angle grain boundaries (HAGBs) are those with greater misorientations. In the situation that
the phase boundary discontinuity shows gradients along the surface, we will consider the presence of
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Figure 2: Descriptions of Volterra dislocations and disclinations . Figure (a) is a cylinder with an
inner hole along the axis. Figure (b) and (c) are the edge dislocations. Figure (d) is the screw
dislocation. Figure (e) and (f) are twist disclinations and Figure (g) is the wedge disclination.
(Figure reprinted from [Nab87] with permission from Dover Publications).

line defects. Following [AF12, AF15], the terminating tip-curves of phase boundary discontinuities
are called generalized disclinations or g.disclinations.

The classical singular solutions for defect fields contain interesting subtleties. For instance, the
normal strain e11 in dimension two for a straight dislocation and of a straight disclination in linear
elasticity are [DeW71, DeW73b]:

Straight Dislocation

e11 = − b1
4π (1− ν)

[(1− 2ν)
x2
ρ2

+ 2
x21x2
ρ4

] +
b2

4π (1− ν)
[(1− 2ν)

x1
ρ2
− 2

x1x
2
2

ρ4
],

Straight Disclination

e11 =
Ω3

4π(1− ν)
[(1− 2ν) ln ρ+

x22
ρ2

].

The strain fields blow up in both the dislocation and the disclination cases. In addition, on ap-
proaching the core (i.e. the coordinate origin in the above expressions) in dislocation solutions, the
elastic strain blows up as 1

ρ , ρ being the distance from the dislocation core. Thus the linear elastic

energy density diverges as 1
ρ2

, causing unbounded total energy for a finite body for the dislocation
whereas the total energy of a disclination is bounded. The disclination, however, has more energy
stored in the far-field (w.r.t the core) than the dislocation, and this is believed to be the reason for
a single disclination being rarely observed as opposed to a dislocation. Our modeling philosophy
and approach enables defects to be represented as non-singular defect lines and surfaces, always
with bounded total energy (and even local stress fields).

4.1 Disclinations

Volterra [Nab85] described dislocations and disclinations by considering a cylinder with a small
inner hole along the axis, as shown in Figure 2 (the hole is exaggerated in the figure). Figure
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(a) (b) 

Figure 3: A planar illustration for wedge disclinations. Figure (a) is a negative wedge disclina-
tion, where a wedge is inserted into a vertical cut causing compressive circumferential stress after
‘welding’ the wedge to the body. Figure (b) is a positive wedge disclination, where the wedge is
taken out of the original structure and the exposed faces welded together. ω is the wedge angle as
well as the magnitude of the Frank vector. (Figure reproduced from [Naz13] with permission from
publisher of article under an open-access Creative Commons license).

2(e)(f)(g) show configurations of disclinations. Imagine cutting the cylinder with a half plane,
rotating the cut surfaces by a vector ω, welding the cut surfaces together and relaxing (i.e. letting
the body attain force equilibrium). Then a rotation discontinuity occurs on the cut surface and
the vector ω is called the Frank vector. If the Frank vector is parallel to the cylinder’s axis, the
disclination is called a wedge disclination; if the Frank vector is normal to the cylinder’s axis, the
line defect is called a twist disclination. In the following, we will mostly focus on wedge disclinations.

A wedge disclination can be visualized easily [Naz13], as shown in Figure 3. By taking away
or inserting a wedge of an angle ω, a positive or negative wedge disclination is formed. In Figure
3(a) is a negative wedge disclination and (b) is a positive wedge disclination in a cylindrical body.
After eliminating the overlap/gap-wedge and welding and letting the body relax, the body is in a
state of internal stress corresponding to that of the wedge disclination (of corresponding sign).

In this work, we introduce a description for the disclination configuration based on the elastic
distortion field, as shown in Figure 4. In Figure 4, red lines represent one elastic distortion field
(possibly represented by the Identity tensor); black lines represent another distortion field. Thus,
there is a surface of discontinuity between these two distortion fields and a terminating line (which is
a point on the 2-d plane) on the interface is called a disclination. Also, there is a gap-wedge between
the red part and the black part as shown in Figure 4(a), indicating it as a positive disclination;
an overlap-wedge in Figure 4(b) corresponds to a negative disclination. Since a gap-wedge is
eliminated for a positive disclination, there is circumferential tension around the core. Similarly,
there is circumferential compression around the core for the negative disclination because of the
inserted wedge. These physical arguments allow the inference of some features of the internal state
of stress around disclination defects without further calculation.

A disclination loop is formed if an inclusion of a crystal with one orientation, and in the shape of
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The gap-wedge 

Positive disclination 

(a) A positive wedge disclination with a gap-wedge
between two orientations. The red dot is the posi-
tive wedge disclination core where the interface of the
orientation-discontinuity terminates.

The overlap-wedge 

Negative disclination 

(b) A negative wedge disclination with an overlap-
wedge between two orientations. The green dot is the
negative wedge disclination core where the interface of
the orientation-discontinuity terminates.

Figure 4: An elastic distortion based description of wedge disclinations.

Figure 5: A 3D description for a disclination loop in an infinite block. ABCD is the disclination
loop in a parallelepiped. Wedge disclinations exist along AB and CD while twist disclinations exist
along AD and BC.
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a parallelepiped with infinite length, is inserted in another infinite crystal of a different orientation,
as shown in Figure 5. Focusing on the bottom surface of the parallelepiped, we consider the ‘exterior’
crystal as having one set of atomic planes parallel to the y− z plane bounded by unbounded black
rectangles in Figure 5. The interior crystal has one set of planes at an angle of α to the y−z plane.
The line of intersection AB represents a termination of a gap-wedge formed by the red plane of
the interior crystal and the plane ABFE of the exterior crystal. Because the misorientation vector
is directed along line AB (z axis), the latter serves as a wedge disclination. Similarly, there is a
wedge disclination along intersection line CD of opposite sign to AB. For intersection lines BC
and DA, the misorientation vector is perpendicular to the direction of intersection lines and twist
disclinations of opposite signs are formed along BC and DA. The curve ABCD forms a disclination
loop in the body (on elimination of the gap and overlap wedges).

4.2 Disclination dipole formation and movement in a lattice

Due to the addition and subtraction of matter over large distances involved in the definition of a
disclination in the interior of a body, it is intuitively clear that a single disclination should cause
long-range elastic stresses, which can also be seen from the analytical solution given in Section 2.
Thus, a disclination rarely exists alone. Instead, usually, disclinations appear in pairs in the form
of dipoles, namely a pair(s) of disclinations with opposite signs. Figure 6 shows a schematic of how
a disclination dipole can form in a hexagonally coordinated structure. Figure 6(a) is the original
structure with a hexagonal lattice; Figure 6(b) shows how bonds can be broken and rebuilt to
transform a hexagon pair to a pentagon-heptagon pair in a topological sense (this may be thought
of as a situation before relaxation); Figure 6(c) presents the relaxed configuration with a disclination
dipole (the penta-hepta pair) after the transformation.

In a stress-free hexagonal lattice, removing an edge of a regular hexagon to form a pentagon
can be associated with forming a positive wedge disclination at the center of the regular polygon
(due to the tensile stress created in the circumferential direction); similarly, adding an edge to form
a heptagon may be considered the equivalent of forming a negative wedge disclination. Hence, a
heptagon-pentagon pair in a nominally hexagonal lattice is associated with a disclination dipole. It
should be clear by the same logic that in a lattice with regular n-sided repeat units, an (n−1)−(n+1)
polygon pair may be viewed as a disclination dipole.

Figure 7 shows how a disclination dipole moves by local crystal rearrangement under some
external force. Figure 7(a) shows the configuration for a hexagonal lattice with a disclination
dipole; then some atomic bonds nearby are broken and rebuilt in Figure 7(b); Figure 7(c) shows
the relaxed configuration, where the disclination dipole has moved the right. The movement of a
disclination dipole is a local rearrangement instead of a global rearrangement required to move a
single disclination.

4.3 Descriptions of a dislocation by a (g.)disclination dipole

In this section we consider two physically distinct constructions that motivate why a straight edge
dislocation may be thought of as being closely related to a (g.)disclination dipole. Figure 8(a) is a
perfect crystal structure. Black lines represent atomic planes and red lines are the atomic bonds
between two horizontal atomic planes. We apply a shear on the top and the bottom of this body
along the blue arrows shown in Figure 8(a). After shearing, an extra half plane is introduced in the
bottom part, as shown in Figure 8(b). This dislocation can as well be interpreted as a disclination
dipole; a positive disclination (the red dot in Figure 8(c)) exists in the top part and a negative
disclination (the green dot in Figure 8(c)) exists in the bottom part. Figure 8(d) shows a zoomed-
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(a) Structure of a hexagonal lattice. (b) Break and rebuild atomic bonds to form a
disclination dipole (pentagon-heptagon pair).

(c) Relaxed configuration with a disclination
dipole.

Figure 6: Kinematics of formation of a disclination-dipole in a hexagonal lattice. Figures con-
structed with Chemdoodle[che].
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(a) Structure of a hexagonal lattice with a discli-
nation dipole.

(b) Break and rebuild atomic bonds to move a
disclination dipole.

(c) Relaxed configuration with disclination
dipole having moved through the material to the
right.

Figure 7: Kinematics of motion of a disclination dipole. Figures constructed with Chemdoodle[che].
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1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

(a) A perfect crystal structure, where
the black lines represent atomic
planes.

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

(b) Half-planes of atoms (1 − 7) in
the top-block change topological con-
nections to their counterparts in the
bottom block on shearing, resulting
in the appearance of an ‘extra’ half-
plane in the bottom block. No ex-
tra atoms are introduced in the struc-
ture.

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

(c) Interpretation of defected struc-
ture as a disclination dipole. The red
and green dots represent positive and
negative wedge disclinations, respec-
tively.

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

(d) Disclination dipole in (c) viewed
at a larger length scale (weaker res-
olution). The disclination dipole ap-
pears as an edge dislocation.

Figure 8: Interpretation of a wedge disclination dipole as an edge dislocation.
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out macroscopic view of the final configuration with an extra half-plane (of course obtained by a
process where no new atoms have been introduced). Thus, a dislocation can be represented as a
disclination dipole with very small separation distance. The Burgers vector of the dislocation is
determined by the misorientation of the disclinations as well as the interval distance, as discussed
in detail in Section 8. The upper disclination has a gap-wedge, namely a positive disclination, while
the lower disclination has an overlap-wedge which is a negative disclination. Thus, the upper part is
under tension and the bottom part under compression, consistent with the dislocation description
with an ‘extra’ half-plane in the bottom part. Our rendition here is a way of understanding how a
two-line, two-rotation axes disclination dipole [RK09] results in an edge dislocation in the limit of
the distance between the two planes vanishing.

Another way in which a dislocation can be associated with a disclination dipole is one that
is related to the description of incoherent grain boundaries. Figure 9(a) is an incompatible grain
boundary represented by orientation fields, where black and red lines represent two different ori-
entations. In Figure 9(b), the grain boundary interface is cut in two parts and the cut points are
treated as a disclination dipole; the red dot is the positive disclination and the green dot is the
negative disclination. In contrast to the description in Fig. 8, here the discontinuity surfaces being
terminated by the disclinations are coplanar. In Figure 9(b), the disclination on the left is of nega-
tive strength while the disclination on the right is positive. It is to be physically expected that the
disclination on the left of the dipole produces a compressive stress field in the region to the left of
the dipole. Similarly, the disclination on the right of the pair should produce a tensile stress field to
the right of the dipole. Figure 9(c) is the stress field for the grain boundary in Figure 9(a) modeled
by a single disclination dipole through a numerical approximation of a theory to be described in
Section 6. Indeed, the calculation bears out the physical expectation - the blue part represents a
region with compressive stress and the red part a region with tensile stress. The stress field may
be associated with that of an edge dislocation with Burgers vector in the vertical direction with an
extra half plane of atoms in the right-half plane of the figure. This description of a dislocation by
a disclination dipole is a way of understanding a single-line, two-rotation-axes dipole [RK09].

4.4 Grain boundaries via (g.)disclinations

We have already seen in the last section that a disclination-dipole model can be relevant to modeling
the geometry and mechanics of grain boundaries. Figure 10 motivates how disclination dipoles
arise naturally in the idealized description of a grain boundary from a microscopic view. In Figure
10(a), there are two grains with different orientations. After putting these two grains together and
connecting the adjacent atomic bonds, we form a grain boundary, as shown in Figure 10(b). There
exists a series of disclination dipoles along the boundary, as shown in Figure 10(b) where a blue
pentagon is a negative disclination while a red triangle is a positive disclination.

In some cases, grain boundaries involve other types of defects beyond disclination dipoles, such
as dislocations. Figure 11 is an example of a vicinal crystal interface [BAC05], which consists of
a combination of dislocations and disclinations along the interface. In Figure 11(a) a high-angle
tilt boundary with a tilt of 53.1◦ is viewed along the < 100 > tilt axis. If we slightly increase
the tilt angle while keeping the topology of bond connections near the boundary fixed, high elastic
deformations are generated, as shown in the Figure 11(b). Instead, an array of dislocations is often
observed along the boundary as shown in the configuration Figure 11(c), presumably to eliminate
long-range elastic deformations. In [ZAP16], we calculate the elastic fields of such boundaries
utilizing both g.disclinations and dislocations.
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(a) A defected grain boundary. (b) A disclination dipole representing one defect
of the grain boundary.

(c) Stress σyy around a single defect in the grain
boundary, calculated from the (g.)disclination
dipole model.

Figure 9: The disclination dipole description of a defect in the grain boundary.

(a) Two grains with different crystal structures. (b) Bi-crystal after merging two grains to-
gether.

Figure 10: Schematic of forming a series of disclination dipoles in a grain boundary. The red triangle
is a positive disclination while the blue pentagon is a negative disclination. The pentagon-triangle
disclination dipoles (in a 4-coordinated medium) exist along the interface.
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Figure 11: (a) A common tilt grain boundary with 53.1 degree misorientation. (b) The configuration
after applying additional tilt angle without any rearrangement. (c) The configuration with some
dislocations introduced along the interface to eliminate far field deformation. (Figures reproduced
from [BAC05] with permission from John Wiley and Sons).

4.4.1 Relationship between the disclination and dislocation models of a low-angle
grain boundary

Normally, a grain boundary is modeled by an array of dislocations. As discussed in Section 2, a
dislocation model cannot deal with a high-angle grain boundary. An alternative is to interpret the
grain boundary through a disclination model as we discussed above. In this section, the relation
between the disclination and dislocation models for a low-angle grain boundary is explained.

Consider a defect-free crystal as shown in Figure 12(a). First, we horizontally cut the material
into four parts, as shown in the upper configuration in Figure 12(b). Now, for every part, we cut
the material along its center surface (the dashed line in Figure 12(b)), insert one atom at the top
and take away one atom from the bottom, weld the two half parts together again and relax the
material. Then the configuration for every part will become the configuration at the bottom in
Figure 12(b). By inserting and taking away atoms, we generate a negative disclination at the top
and a positive disclination at the bottom. Repeating the same procedure for the remaining three
parts, we finally obtain four parts with configurations as in Figure 12(c). The blue pentagons are
negative disclinations while the red triangles are positive disclinations; a pair of a blue pentagon and
an adjacent red triangle forms a disclination dipole. Next, we weld back these four parts and relax
the whole material. Finally, a crystal configuration as in Figure 12(d) is generated, which is a grain
boundary with the boundary interface shown as the blue dashed line. Along the grain boundary,
dislocations exist along the interface with extra atomic planes shown as red lines in Figure 12(d).
When the pentagon-triangle (5-3) disclination dipole is brought together to form a dislocation, the
pentagon-triangle structure actually disintegrates and becomes a pentagon-square-square (5-4-4)
object. Thus, a grain boundary can be constructed from a series of disclination dipoles; at the
same time, we can see dislocation structures at the grain boundary interface. It is as if the 5-3
disclination dipole structure fades into the dislocation structure on coalescing the two disclinations
in a dipole.

A comparison between the dislocation model and the disclination model has also been discussed
in [Li72] where the possibility of modeling a dislocation by a disclination dipole is proposed within
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(a) The perfect crystal
configuration.

(b) Cut the material into four
parts; introduce a positive
disclination at the top and
a negative disclination at the
bottom.

(c) Repeat the same pro-
cedure for all four parts.

(d) Weld four parts to-
gether and form a grain
boundary whose interface
is shown as the dotted blue
line.

Figure 12: Schematic of how disclination dipoles may fade into dislocations along a grain boundary.

16



the context of the theory of linear elasticity. In this paper, we have elucidated the physical picture
of forming a dislocation from a disclination dipole and, in subsequent sections, we also derive the
general relationship between the Burgers vector of a dislocation and the disclination dipole for both
the small and finite deformation cases, capitalizing crucially on a g.disclination formulation of a
disclination dipole.

5 The Burgers vector of a disclination dipole in linear elasticity

We derive a formula for the Burgers vector of a wedge disclination dipole utilizing the linear theory
of plane isotropic elasticity. Consider a positive disclination located at the origin O, as shown in
Figure 13(a). We denote the stress at point c of a single disclination located at a with Frank vector
Ω as σ(c;a,Ω). Thus, the stress field at r in Figure 13(a) is σ(r; 0,Ω). Next we consider the
field point r + δr marked by the green point as in Figure 13(b), with the disclination kept at the
origin O. The stress tensor at this point is given by σ(r + δr; 0,Ω).

Instead of moving the field point in Figure 13(b), we next consider the field point as fixed at
r with the disclination moved from 0 to −δr as shown in Figure 13(c). The value of the stress
at r now is σ(r;−δr,Ω). Utilizing the results in [DeW73a], the stress of a disclination, of fixed
strength Ω and located at a = a1e1 +a2e2 +a3e3, at the field point c = c1e1 + c2e2 + c3e3 is given
by

σ11(c;a,Ω) =− GΩ1(c3 − a3)
2π(1− ν)

[
c1 − a1
ρ2

− 2
(c1 − a1)(c2 − a2)2

ρ4

]

− GΩ2(c3 − a3)
2π(1− ν)

[
c2 − a2
ρ2

+ 2
(c1 − a1)2(c2 − a2)

ρ4

]

+
GΩ3

2π(1− ν)

[
ln ρ+

(c2 − a2)2
ρ2

+
ν

1− 2ν

]

σ22(c;a,Ω) =− GΩ2(c3 − a3)
2π(1− ν)

[
c1 − a1
ρ2

+ 2
(c1 − a1)(c2 − a2)2

ρ4

]

− GΩ2(c3 − a3)
2π(1− ν)

[
c2 − a2
ρ2

− 2
(c1 − a1)2(c2 − a2)

ρ4

]

+
GΩ3

2π(1− ν)

[
ln ρ+

(c1 − a1)2
ρ2

+
ν

1− 2ν

]

σ33(c;a,Ω) =− Gν(c3 − a3)
π(1− ν)ρ2

(Ω1(c1 − a1) +Ω2(c2 − a2)) +
GΩ3

2π(1− ν)

[
2ν ln ρ+

ν

1− 2ν

]

σ12(c;a,Ω) =
GΩ1(c3 − a3)

2π(1− ν)

[
c2 − a2
ρ2

− 2
(c1 − a1)2(c2 − a2)

ρ4

]

+
GΩ2(c3 − a3)

2π(1− ν)

[
c1 − a1
ρ2

− 2
(c1 − a1)2(c2 − a2)

ρ4

]
− GΩ3(c1 − a1)(c2 − a2)

2π(1− ν)ρ2

σ23(c;a,Ω) =
GΩ1(c1 − a1)(c2 − a2)

2π(1− ν)ρ2
− GΩ2

2π(1− ν)

[
(1− 2ν) ln ρ+

(c1 − a1)2
ρ2

]

σ13(c;a,Ω) =− GΩ1

2π(1− ν)

[
(1− 2ν) ln ρ+

(c2 − a2)2
ρ2

]
+
GΩ2(c1 − a1)(c2 − a2)

2π(1− ν)ρ2
,

(1)

where ρ is the distance between the field point c and the source point a, ρ = |c−a|. Equation (1)
shows that the stress fields only depend on the relative location of the field and disclination source
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points. In other words, given a disclination at a with Frank vector Ω, the stress field at point c
can be expressed as

σ(c;a,Ω) = f(c− a;Ω),

where f is the formula for the stress field of the wedge disclination in linear isotropic elasticity
whose explicit expression in Cartesian coordinates is given in (1). From (1), we have

f(x;Ω) = −f(x;−Ω), (2)

for any given x. Thus, for the stress fields, we have

σ(c;a,Ω) = −σ(c;a,−Ω).

Hence, the stress field in Figure 13(a) can be written as

σ(r; 0,Ω) = f(r;Ω).

The stress field corresponding to Figure 13(b) is

σ(r + δr; 0,Ω) = f(r + δr;Ω).

Also, the stress field in Figure 13(c) is

σ(r;−δr,Ω) = f(r − (−δr);Ω) = f(r + δr;Ω).

In Figure 13(d), a disclination dipole is introduced. A negative disclination with Frank vector
−Ω is at 0 and the positive disclination with Frank vector Ω is at −δr. Thus, δr is the separation
vector of the dipole, pointing from the positive disclination to the negative disclination and we
are interested in calculating the stress at r, represented as the red dot. Let the stress field for the
disclination configuration in Figure 13(d) be denoted as σ̂. Due to superposition in linear elasticity,
the stress field of Figure 13(d) can be written as

σ̂(r; δr,Ω) := σ(r;−δr,Ω) + σ(r; 0,−Ω)

⇒ σ̂(r; δr,Ω) = f(r + δr;Ω) + f(r;−Ω).

On applying (2), we have

σ̂(r; δr,Ω) = f(r + δr;Ω)− f(r;Ω)

⇒ σ̂(r; δr,Ω) = σ(r + δr; 0,Ω)− σ(r; 0,Ω). (3)

Therefore, we have shown that the stress field in Figure 13(d) equals the difference between the
stress fields in Figure 13(b) and the one in Figure 13(a).

Specializing to the plane case with r = x1e1 + x2e2, the stress field corresponding to Figure
13(a) , given the Frank vector Ω = Ω3e3, is

σ11(r; 0,Ω) = f11(x1, x2;Ω3) =
GΩ3

2π(1− ν)

[
ln r +

x22
r2

+
ν

1− 2ν

]

σ22(r; 0,Ω) = f22(x1, x2;Ω3) =
GΩ3

2π(1− ν)

[
ln r +

x21
r2

+
ν

1− 2ν

]

σ12(r; 0,Ω) = f12(x1, x2;Ω3) = − GΩ3x1x2
2π(1− ν)r2

,
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+ 
O 

x1 

x2 

r 

(a) A positive disclination located at the coordinate
origin with a field point located at r.

+ 
O 

x1 

x2 

r 

δr 

(b) Move the field point to r + δr.

+ 

O 

x1 

x2 

r 

-δr 

(c) The configuration with disclination source moved
to −δr.

+ 

O 

x1 

x2 

r 

|δr| 

- 

(d) Place a disclination dipole with the separation vec-
tor δr and keep the field point at r.

Figure 13: Schematic in support of calculation of stress field of a wedge-disclination dipole in linear,
plane, isotropic elasticity.
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where r is the norm of r, G is the shear modulus and ν is the Poisson ratio. Assuming

δr := δx1e1 + δx2e2 (4)

to be small, the Taylor expansion of σ(r + δr; 0,Ω) is

σ(r + δr; 0,Ω) = f(r;Ω) +
∂f(r;Ω)

∂r
δr +O(δr2).

After substituting r = x1e1 + x2e2 and δr = δx1e1 + δx2e2, we have

σ11(r + δr; 0,Ω) = f11(x1, x2;Ω3) +
∂f11(x1, x2;Ω3)

∂x1
δx1 +

∂f11(x1, x2;Ω3)

∂x2
δx2 +O(δr2)

σ22(r + δr; 0,Ω) = f22(x1, x2;Ω3) +
∂f22(x1, x2;Ω3)

∂x1
δx1 +

∂f22(x1, x2;Ω3)

∂x2
δx2 +O(δr2)

σ12(r + δr; 0,Ω) = f12(x1, x2;Ω3) +
∂f12(x1, x2;Ω3)

∂x1
δx1 +

∂f12(x1, x2;Ω3)

∂x2
δx2 +O(δr2).;

After substituting σ(r; 0,Ω) and σ(r+ δr; 0,Ω) into (3) and omitting the higher order terms, we
get

σ̂11(x1, x2; δx1, δx2, Ω3) =
GΩ3δx2

2π(1− ν)

[
x2
r2

+ 2
x21x2
r4

]
+

GΩ3δx1
2π(1− ν)

[
x1
r2
− 2

x1x
2
2

r4

]

σ̂22(x1, x2; δx1, δx2, Ω3) =
GΩ3δx2

2π(1− ν)

[
x2
r2
− 2

x21x2
r4

]
+

GΩ3δx1
2π(1− ν)

[
x1
r2

+ 2
x1x

2
2

r4

]

σ̂12(x1, x2; δx1, δx2, Ω3) = − GΩ3δx2
2π(1− ν)

[
x2
r2
− 2

x1x
2
2

r4

]
− GΩ3δx1

2π(1− ν)

[
x2
r2
− 2

x21x2
r4

]
.

(5)

The stress field of the single edge dislocation in 2-D, isotropic elasticity is [DeW73b]

σb11(x1, x2; b1, b2) = − Gb1
2π(1− ν)

[
x2
r2

+ 2
x21x2
r4

]
+

Gb2
2π(1− ν)

[
x1
r2
− 2

x1x
2
2

r4

]

σb22(x1, x2; b1, b2) = − Gb1
2π(1− ν)

[
x2
r2
− 2

x21x2
r4

]
+

Gb2
2π(1− ν)

[
x1
r2

+ 2
x1x

2
2

r4

]

σb12(x1, x2; b1, b2) =
Gb1

2π(1− ν)

[
x2
r2
− 2

x1x
2
2

r4

]
− Gb2

2π(1− ν)

[
x2
r2
− 2

x21x2
r4

]
.

(6)

On defining the Burgers vector of a disclination dipole with separation vector δr (4) and strength
Ω as

b := −Ω3δr2e1 +Ω3δr1e2 = Ω × δr, (7)

we see that the stress field of the disclination dipole (5) exactly matches that of the single edge
dislocation (6).

This establishes the correspondence between the Burgers vector of the wedge disclination dipole
and the edge dislocation in 2-d, isotropic, plane, linear elasticity. In Section 8 we establish the
general form of this geometric relationship in the context of exact kinematics, valid for any type of
material (i.e. without reference to material response).
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Layer 

Generalized 

disclination core

Figure 14: Physical regularization of classical terminating discontinuity. Treat the distortion dis-
continuity as the eigenwall field S with support in a layer.

6 Generalized disclination theory and associatedWeingarten’s the-
orem

The connection between g.disclinations (and dislocations) represented as fields and their more
classical representation following Weingarten’s pioneering work is established in Sections 7 and 8.
In this Section we briefly review the defect kinematics of g.disclination theory and a corresponding
Weingarten-gd theorem developed in [AF15] that are necessary prerequisites for the arguments in
the aforementioned sections. We also develop a new result in Section 6.2 related to the Weingarten-
gd theorem, proving that the inverse deformation jump across the cut-surface is independent of the
surface when the g.disclination density vanishes.

As defined in Section 2, a single g.disclination is a line defect terminating a distortion discon-
tinuity. Developed as a generalization of eigendeformation theory of Kroner, Mura and deWit,
the generalized disclination has a core and the discontinuity is modeled by an eigenwall field with
support in a layer [AF15], as shown in Figure 14. The representation of a discrete g.disclination
involves a continuous elastic 2-distortion field Y , assumed to be irrotational outside the generalized
disclination core (Y = grad grad

(
x−1

)
in the case without defects, where x is the deformation

map). The strength of the discrete generalized disclination is given by the second order tensor ob-
tained by integrating the 2-distortion field along any closed curve encircling the core; when defined
from a terminating distortion discontinuity, it is simply the difference of the two distortions involved
in defining the discontinuity. One way of setting up the generalized disclination density tensor field,
which is a third order tensor, is to assign the tensor product of the strength tensor and the core
line direction vector as a uniformly distributed field within the generalized disclination core, and
zero outside it. In the case of a disclination, the strength tensor is necessarily the difference of two
orthogonal tensors.

The fundamental kinematic decomposition of generalized disclination theory [AF15] is to write

Y = grad W + S, (8)

where W is the i-elastic 1-distortion (F−1 in the defect-free case, where F is the deformation
gradient) and S (3rd-order tensor) is the eigenwall field.
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With this decomposition of Y , it is natural to measure the generalized disclination density as

curl (Y − gradW ) = curlS =: Π. (9)

It characterizes the closure failure of integrating Y on closed contours in the body:

∫

a
Πnda =

∫

c
Y dx (10)

where a is any area patch with closed boundary contour c in the body. Physically, it is to be
interpreted as a density of lines (threading areas) in the current configuration, carrying a tensorial
attribute that reflects a jump in W .

The dislocation density is defined as [AF15]

α := Y : X = (S + gradW ) : X. (11)

In the case that there is no distortion discontinuity, namely S = 0, (11) becomes α = − curlW ,
since curlA = − gradA : X for any smooth tensor fieldA. The definition of the dislocation density
(11) is motivated by the displacement-jump formula (16) [AF15] corresponding to a single, isolated
defect line terminating an i-elastic distortion jump in the body. In this situation, the displacement
jump for an isolated defect line, measured by integrating W along any closed curve encircling the
defect core cylinder3, is no longer a topological object independent of the curve (in the class of
curves encircling the core) due to the fact that in the presence of a g.disclination density localized
in the core cylinder the field S cannot be localized in the core - it is, at the very least, supported in
a layer extending to the boundary from the core, or, when div S = 0, completely delocalized over
the entire domain.

Now we apply a Stokes-Helmholtz-like orthogonal decomposition of the field S into a compatible
part and an incompatible part:

S = S⊥ + grad Zs

curlS⊥ = Π

divS⊥ = 0

with S⊥n = 0 on the boundary.

(12)

It is clear that when Π = 0 then S⊥ = 0.
In summary, the governing equations for computing the elastic fields for static generalized

disclination theory (i.e. when the disclination and dislocation fields are specified) are

curlS = Π

S = S⊥ + grad Zs

divS⊥ = 0 with S⊥n = 0 on the boundary

α = (S + gradW ) : X,

(13)

where Π and α are specified from physical considerations. These equations are solved along
with balance of linear and angular momentum involving Cauchy stresses and couple-stresses (with

3In [AF15] a typographical error suggests that the displacement jump is obtained by integrating α on area patches;
α there should have been replaced by curl W .
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constitutive assumptions) to obtain g.disclination and dislocation stress and couple stress fields. In
the companion paper [ZAP16] we solve these equations along with

divT = 0

with T representing the Cauchy stress as a function of W , and we ignore couple stresses for
simplicity.

6.1 Review of Weingarten theorem associated with g.disclinations

In this section we provide an overview of the Weingarten-gd theorem for g.disclinations introduced
in [AF15]. Figure 15 shows cross-sections of three dimensional multi-connected bodies with toroidal
(Figure 15(a)) and through holes (Figure 15(d)). In both cases, the multi-connected body can be
transformed into a simply-connected one by introducing a cut-surface. For the toroidal case, putting
the cut-surface either from a curve on the external surface to a curve on the exterior surface of the
torus (Figure 15(b)) or putting the cut-surface with bounding curve along the interior surface of
the torus (Figure 15(c)) will make the multi-connected domain into a simply-connected domain.
Similarly, the body with the through-hole can be cut by a surface extending from a curve on the
external surface to the surface of the hole. Figures 15(b) and 15(e) result in topological spheres while
Fig. 15(c) results in a topological sphere with a contained interior cavity. In terms of g.disclination
theory, the holes are associated with the cores of the defect lines.

Given a continuously differentiable 3-order tensor field Ỹ on the multi-connected domain such
that Ỹ is symmetric in the last two indices and curl Ỹ = 0, the Weingarten-gd problem asks if
there exists a vector field y on the cut-induced simply-connected domain such that

grad grady = Ỹ ,

and a formula for the possible jump [[y]] of y across the cut-surface. Also, since Ỹ is curl-free and
continuously differentiable on the multi-connected domain, we can defined a field W̃ such that

grad W̃ = Ỹ

on the corresponding simply-connected domain.
In the following, we will assign a unit normal field to any cut-surface. For any point on the

cut-surface, say A, we will denote by A+ a point arbitrarily close to A from the region into which
the normal at A points and as A− a similar point from the region into which the negative normal
points. For any smooth function, say f , defined on the (multi)-connected domain, we will define

f+(A) := lim
A+→A

f(A+) and f−(A) := lim
A−→A

f(A−). (14)

Consider a closed contour in Fig. 16 in the multi-connected domain starting and ending at
A and passing through B as shown. In addition, also consider as the ‘inner’ and ‘outer’ closed
contours the closed curves that remain by ignoring the overlapping segments, the inner closed
contour passing through A and the outer through B. Then, because of the continuity of Ỹ and
its vanishing curl, the line integral of Ỹ on the inner and outer closed contours must be equal and
this statement holds for any closed contour enclosing the hole. The line integral of Ỹ on the closed
contour is defined as

∫

C
Ỹ dx =: ∆.
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(a) The cross-section of a multi-connected body
with a toroidal hole. The shaded gray area is
the ‘half-toroid’. The half-toroid is not shown in
Figures 15(b) and 15(c).

(b) The multi-connected body becomes
simply-connected after introducing the
cut-surface.

(c) Another method to introduce the cut sur-
face to make the multi-connected body simply-
connected.

(d) The cross-section of a multi-
connected body with a through hole.

(e) The cross-section of a simply-
connected body with a through hole
and a cut surface.

Figure 15: The cross-sections of multi-connected bodies with a toroidal hole or a through hole, and
their corresponding simply-connected bodies by introducing cut-surfaces.
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Figure 5: Contour for proving independence of ∆ on cut-surface. The contour need not be planar
and the points A and B need not be on the same cross-sectional plane of the body.

parts of the contour between points A and B are intended to be overlapping). In conjunction, also
consider as the ‘inner’ and ‘outer’ closed contours the closed curves that remain by ignoring the
overlapping segments, the inner closed contour passing through A and the outer through B. Then,
because of the continuity of Ỹ and its vanishing curl, the line integral of Ỹ on the inner and outer
closed contours must be equal and this must be true for any closed circuit that cannot be shrunk
to a point while staying within the domain. Let us denote this invariant over any such closed curve
C as ∫

C
Ỹ dx = ∆.

If we now introduce a cut-surface passing through A and construct the corresponding W̃ , say W̃1,
then the jump of W̃1 at A is given by

JW̃1K(A) =

∫

C(A−,A+)
grad W̃1 dx =

∫

C(A−,A+)
Ỹ dx = ∆,

where C(A−,A+) is the curve formed from the inner closed contour defined previously with the
point A taken out and with start-point A− and end-point A+. The last equality above is due to
the continuity of Ỹ on the original multiply-connected domain. Similarly, a different cut-surface
passing through B can be introduced and an associated W̃2 constructed with JW̃2K(B) = ∆. Since
A, B and the cut surfaces through them were chosen arbitrarily, it follows that the jump of any
of the functions JW̃ K across their corresponding cut-surface takes on the same value regardless of
the cut-surface invoked to render simply-connected the multiply-connected body.

On a cut-induced simply-connected domain, since W̃ exists and its curl vanishes (due to the

18

Figure 16: A contour enclosing the core on the cross-section of the multi-connected domain. The
contour passes through points A and B. (Figure reproduced from [AF15] with permission from
Springer).

Now, considering the cut-surface passing through A, if we construct the corresponding W̃ , say
W̃1, then the jump of W̃1 is given by

[[W̃1]](A) =

∫

C(A−,A+)

Ỹ dx = ∆,

where C(A−, A+) is the curve from the inner closed contour with the point A taken out and with
start-point A− and the end-point A+, as shown in Figure 16. Similarly, a different cut-surface
passing through another point B can be introduced and the corresponding W̃2 can be constructed
with [[W̃2]](B) = ∆. Since A, B and the cut surfaces are chosen arbitrarily, the jump of any of
the functions [[W̃ ]] across their corresponding cut-surface takes the same value, independent of the
invoked cut-surface and the point on the surface.

In addition, due to the symmetry in the last two indices of Ỹ , curl W̃ vanishes. Thus, a vector
field y can be defined, on the relevant cut-induced simply-connected domain associated with the
construction of W̃ , such that

grady = W̃ . (15)

Now choose a point x0 arbitrarily on the cut-surface. Let x be any other point on this cut-surface,
as shown in Figure 17.

Since

W̃− = (grady)−

W̃+ = (grady)+ ,
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Figure 17: Cross-section of a simply-connected domain induced by a cut-surface. The red path is
from x−0 to x− and the blue path is from x+

0 to x+.

then y at x across the cut-surface is

y+(x) = y+(x0) +

∫ x+

x+
0

W̃+(x′)dx′

y−(x) = y−(x0) +

∫ x−

x−0

W̃−(x′)dx′

(by working on paths from x
+/−
0 to x+/− and then taking limits as the paths approach the cut-

surface). Then the jump of y, [[y]] can be derived as

[[y]](x) = y+(x)− y−(x) = [[y]](x0) +

∫ x

x0

[[W̃ ]](x′)dx′.

Recall that [[W̃ ]](x′) = ∆, which is independent of the cut-surface and the point x′ on it.
Therefore,

[[y]](x) = [[y]](x0) +∆(x− x0). (16)

Furthermore, it can be shown that the jump at any point x on the cut-surface is independent of
the choice of the base point x0 (on the cut-surface).

In addition, consider the case where [[W̃ ]] = 0 - i.e. the defect line is a pure dislocation. Then
the Burgers vector is defined as

b(x) := [[y]](x),

and from Eqn 16, given an arbitrarily fixed cut-surface, we have

[[y]](x) = [[y]](x0) (17)
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Figure 18: Arbitrary path (shown on the cross-section) for construction of a continuous field W τ

on the simply-connected domain induced by a cut-surface τ when ∆ = 0.

where x and x0 are arbitrarily chosen points on the cut-surface. Thus, it has been shown that for
∆ = 0, the displacement jump is independent of location on a given cut-surface.

In the next Section 6.2, we furthermore show that the Burgers vector is independent of the
choice of the cut-surface as well when ∆ = 0 and α is localized in the core.

6.2 Cut-surface independence in the Weingarten-gd theorem for ∆ = 0

We now prove that the jump (17) across a cut-surface in the Weingarten-gd theorem is independent
of the choice of the surface when ∆ = 0.

By hypothesis, there is a continuous field Ỹ in the multi-connected body with curl Ỹ = 0 and
Ỹijk = Ỹikj . Also, after introducing an arbitrary cut-surface, as in Figure 15(e), we can construct
fields W̃ and ỹ such that grad(grad ỹ) = Ỹ and grad W̃ = Ỹ . Based on the Weingarten-gd
theorem, we have on this arbitrary chosen cut-surface

[[ỹ(x)]] = [[ỹ(x0)]] +∆(x− x0),

where ∆ =
∮
Ỹ dx. Since ∆ = 0, it is clear that

[[ỹ(x)]] = [[ỹ(x0)]].

The goal now is to prove that
[[ỹ(x)]] =: b

where the vector b is independent of the choice of the cut-surface and, hence, independent of x on
the cut-surface as well using results of Section 6.1.

Since the definition of W̃ depends on the cut-surface, given a simply-connected domain induced
by a cut-surface τ , we can express any such W̃ , say W τ , on the simply-connected domain as

W τ
ij(x,x

0, p) :=

∫ x

x0

p

Eijk dxk +W τ
ij(x

0) (18)

where p is a curve from x0 to x as shown in Figure 18, and E := Ỹ with the field Ỹ satisfying
the constraint

∮
Ỹ dx = ∆ = 0. Since the line integral of E on any closed loop is zero, W τ as

defined is independent of path on the original multi-connected domain and hence thinking of the
constructed W τ as a continuous function on it makes sense.
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A 
B 

Outer 

Inner 

Figure 19: A closed loop in the cross-section of a multi-connected domain to justify independence
of the Burgers vector from the circuit used to evaluate it for ∆ = 0.

Now with the constructed W τ , we can define the line integral

bτ,p :=

∮

p

W τdx

on a closed loop p enclosing the core.
We now show first that bτ,p is independent of the loop used to define it. Since grad W τ = E

from the definition (18) and E is symmetric in the last two indices by hypothesis,

Eijk = W τ
ij,k

⇒ Eijk − Eikj = W τ
ij,k −W τ

ik,j = 0

⇒ emkj(W
τ
ij,k −W τ

ik,j) = 0

⇒ curlW τ = 0

Thus, on the multi-connected domain, given any arbitrary closed loop as in Figure 19,
∮
W τdx = 0

∫

inner

W τdx−
∫

outer

W τdx+

∫ A

B
W τdx+

∫ B

A
W τdx = 0

where
∫
innerW

τdx is the integral along the inner loop anti-clockwise and
∫
outerW

τdx is the integral

along the outer loop anti-clockwise. Therefore, since
∫ A
B W

τdx+
∫ B
A W

τdx = 0,

∫

inner

W τdx =

∫

outer

W τdx.
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𝑝2 

𝑝3 

Figure 20: The integration path on the cross-section of a simply-connected domain to calculate the
jump JyK at x.

Thus, bτ,p is independent of the loop path p and we will denote it as bτ .
Now for a simply-connected domain induced by the cut-surface τ , given a W τ , there exists

(many) yτ satisfying gradyτ = W τ ; any such yτ may be expressed as

yτ (x;x0) =

∫ x

x0

W τdx+ yτ (x0).

Then, with reference to Fig. 20, we have

yτ (x+) = yτ (x0) +

∫ x+

x0
p1

W τdx

⇒ yτ (x+) = yτ (x0) +

∫ x−

x0
p2

W τdx+

∫ x+

x−
p3

W τdx

and

yτ (x−) = yτ (x0) +

∫ x−

x0
p2

W τdx.

Thus,

[[yτ ]] =

∫ x+

x−
p3

W τdx = bτ . (19)

We note next that if τ and τ ′ are two cut-surfaces, (18) and the continuity of W τ ,W τ ′ imply
that W τ −W τ ′ is a constant tensor on the original multi-connected domain, and therefore (19)
implies that bτ = bτ

′
=: b, a constant vector independent of the cut-surface.

Therefore, we have shown that when ∆ = 0, the Burgers vector is cut-surface independent.
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Core for the dislocation 
and the generalized 
disclination 

Figure 21: The dislocation and the generalized disclination densities are localized in a defect core.

7 Interpretation of theWeingarten theorem in terms of g.disclination
kinematics

The Weingarten-gd theorem for generalized disclinations (16) was reviewed in Section 6.1. We
recall that the jump of the inverse-deformation y across a cut-surface is characterized, in general,
by the jump at an arbitrarily chosen point on the surface, Jy(x0)K, and ∆ = JW̃ K, and all of
these quantities are defined from the knowledge of the field Ỹ . However, given a g.disclination
and a dislocation distribution Π and α, respectively, on the body, it is natural to ask as to what
ingredients of g.disclination theory correspond to a candidate Ỹ field. A consistency condition we
impose is that in the absence of a g.disclination density, the jump of the inverse deformation field
should be characterized by the Burgers vector of the given dislocation density field.

7.1 Derivation of Ỹ in g.disclination theory

Let Π and α be localized in a core as shown in the Figure 21. In g.disclination theory,

Y = S + gradW

α := S : X + gradW : X

with
curl Y = curl S = Π.

From the definition of α, we have

αij = Simnejmn +Wim,nejmn

⇒ αijejrs = (Simn +Wim,n) (δmrδns − δmsδnr)

⇒
(
Yirs −

1

2
αijejrs

)
−
(
Yisr −

1

2
αijejsr

)
= 0.

Now, we define Ỹ , in terms of ingredients of g.disclination theory, as

Ỹimn := Yimn −
1

2
αijejmn = Simn +Wim,n −

1

2
αijejmn (20)
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and verify that
Ỹimn = Ỹinm.

Therefore, Ỹ is symmetric in the last two indices. In addition,

(curl Ỹ )imr = erpnỸimn,p = Simn,perpn −Wim,nperpn −
1

2
αil,pelmnerpn

⇒ (curl Ỹ )imr = Πimr −
1

2
αil,pelmnerpn.

Since Π and α are localized in the core, curl Ỹ is localized in the core and curl Ỹ = 0 outside the
core.

7.2 Jump of inverse deformation in terms of defect strengths in g.disclination
theory

With the definition of Ỹ in terms of g.disclination theory (20), we will now identify ∆ and the
jump of the inverse deformation across a cut-surface in a canonical example in terms of prescribed
data used to define an isolated defect line (i.e. the strengths of the g.disclination and dislocation
contained in it) and location on the surface.

A g.disclination in a thick infinite plate in the x1−x2 plane is considered, with the g.disclination
line in the positive x3 direction. Assume the strength of the g.disclination to be ∆F (cf. Sec. 6 for
definition of the strength). Based on the characterization of Π in (10), a candidate for the localized
and smooth generalized disclination density Π is assumed to only have non-zero components Πij3,
namely Π = Πij3ei ⊗ ej ⊗ e3, with Πij3 given as (cf. [Ach01])

Πij3 = ψij(r) =





∆F
ij

πr0

(
1
r − 1

r0

)
r < r0

0 r ≥ r0,

where r =
√
x21 + x22. It is easy to verify that Π is a smooth field and

∫

core
Πe3da = ∆F .

Similarly, the localized and smooth dislocation density α is assumed as

αi3 =

{
bi
πr0

(
1
r − 1

r0

)
r < r0

0 r ≥ r0,

where b is the Burgers vector with ∫

core
αe3da = b.

Recall that

Ỹirs = Yirs −
1

2
αijersj

⇒ Ỹirs = S⊥irs + Zsir,s +Wir,s −
1

2
αijersj

⇒ Ỹ = S⊥ + gradZs + gradW − 1

2
α : X,

(21)
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where Zs is the compatible part of S and S⊥ is incompatible part of S that cannot be represented
as the gradient, satisfying the equations

curlS⊥ = Π

divS⊥ = 0

S⊥n = 0 on the boundary.

One way to get the solution of S⊥ from the above equations is to decompose S⊥ as S⊥ = S∗ +
gradZ∗, where S∗ satisfies

curlS∗ = Π

divS∗ = 0
(22)

and Z∗ satisfies

div(gradZ∗) = 0

(gradZ∗)n = −S∗n on the boundary.
(23)

The solution of (22) can be acquired from the Riemann-Graves operator as shown in Appendix A.
Furthermore, since

∫
∂V S

∗nda =
∫
V divS∗dv = 0, where ∂V is the boundary of V , a unique solution

for gradZ∗ from (23), which is the (component-wise) Laplace equation for Z∗ with Neumann
boundary conditions, exists. Substituting S⊥ into Eqn (21), we have

Ỹ = S⊥ + gradZs + gradW − 1

2
α : X

⇒ Ỹ = S∗ + gradZ∗ + gradZs + gradW − 1

2
α : X

⇒ Ỹ := S∗ + gradA− 1

2
α : X,

(24)

where A is defined as A := Z∗ +Zs +W .
In addition, we have

αij = Simnejmn +Wim,nejmn

αij = S∗imnejmn + Z∗im,nejmn + Zsim,nejmn +Wim,nejmn

αij − S∗imnejmn = −(curlA)ij . (25)

Denoting Bij = S∗imnejmn − αij , we have

(curlA)ij = Bij .

As given in Appendix A, we obtain S∗ as

S∗ij1 =





∆F
ij

2π (−x2
r2

) r > r0
−x2∆F

ij

πr2r0
(r − r2

2r0
) r ≤ r0

S∗ij2 =





∆F
ij

2π (x1
r2

) r > r0
x1∆F

ij

πr2r0
(r − r2

2r0
) r ≤ r0.
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Also, following similar arguments as in Appendix A, in Appendix B we obtain A∗ with A =
A∗ + grad zA,4 where A∗ is given by

A∗11 =

{
C1

(
−∆F

12x
2
2 −∆F

11x1x2
)

+ x2
r2

[
b1
πr0

(
r − r2

2r0

)]
r < r0

C2

(
−∆F

12x
2
2 −∆F

11x1x2
)

+ x2
r2

b1
2π r ≥ r0

A∗12 =

{
C1

(
∆F

12x2x1 +∆F
11x

2
1

)
− x1

r2

[
b1
πr0

(
r − r2

2r0

)]
r < r0

C2

(
∆F

12x2x1 +∆F
11x

2
1

)
− x1

r2
b1
2π r ≥ r0

A∗21 =

{
C1

(
−∆F

22x
2
2 −∆F

21x1x2
)

+ x2
r2

[
b2
πr0

(
r − r2

2r0

)]
r < r0

C2

(
−∆F

22x
2
2 −∆F

21x1x2
)

+ x2
r2

b2
2π r ≥ r0

A∗22 =

{
C1

(
∆F

22x2x1 +∆F
21x

2
1

)
− x1

r2

[
b2
πr0

(
r − r2

2r0

)]
r < r0

C2

(
∆F

22x2x1 +∆F
21x

2
1

)
− x1

r2
b2
2π r ≥ r0

and C1 = 1
2πr0r

− 1
6πr20

and C2 = 1
3πr0r

+ r−r0
2πr3

. A∗ can be decomposed into two parts. The first

part is the terms associated with C1 and C2, denoted as Ao; the other part is the remaining terms
associated with b, denoted as Aα. Thus, A = Ao +Aα + grad zA. Ao and Aα are given as

Ao11 =





(
1

2πr0r
− 1

6πr20

) (
−∆F

12x
2
2 −∆F

11x1x2
)

r < r0(
1

3πr0r
+ r−r0

2πr3

) (
−∆F

12x
2
2 −∆F

11x1x2
)

r ≥ r0

Ao12 =





(
1

2πr0r
− 1

6πr20

) (
∆F

12x2x1 +∆F
11x

2
1

)
r < r0(

1
3πr0r

+ r−r0
2πr3

) (
∆F

12x2x1 +∆F
11x

2
1

)
r ≥ r0

Ao21 =





(
1

2πr0r
− 1

6πr20

) (
−∆F

22x
2
2 −∆F

21x1x2
)

r < r0(
1

3πr0r
+ r−r0

2πr3

) (
−∆F

22x
2
2 −∆F

21x1x2
)

r ≥ r0

Ao22 =





(
1

2πr0r
− 1

6πr20

) (
∆F

22x2x1 +∆F
21x

2
1

)
r < r0(

1
3πr0r

+ r−r0
2πr3

) (
∆F

22x2x1 +∆F
21x

2
1

)
r ≥ r0

Aα11 =

{
x2
r2

[
b1
πr0

(
r − r2

2r0

)]
r < r0

x2
r2

b1
2π r ≥ r0

Aα12 =

{
x1
r2

[
b1
πr0

(
r − r2

2r0

)]
r < r0

x1
r2

b1
2π r ≥ r0

Aα21 =

{
x2
r2

[
b2
πr0

(
r − r2

2r0

)]
r < r0

x2
r2

b2
2π r ≥ r0

Aα22 =

{
x1
r2

[
b2
πr0

(
r − r2

2r0

)]
r < r0

x1
r2

b2
2π r ≥ r0.

We now consider a multiply connected domain by thinking of the cylinder with the core region
excluded and introduce a simply-connected domain by a cut-surface. On this simply-connected

4While not relevant for the essentially topological arguments here, we note that it is in the field gradzA that the
compatible part of W resides which helps in satisfaction of force equilibrium.
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domain we define a W̃ satisfying grad W̃ = Ỹ and recall that Ỹ = S∗ + gradA− 1
2α : X. Then

W̃ (x) =
∫ x
xr
Ỹ (s)ds+ W̃ (xr) (26)

W̃ (x) =
∫ x
xr

[S∗ + gradA− 1
2α : X](s)ds+ W̃ (xr) (27)

W̃ (x) =
∫ x
xr
S∗(s)ds− 1

2

∫ x
xr

(α : X)(s)ds+A(x) + const, (28)

where xr is a given point and const is the constant W̃ (xr)−A(xr), with W̃ (xr) being arbitrarily
assignable.

Consider a path p from z− to z+, both points arbitrarily close to z ∈ S, on opposite sides of S
(see (14) for notation) and define

[[y(z)]] = lim
z+→z
z−→z

∫

p
W̃ (x)dx

for any z on the cut-surface.
After substituting W̃ and noticing

∮
p const dx = 0 and

∮
p gradzA dx = 0, the jump at x can

be further written as

[[y]] =

∫

p

∫ x

xr

S∗(s)dsdx+

∫

p
A(x)dx− 1

2

∫

p

∫ x

xr

(α : X)(s)dsdx

=

∫

p

∫ x

xr

S∗(s)dsdx+

∫

p
Ao(x)dx+

∫

p
Aα(x)dx− 1

2

∫

p

∫ x

xr

(α : X)(s)dsdx. (29)

Now suppose x located as (R, 0) and p is given as a circle with radius r = R, where R ≥ r0. Clearly,
this circle encloses the whole disclination core. Also, since Aoij(x1, x2) = Aoij(−x1,−x2), then

∫

p
Ao(x)dx = 0.

Also, for any loop enclosing the core, α = 0 along the loop and thus,

∫

p

∫ x

xr

(α : X)(s)dsdx = 0.

Therefore, the jump [[y]] = [[y]]s + [[y]]α, where [[y]]s =
∮
p

∫ x
xr
S∗(s)dsdx and [[y]]α =

∮
pA

α(x)dx.

With reference to Figure 22 and choose xr as x−, [[y]]s evaluates to

[[y]]s1 = R∆F
11

[[y]]s2 = R∆F
21.

(30)

[[y]]α =
∮
pA

α(x)dx can be obtained as follows:

[[y]]α1 =
∮ 0
2π [−Aα11R sinβ +Aα12R(cosβ)] dβ

⇒ [[y]]α1 =
∮ 0
2π − b1

2πdβ = b1

[[y]]α2 =
∮ 0
2π [−Aα21R sinβ +Aα22R(cosβ)] dβ

⇒ [[y]]α2 =
∮ 0
2π − b2

2πdβ = b2

34



𝑥1

𝑥2

𝑟0

(𝒙𝒓)

Cut Surface

𝒙+

𝒙−

𝑅

𝑝

Figure 22: Configuration of a closed contour enclosing the disclination and passing through x.

Thus, the jump at point x, (R, 0), is

[[y]]1 = R∆F
11 + b1

[[y]]2 = R∆F
21 + b2,

which can be written in the form

[[y]](x) = ∆Fx+ b = ∆F (x− x0) + JyK(x0), (31)

where

∆F =

[
∆F

11 ∆F
12

∆F
21 ∆F

22

]

and
JyK(x0) = ∆Fx0 + b.

for an arbitrarily chosen base-point x0 on the cut-surface.
For Π = 0 (i.e. no generalized disclination in the defect), given a localized dislocation density

α, the jump in the inverse deformation should be the same as the integral of α over any arbitrary
area threaded by the core, denoted as b. Since Π = 0, then ∆F = 0 and (31) implies,

[[y]] = b.

Thus, in this special, but canonical, example, we have characterized the jump in the inverse
deformation due to a defect line in terms of data characterizing the g.disclination and dislocation
densities of g.disclination theory and shown that the result is consistent with what is expected in
the simpler case when the g.disclination density vanishes.

7.3 The connection between W and y

We now deal with the question of how the inverse deformation field y defined on a cut-surface in-
duced simply-connected domain defined from the field Ỹ may be related to the i-elastic 1-distortion
field W of g.disclination theory. The setting we have in mind is as follows: with reference to Fig.
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𝛺𝑐

𝛺

𝑆

Figure 23: The cross-section of a simply-connected domain Ω with a cut-surface S and a core Ωc.
The blue shaded area is the layer Sl which includes the core.

23, we consider the domain Ω with the core comprising the region Ωc ⊂ Ω. Let the cut-surface be
S, connecting a curve on the boundary of Ωc to a curve on the boundary of Ω so that (Ω\Ωc)\S
is simply-connected. Also consider a ‘layer’ region Sl ⊂ Ω such that S ⊂ Sl as well as Ωc ⊂ Sl,
as shown in Figure 23. We assume that S has support in Sl. We now think that a problem of
g.disclination theory has been solved with S, Π, and α as given data on Ω satisfying the constraint
curl S = Π.

From (20) and (26), we have

grad (W̃ −W ) = S − 1

2
αX on (Ω\Ωc)\S.

We then have
JW K = Jgrad yK−∆F = 0 on S,

since the dislocation density α is localized in the core, an expected result since W is a continuous
field on Ω. Moreover, we have

W = grad y +W ∗ on Ω\Sl,

where W ∗ is a constant second-order tensor. Thus, when Sl is truly in the shape of a layer around
S (including the core as defined), W can indeed be viewed as the gradient of the deformation y
constructed from Ỹ , up to a constant second-order tensor, in most of the domain. On the other
hand, when Sl = Ω\Ωc as e.g. when curl S = Π with div S = 0 on Ω with Π still supported in
the core, such an identification is not possible.

8 Burgers vector of a g.disclination dipole

We will derive the Burgers vector for a given g.disclination dipole with separation vector d. In
Figure 24, the red circle is the (cross-section of the) positive g.disclination while the blue circle is
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that of the negative g.disclination. The separation vector between these two disclination is d. For
the calculations in this section, we assume Cartesian coordinates whose origin is at the positive
g.disclination core and the x and y axes are shown as in Figure 24. The boundary of the positive
g.disclination core is the circle with center at (0, 0) and radius r0; the boundary of the negative
disclination core is the circle with center at (d, 0) and radius r0. Denote the strength of the positive
disclination as ∆F (see Sec. 6 for the definition of the strength). We denote the whole domain as
Ω and the boundary of the domain as ∂Ω. The positive g.disclination density field Π+ and the
negative g.disclination density field Π− are both localized inside the cores (while being defined in
all of Ω). We define the core of the g.disclination dipole, Ωc, as a patch including the positive and
negative g.disclinations enclosed by the black contour C in Figure 24. In the following calculation,
the core is referred as the g.disclination dipole core. Also, let the cut-surface be S, which is along
the positive x axis connecting the boundary of Ω to the curve C at xc shown as the green line in
Figure 24. Namely, S = {(x, y) ∈ Ω|y = 0, x ≥ xc}. In addition, the cut-induced simply-connected
domain is denoted as (Ω\Ωc)\S.

We denote the defect density field for the g.disclination dipole as Π. Clearly, Π is localized
within the g.disclination core, given as Π = Π++Π− on Ω. Based on the Weingarten-gd theorem,
given S∗, α, and A, Ỹ is defined as in (21) and (24):

Ỹ := S∗ + gradA− 1

2
α : X in Ω.

In this case, α = 0, thus
Ỹ = S∗ + gradA. (32)

Recall that given the g.disclination density Π, S∗ is calculated from

curlS∗ = Π = Π+ +Π−
divS∗ = 0

}
in Ω.

Since S∗ is a solution to linear equations, S∗ can be written as

S∗ = S∗+ + S∗−,

with S∗+ and S∗− calculated from

curlS∗+ = Π+

divS∗+ = 0

}
in Ω

curlS∗− = Π−

divS∗− = 0

}
in Ω.

Similarly, given S∗, A = A∗ + grad zA, where A∗ satisfies (25)

curlA∗ = S∗ : X

divA∗ = 0

}
in Ω.

Therefore, A can be written as A = A∗+ + A∗− + gradzA, where A∗+ and A∗− are calculated
from

curlA∗+ = S∗+ : X

divA∗+ = 0

}
in Ω

curlA∗− = S∗− : X

divA∗− = 0

}
in Ω.
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After substituting S∗ and A, Ỹ can be written as

Ỹ = S∗+ + S∗− + gradA∗+ + gradA∗− + grad grad zA on Ω.

In the cut-induced simply-connected domain (Ω\Ωc)\S, given the core Ωc and cut-surface S shown
in Figure 24, W̃ is defined as (26)

W̃ (x) :=

∫ x

xr

Ỹ (s)ds+ W̃ (xr)

where xr is a fixed point and W̃ (xr) is an arbitrary constant. After substituting Ỹ , we have

W̃ (x) =

∫ x

xr

S∗+(s)ds+

∫ x

xr

S∗−(s)ds+A∗+(x) +A∗−(x) + grad zA(x) + const,

where const is the constant equal to W̃ (xr)−A∗+(xr)−A∗−(xr)− grad zA(xr). Write W̃ (x) as

W̃ (x) = T̃+(x;xr) + T̃−(x;xr) + grad zA(x) + const,

where

T̃+(x;xr) :=

∫ x

xr

S∗+(s)ds+A∗+(x)

T̃−(x;xr) :=

∫ x

xr

S∗−(s)ds+A∗−(x)

With reference to Fig. 24, it follows from (15) that the jump of y at x0 is

JyK(x0) =

∫

p
W̃ (x)dx,

where p is a path shown in Fig. 24 from x−0 to x+
0 . Since z is continuous on Ω,

∫
p grad z(x)dx = 0.

Also, with
∫
p constdx = 0, we have

JyK(x0) =

∫

p
T̃+(x;xr)dx+

∫

p
T̃−(x;xr)dx,

Let x0 be the point located at (x0, 0) and denote p+ as a clockwise circle centered at (0, 0) with
radius x0 and p− as a clockwise circle centered at (d, 0) with radius x0− d. Also, we choose x0 big
enough so that p+ and p− enclose the g.disclination core - this induces no loss in generality for our
final result, as we show in the discussion surrounding (33) and (34). Also, let xr be x−0 . Based on
the argument in Appendix C,

∮

p
T̃+(x;xr)dx =

∮

p+
T̃+(x;x−0 )dx =: I+

∮

p
T̃−(x;xr)dx =

∮

p−
T̃−(x;x−0 )dx =: I−

(This step is utilized to facilitate the computation of the line integrals, which are most conveniently
calculated on circular paths).
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Figure 24: Configuration for a disclination dipole with separation vector d and an introduced
cut-surface.

Given the Π+ and Π− fields, based on the calculation in Appendix D, we have

I+1 = x0∆
F
11

I+2 = x0∆
F
21

I−1 = −(x0 − d)∆F
11

I−2 = −(x0 − d)∆F
21.

Thus, the jump JyK at x0 is

JyK1(x0) = x0∆
F
11 − (x0 − d)∆F

11 = d∆F
11

JyK2(x0) = x0∆
F
21 − (x0 − d)∆F

21 = d∆F
21

Therefore, the jump at x0 is

JyK(x0) = ∆Fd

Recall from (32) that
Ỹ = S∗ + gradA,

so that
curl Ỹ = curlS∗ = Π.

Therefore,

∆ =

∫

C
Ỹ dx =

∫

Ωc

curl Ỹ nda =

∫

Ωc

(Π+ +Π−)nda

where C is the boundary of the g.disclination core and Ωc is the area of the core enclosed by C.
Because Π+ and Π− have opposite signs but are otherwise identical (shifted) fields,

∆ =

∫

Ωc

(Π+ +Π−)nda = 0.
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Then, invoking (17), the jump of y satisfies

JyK(x) = JyK(x0) = ∆Fd for x ∈ S. (33)

In addition, as proved in Section 6.2, the jump JyK is independent of the cut-surface when
∆ = 0. Therefore, defining the Burgers vector b of the g.disclination dipole as the jump JyK across
any arbitrary cut-surface rendering Ω\Ωc simply-connected, we have

b = ∆Fd. (34)

Now, considering a disclination dipole with separation vector d = δr, where the Frank vector
for the positive disclination is given as Ω = Ω3e3, ∆

F is given by the difference of two inverse
rotation tensors, written as

[
∆F

]
=

[
cosΩ3 − 1 − sinΩ3

sinΩ3 cosΩ3 − 1

]
.

When the strength of the disclination is low, |Ω3| � 1, cosΩ3 − 1 ≈ 0 and sinΩ3 ≈ Ω3, and we
have

∆F =

[
0 −Ω3

Ω3 0

]
,

a skew symmetric tensor.
From (34), the components of the Burgers vector b are given as

b1 = −Ω3δr2, b2 = Ω3δr1

which matches the result (7) from linear elasticity.
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A Analytical solution for S∗ in the generalized disclination model

We recall the governing equations of S∗ in g.disclination theory given as

curlS∗ = Π

divS∗ = 0.

To solve S∗ from these two equations, the Riemann-Graves integral operator [Ede85, EL88,
Ach01] is applied. Suppose Π satisfies Πijk,k = 0, and define

Π̂injk = ejkmΠinm.

In the 2-D case, the only non-zero components of Π are Πij3 with i, j = 1, 2. Thus Π̂ has no

non-zero component with index 3. Then the relation between Π and Π̂ is

Π̂1112 = Π113 Π̂2212 = Π223 Π̂1212 = Π123 Π̂2112 = Π213

Π̂1121 = −Π113 Π̂2221 = −Π223 Π̂1221 = −Π123 Π̂2121 = −Π213
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The integral is now introduced as

Hink = (xj − x0j )
∫ 1

0
Π̂injk(x

0 + λ(x− x0))λdλ,

where x0 is any fixed point in the body (and we assume a star-shaped domain).
Suppose Πij3 takes the form

Πij3 = ψij(
√
x21 + x22),

and also assume x0 be the origin of the coordinates. Then for a positive disclination, the H at x
is given as

Hij1 =

{
∆Fij

2π (−x2
r2

) r > r0
−x2
r2

∫ r
0 ψij(s)sds r ≤ r0

Hij2 =

{
∆Fij

2π (x1
r2

) r > r0
x1
r1

∫ r
0 ψij(s)sds r ≤ r0

Then it can be shown that H is the solution of S∗ which satisfies curlS∗ = Π and divS∗ = 0.
In this work, we assume ψ takes the form

ψij(r) =

{
∆Fij

πr0
(1r − 1

r0
) r < r0

0 r ≥ r0.

Thus,

Hij1 =

{
∆Fij

2π (−x2
r2

) r > r0
−x2∆Fij

πr2r0
(r − r2

2r0
) r ≤ r0

Hij2 =

{
∆Fij

2π (x1
r2

) r > r0
x1∆Fij

πr2r0
(r − r2

2r0
) r ≤ r0.

B Calculation of A∗ for Ỹ

The governing equations for A∗ are given as

curlA∗ = S∗ : X

divA∗ = 0

Since in the 2-D case the last index of all non-zero components of Π is 3 and the first two are
1 or 2, (div (S∗ : X))ipp = −Πipp = 0, indicating solutions to A∗ exist and we again utilize the
Riemann-Graves integral.

Denote B = S∗ : X, then B13 = S∗112 − S∗121 and B23 = S∗212 − S∗221. After substituting the S∗

from Appendix A,

B13 =

{
1

2πr2
(∆F12x2 +∆F11x1) r ≥ r0

1
r2

(x2
∫ r
0 ψ12sds+ x1

∫ r
0 ψ11sds) r < r0

B23 =

{
1

2πr2
(∆F22x2 +∆F21x1) r ≥ r0

1
r2

(x2
∫ r
0 ψ22sds+ x1

∫ r
0 ψ21sds) r < r0

41



In addition, we can assume ψij also takes the form (as in Appendix A)

ψij(r) =

{
∆Fij

πr0
(1r − 1

r0
) r < r0

0 r ≥ r0.

Thus,

B13 =

{
1

2πr2
(∆F12x2 +∆F11x1) r ≥ r0

1
πr2r0

(r − r2

2r0
)(∆F12x2 +∆F11x1) r < r0

B23 =

{
1

2πr2
(∆F22x2 +∆F21x1) r ≥ r0

1
πr2r0

(r − r2

2r0
)(∆F22x2 +∆F21x1) r < r0

The Riemann-Grave integral operator for the equation curlA∗ = B is

A∗ij = (xm − x0m)

∫ 1

0
B̂imj(x

0 + λ(x− x0))λdλ,

where B̂imj = emjrBir. Assuming x0 to be the origin, A∗ can be written as

A∗11 = −x2
∫ 1
0 B13(λx)λdλ

A∗12 = x1
∫ 1
0 B13(λx)λdλ

A∗21 = −x2
∫ 1
0 B23(λx)λdλ

A∗22 = x1
∫ 1
0 B23(λx)λdλ.

Also, with the choice of x0 as the origin, and if r < r0, then λr < r0, and we have

∫ 1
0 B13(λx)λdλ = (1− r

3r0
)(∆F12 sin θ

2πr0
+ ∆F11 cos θ

2πr0
)

∫ 1
0 B23(λx)λdλ = (1− r

3r0
)(∆F22 sin θ

2πr0
+ ∆F21 cos θ

2πr0
)

If r ≥ r0, then

∫ 1
0 B13(λx)λdλ =

∫ r0/r
0 B13(λx)λdλ+

∫ 1
r0/r

B13(λx)λdλ
∫ 1
0 B23(λx)λdλ =

∫ r0/r
0 B23(λx)λdλ+

∫ 1
r0/r

B23(λx)λdλ.

Since,

∫ r
r0/r

B13(λx)λdλ = r−r0
2πr2

(∆F12 sin θ +∆F11 cos θ)
∫ r
r0/r

B23(λx)λdλ = r−r0
2πr2

(∆F22 sin θ +∆F21 cos θ),

therefore

∫ 1
0 B13(λx)λdλ = ( 1

3πr0
+ r−r0

2πr2
)(∆F12 sin θ +∆F11 cos θ)

∫ 1
0 B23(λx)λdλ = ( 1

3πr0
+ r−r0

2πr2
)(∆F22 sin θ +∆F21 cos θ).

Converting from polar coordinates to Cartesian coordinates,

∫ 1
0 B13(λx)λdλ = ( 1

3πr0r
+ r−r0

2πr3
)(∆F12x2 +∆F11x1)

∫ 1
0 B23(λx)λdλ = ( 1

3πr0r
+ r−r0

2πr3
)(∆F22x2 +∆F21x1),
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Figure 25: A single g.disclination with a circular and an arbitrary path connecting x− and x+ in
the simply-connected domain (Ω\Ωc)\S.

and the solution for A∗ is

A∗11 =

{
( 1
2πr0r

− 1
6πr20

)(−∆F12x
2
2 −∆F11x1x2) r < r0

( 1
3πr0r

+ r−r0
2πr3

)(−∆F12x
2
2 −∆F11x1x2) r ≥ r0

A∗12 =

{
( 1
2πr0r

− 1
6πr20

)(∆F12x2x1 +∆F11x
2
1) r < r0

( 1
3πr0r

+ r−r0
2πr3

)(∆F12x2x1 +∆F11x
2
1) r ≥ r0

A∗21 =

{
( 1
2πr0r

− 1
6πr20

)(−∆F22x
2
2 −∆F21x1x2) r < r0

( 1
3πr0r

+ r−r0
2πr3

)(−∆F22x
2
2 −∆F21x1x2) r ≥ r0

A∗22 =

{
( 1
2πr0r

− 1
6πr20

)(∆F22x2x1 +∆F21x
2
1) r < r0

( 1
3πr0r

+ r−r0
2πr3

)(∆F22x2x1 +∆F21x
2
1) r ≥ r0.

C An auxiliary path-independence result in the dislocation-free
case

Consider the configuration shown in Figure 25 with the whole domain denoted as Ω, the core as
Ωc, the cut-surface as S, and the cut-induced simply-connected domain as (Ω\Ωc)\S. Given any
g.disclination density localized in the core Ωc (the patch enclosed by the red line in Figure 25) and
the dislocation density α = 0, we can calculate S∗ and A∗ from the following

curlS∗ = Π

divS∗ = 0

}
in Ω

curlA∗ = S∗ : X

divA∗ = 0

}
in Ω
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Given a fixed point xr, define T̃ p as

T̃ p(x;xr) :=

∫ x

xr
p

S∗(s)ds+A∗(x),

where p is a path from xr to x. Since curlS∗ = 0 outside the core Ωc, T̃
p is path-independent in

the simply-connected domain (Ω\Ωc)\S; hence, we denote T̃ p(x;xr) as T̃ (x;xr). Also, since A∗

is calculated from curlA∗ = S∗ : X, we have

curl T̃ (x;xr) = curl

∫ x

xr

S∗(s)ds+ curlA∗

⇒ curl T̃ (x;xr) = − grad

(∫ x

xr

S∗(s)ds
)

: X + curlA∗

⇒ curl T̃ (x;xr) = −S∗ : X + curlA∗

⇒ curl T̃ (x;xr) = 0.

Let C1 be the anti-clockwise circular path from x+ to x− with radius R and C2 be the clockwise
outer path from x− to x+ shown in the Figure 25. Then C = C1+C2 is the closed contour enclosing
the blue shaded area. Take the integral of T̃ along the closed contour C shown as in Figure 25,

∫

C
T̃ (x;xr)dx =

∫

A
curl T̃ (x;xr)nda,

where A is the patch enclosed by the loop C and n is the normal unit vector of the patch A.
Therefore,

∫

C
T̃ (x;xr)dx = 0

⇒
∫

C1

T̃ (x;xr)dx+

∫

C2

T̃ (x;xr)dx = 0

⇒
∫

−C1

T̃ (x;xr)dx =

∫

C2

T̃ (x;xr)dx.

Namely, the integration of T̃ (x;xr) from x− to x+ along any path can be calculated as the
integration of T̃ (x;xr) along a circular path from x− to x+.

D Calculations for Burgers vector of a g.disclination dipole

Given the configuration in Section 8, and for in-plane variations of fields, Π+ and Π− only have
non-zero component Π+

ij3 and Π−ij3, which are given as follows:

Π+
ij3 =





∆F
ij

πr0

(
1
r+
− 1

r0

)
r+ < r0

0 r+ ≥ r0,

and

Π−ij3 =




−∆F

ij

πr0

(
1
r−
− 1

r0

)
r− < r0

0 r− ≥ r0,
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where r+ =
√
x21 + x22 and r− =

√
(x1 − d)2 + x22. As given in Appendix A, we obtain S∗+ as

S∗+ij1 =





∆F
ij

2π (− x2
r2+

) r+ > r0
−x2∆F

ij

πr2+r0
(r+ − r2+

2r0
) r+ ≤ r0

S∗+ij2 =





∆F
ij

2π ( x1
r2+

) r+ > r0
x1∆F

ij

πr2+r0
(r+ − r2+

2r0
) r+ ≤ r0,

and S∗− as

S∗−ij1 =





∆F
ij

2π ( x2
r2−

) r− > r0
x2∆F

ij

πr2−r0
(r− − r2−

2r0
) r− ≤ r0

S∗−ij2 =





∆F
ij

2π (−x1−d
r2−

) r− > r0
−(x1−d)∆F

ij

πr2−r0
(r− − r2−

2r0
) r− ≤ r0.

Also, following the same arguments as in Appendix B, we obtain for A∗+ and A∗−:

A∗+11 =

{
C+
1

(
−∆F

12x
2
2 −∆F

11x1x2
)

r+ < r0

C+
2

(
−∆F

12x
2
2 −∆F

11x1x2
)

r+ ≥ r0

A∗+12 =

{
C+
1

(
∆F

12x2x1 +∆F
11x

2
1

)
r+ < r0

C+
2

(
∆F

12x2x1 +∆F
11x

2
1

)
r+ ≥ r0

A∗+21 =

{
C+
1

(
−∆F

22x
2
2 −∆F

21x1x2
)

r+ < r0

C+
2

(
−∆F

22x
2
2 −∆F

21x1x2
)

r+ ≥ r0

A∗+22 =

{
C+
1

(
∆F

22x2x1 +∆F
21x

2
1

)
r+ < r0

C+
2

(
∆F

22x2x1 +∆F
21x

2
1

)
r+ ≥ r0

A∗−11 =

{
C−1

(
∆F

12x
2
2 +∆F

11(x1 − d)x2
)

r− < r0

C−2
(
∆F

12x
2
2 +∆F

11(x1 − d)x2
)

r− ≥ r0

A∗−12 =

{
C−1

(
−∆F

12x2(x1 − d)−∆F
11(x1 − d)2

)
r− < r0

C−2
(
−∆F

12x2(x1 − d)−∆F
11(x1 − d)2

)
r− ≥ r0

A∗−21 =

{
C−1

(
∆F

22x
2
2 +∆F

21(x1 − d)x2
)

r− < r0

C−2
(
∆F

22x
2
2 +∆F

21(x1 − d)x2
)

r− ≥ r0

A∗−22 =

{
C−1

(
−∆F

22x2(x1 − d)−∆F
21(x1 − d)2

)
r− < r0

C−2
(
−∆F

22x2(x1 − d)−∆F
21(x1 − d)2

)
r− ≥ r0

where C+
1 = 1

2πr0r+
− 1

6πr20
, C+

2 = 1
3πr0r+

+ r+−r0
2πr3+

, C−1 = 1
2πr0r−

− 1
6πr20

and C−2 = 1
3πr0r−

+ r−−r0
2πr3−

.

Given x+ as (−x0, 0), x− as (d − x0, 0) and two paths p+ and p− as in Figure 24, following the
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same notation as in Section 8, we have

∮

p+

{∫ x

x−
S∗+(s)ds+A∗+(x)

}
dx =: I+

∮

p−

{∫ x

x−
S∗−(s)ds+A∗−(x)

}
dx =: I−.

After substituting S∗+, S∗−, A∗+, and A∗−, applying polar coordinates and some algebraic calcu-
lation, we obtain

I+1 = x0∆
F
11

I+2 = x0∆
F
21

I−1 = −(x0 − d)∆F
11

I−2 = −(x0 − d)∆F
21.
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