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“I have spent half my life having hard time to get my idea published, and the 
other half having hard time with people copying my ideas”

«I am having hard time completing my 8 volumes authobiography….»

BB. Mandelbrot, personal communications after ICF11 dinner, Torino 2005
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BB Mandelbrot (1924-2010)

• Papers in geometry, finance, physics, 
image creation and compression, 
turbulence, fracture, hydraulics, medicine 
and many more. Which SSD is he in? 
Would he get one or more ASN?

• has today in GS 114808 citations and h-
index = 92

• The oldest prof to get tenure @Yale 
(Economics), after long IBM career

• Possible ground for collaboration… 3



Frost crystals occurring 
naturally on cold glass form 
fractal patterns

A fractal is formed when pulling apart two glue-covered acrylic sheets

In the most basic sense, 
fractals are objects that 
display self-similarity over a 
wide (??) range of scales

Fractals
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0<D<1

0<D<1 Generalized Cantor set 

 

0.538 Feigenbaum attractor  
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1<D<1.3

1.2 Dendrite Julia set 

 

1.2619 2D Cantor dust 
 

1.2619 Koch curve  
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1.5<D<2

1.5000 a Weierstrass function 

 

1.5849 Sierpinski triangle  

 

1.8272 A self-affine fractal set 
 

1.8928 3D Cantor dust 
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2<D<2.5

2<D<2.3 Pyramid surface 
 

2.06 ±0.01 Lorenz attractor  

 

2.3219 Fractal pyramid 
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Many earlier oversimplified 
conclusions by Mandelbrot 
have not resisted the test of 

time.
Fracture mechanics 

essentially dissipates energy 
both on a surface and on a 

volume (plastic deformation), 
so one can artificially say that 

it dissipates over a fractal 
surface and then the fractal 
dimension needs to change 

(multifractal…)…

Never heard again of D as 
measure of toughness in 

metals…
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There was also a bitter 
debate at the end of 

1990’s about too much 
literature claiming 

«fractal» scaling when 
in fact geometry had at 
most 1- 2 decades of 

selfsimilarity
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• Can be used in 
non linear 
dynamics to 
classify the 
dimension of 
strange attractors 
and hence the 
«degree» of chaos

Fractals & chaos
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Nothing new under the sun?

• Pure mathematicians tend to dismiss 
Mandelbrot as a mere salesman.

• Mandelbrot claims that even if the objects 
he brings forth have been known to pure 
mathematicians, they tended to be 
disgusted by them as mere pathological 
monsters, and it is he who showed how 
natural and useful they really are for the 
study of nature.
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Turbulence

Mandelbrot (1982) ‘turbulence involves 
many fractal facets’ – claims geometric 
aspects of turbulence have been ignored
But his own investigations of 1974,1975 
‘they involve suggestions with few hard 
results as yet.’ (Mandelbrot 1982)
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Finance

• another example is the modeling of 
commodity prices, which he claimed did 
not follow the standard Brownian motion 
with Gaussian distributions, but hyperbolic 
ones and not independently but showing 
some traces of memory. In particular this 
led to models with much bigger 
fluctuations, more in accordance with 
observations.
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Mandelbrot set zn+1=zn^2+c

a vindication of the Platonic view of 
mathematics
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Application to tribology
• Archard 1957 was a fractal ante- literam (magnification-

dependent solution)

• Fractal dimension was introduced in tribology by 
Majumbdar and Bhushan in 1990, but the contact area 
was arbitrarily defined as non fractal by a geometrical 
intersection of the rough surface with a plane, leading to 
a power law distribution of contact spot diameters 
(Korcak’s law). 
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The Weierstrass function:

First rigorous contact theory
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The Archard load redistribution process showed that what looks full contact 
eventually is split at smaller scales into partial contact, and so on.  For some 
combination of parameters (in particular, for a nearly continuous spectrum), there 
is convergence towards full contact: despite the contact area tends to zero, the 
actual areas of contact are in full contact. This has profound implications as later 
on we cannot simplify the full Persson’s theory. 

Weierstrass model
Magnification 

dependent 
solution
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• Ciavarella Demelio Barber & Jang in 2000 
showed instead contact area is itself a 
fractal of dimension less than a surface

• the elastic model for the tribological 
problem is essentially ill-posed as in the 
limit that the load P is shared on an infinite 
number of points, where the local pressure 
is infinite! P=0 x ∞

• Bowden-Tabor old plastic model is more 
reasonable, but is forgotten……….

Weiestrass model
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Persson 2001

• Persson (2001) introduced a very elegant 
theory for Gaussian random (fractal) 
surfaces which has evolved over the years 
to this day, permitting to solve the elastic 
contact problem in great details.

• It tries to solve the problem as a function 
of «magnification», and does not worry  
that the fractal limit is bizzarre.

• How to fix «magnification» then?
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• Curiously, we have seen a long debate and “contact 
challenges” between “asperity models (GW, 1966)” and 
“Persson theory (2001)” mainly about the correct expression 
of contact area. 

• Most interesting and relevant part of Persson’s theory 
(2007, 2008) is perhaps that force vs mean separation 
converges in the fractal limit, and so does electrical 
resistance or elastic stiffness, which depend on 
macroscopic quantities not on tail of the PSD spectrum

Greenwood & Williamson1966

Persson’s force vs separation solution
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Predicting Friction?

• Almost all models predict linearity of real contact area with 
load, which is then used as argument to justify Amonton’s law 
--- this implies that there is a constant shear strength, which 
seems to suggest a plastic deformation.  The argument is 
really circular! 

• We have no elastic contact model today that can predict the 
friction coefficient, based on the rough surface details

• Perhaps some effects of roughness on friction in viscoelastic 
materials are understood qualitatively, but extremely sensitive
to the so-called large wavevector cutoff, which remains rather 
arbitrary (Persson suggests to truncate to h’rms=1.3).

• Ciavarella, M., 2018, Journal of Tribology, 140(1), 011403.
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Adhesion

• Adhesion started with Bradley 1932 for rigid 
sphere, to JKR 1971 for elastic sphere, starting a 
long discussion for the case of a single sphere 
with the DMT «semi-rigid» solution, still ongoing

• David Tabor clarified in 1979 the controversy 
between the Cambridge School with the energetic 
approach (JKR) and the russian school of DMT 
(semirigid superposition of repulsive solution with 
forces in the gaps), introducing a parameter µ
which is the ratio between length scale of the 
singular «fracture mechanics» field, and the 
contact area or sphere radius
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Van der Waals forces are quite strong and they should 
lead to theoretical strength for a perfect crystal 
(adhesion paradox of Kendall’s “sticky Universe”).  
This doesn’t happen for inevitable roughness

Lennard-Jones
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The DMT limit 
becomes non-
hysteretic, and is 
captured well with the 
Maugis solution 
simplifying the force-
gap relationship 

The original DMT 
solution is not good 
unless Tabor 
parameter is 
extremely close to 0

From DMT to JKR
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JKR original energy calculation can be generalized approximately
(Ciavarella, JMPS, 2018), but does not work in the fractal limit

Generalization of JKR approach
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• Much less is known for rough surfaces: 

• Fuller and Tabor 1975 using the GW 
asperity model and JKR theory seemed 
to fit results for rubber spheres in contact 
with rough perspex plates: adhesion was 
destroyed for very low amplitude of 
roughness

• DMT approaches: Pastewka and 
Robbins PNAS 2014, and Persson and 
Scaraggi J Chem Phys 2014. 

Adhesion – FT, PR, PS theories
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Adhesion Paradoxes in the 
fractal limit

• Fuller and Tabor suggest stickiness is always zero
(regardless of any other feature)!

• Pastewka and Robbins suggest stickiness is 
always infinite for all surfaces having D>2.4 (which 
include most of the natural and even man made 
surfaces)!
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The main idea of «BAM» model 
is purely geometrical.  
1)the entire DMT solution for the 
sphere in the form reported by 
Maugis (not given by DMT), is 
obtained also by considering a 
Maugis constant force for 
separations up to a characteristic 
distance dr and force of 
attraction the product of theoret 
strength and overlap area 
A(d+dr)-A(d). 
2)This is superposed to Hertz 
theory for the repulsive force 
F(d)

Bearing Area Model For Adhesion - 1
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Repulsive stress 

Attractive stress 

Bearing Area Model For Adhesion - 2
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Full-BAM refers to the version 
including high fractal 
dimensions where there is 
dependence also on slopes.  
Comparison with PR data for 
pull-off shows reasonable 
agreement.

Bearing Area Model For Adhesion - 3
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Stickiness of multiscale randomly rough 
surfaces (2018)
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On stickiness of multiscale randomly 
rough surfaces
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On stickiness of multiscale randomly 
rough surfaces
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On stickiness of multiscale randomly 
rough surfaces

Our predictions has been checked against full numerical 
results obtained using the Contact-App from Lars 

Pastewka over a wide range of parameters. 
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On stickiness of multiscale randomly 
rough surfaces

Using our criterion for stickiness we can define a sticky and region where 
surfaces are expected to naturally snap into contact after a gentle approach. 
From JTB's results, we know that complex instabilities and patterns form at very 
low RMS amplitude of roughness, and hence in the sticky range, DMT type of 
analysis can be expected to hold only above the dashed line in panel A. 36



On stickiness of multiscale randomly 
rough surfaces
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Comparison with BAM
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BAM prediction

Improved 
Persson’s theory



Present 
criterion for 
stickiness

Comparison with BAM
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BAM prediction



Wear

Wear remains one the least 
scientifically understood 
tribological processes. The most 
common approach in wear refers 
to Archard [2] as wear volume V
is proportional to the sliding 
length, the normal force, and 
inverse with the hardness H of 
the material. Hence, the wear 
rate is proportional to pressure p:   

H

kp
V =′
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Critical Length Scale In Wear

• One of the interesting ideas for adhesive wear (one of the 
most prevalent types of wear) was suggested in 1958 by 
Rabinowicz [12] in Wear and was later forgotten (the paper 
has 12 citations in Google Scholar!), except rediscovered 
recently in numerical experiments by Molinari’s group at 
EPFL. 

• There is a critical size (of contact radius), such that smaller 
fragments remain adherent while larger fragments come off in 
loose form. 

2
jσ

w
Gλa =∗

Aghababaei, R., Warner, D.H., Molinari, J.-F., 2016, Critical length scale controls adhesive wear mechanisms, 
Nature Communications, 7, 11816. 
Aghababaei, R., Warner, D.H., Molinari, J.-F., 2017, On the debris-level origins of adhesive wear, Proceedings of the 
National Academy of Sciences, 114(30), pp. 7935–7940. 41



Predicting Archard Wear 
Coefficient?

• wear coefficients vary by more than 7 orders of 
magnitude. 

• Archard "We postulate: worn volume ~a3 and effective 
sliding distance ~a, therefore, the contribution of this 
contact to the wear per cm of sliding ~a2; also load 
supported by contact ~a2. Therefore, for this contact, the 
contribution to the wear rate is proportional to the load 
supported by it. A similar argument applies to all other 
contacts, and the total wear rate is proportional to the 
load". 

• Unconvincing: constant density of asperities with height, 
all asperities are wearing in his model, in contrast with 
the Rabinowicz- Aghababaei critical size concept. 
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Upscaling The Concept Of Rabinowicz 
Length Scale In Multiscale Contact.

• Frérot et al. [16] for example inserted the Rabinowicz-Aghababaei 
critical scale in the Archard model, i.e. assumed K is the probability that 
contact area A is larger than A* (where A* is the area of critical length 
scale a*) for a given load W

• More precisely, starting from analytical predictions, using the quasi-
realistic Greenwood-Williamson model with exponential distribution of 
asperities ϕ=(C/σs)exp(-zs/σs) for zs>0, and σs being a scale parameter 
of the order of RMS amplitude, p(A,W) turns out a negative exponential 
independent of the applied load W

( ) ( )dAW,ApAAPK
A∫
∞∗
∗

=>=

( ) 







−=
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A
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σb
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1

Frérot, L., Aghababaei,R. Molinari, J.F., 2018, On the understanding of the wear 
coefficient: from single to multiple asperities contact, submitted, JMPS
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Wear Paradox

• Therefore, (i) the wear coefficient K is also independent 
of the load, 

• (ii) there is a linear relationship between the contact area 
and the applied load in both elastic and plastic cases. 

• However, the sensitivity to radius to resolution of the 
instrument (or to truncation of the fractal process) is 
extremely high, this would mean that in the fractal limit 
the elastic model predicts always infinitesimally small 
wear!  Notice this is not just consequence of the asperity 
model









−=

∗

sσb

A
expK
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Simple Way Out Of Paradox?
• Pei et al. show that plasticity produces distribution of 

contact clusters closer to the very simple overlap 
model than to the elastic model. 

Fig. 2 An example of contact area prediction for: a) 
elastic; b) elasto-plastic and c) rigid overlap model 

(adapted from [19])

Pei, L., Hyun, S., Molinari, J. F., & Robbins, M. O., 2005, Finite element modeling of elasto-plastic 
contact between rough surfaces, Journal of the Mechanics and Physics of Solids, 53(11), 2385-2409.
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Interesting that for fractal limit, friction coefficient tends to a 
universal value 0.25 (which is curiously enough, the value 
predicted by Leonardo 500 years ago!) Strangely instead, 
the low plasticity index and large R leads to strange infinite 

friction... 

Predicting Friction? A plastic model
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Intermediate conclusions - 1
• The contact of rough surfaces has been studied for a 

long time (from 1957), with the hope to explain friction, 
adhesion, wear and other tribological problems

• Some considerable progress has been made in the 
area of elastic contact, where we know in details the 
solution for nominally flat, infinite surfaces. The choice 
of elasticity is mainly for mathematical convenience!

• However, friction has been studied since the times of 
Leonardo and in 500 years, no predictive model has 
emerged, nor significant improvement from rough 
contact models. Indeed, plastic models of friction 
today are more well posed and recognize f=0.25 like 
Leonardo predicted in his notebooks!
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Intermediate conclusions - 2
• For adhesion, we described progress with BAM by Ciavarella 

(2017) and with the criterion of Violano, Afferrante, Papangelo 
& Ciavarella (2018) who have found early claims to be 
incorrect: stickiness does not depend on truncation of the 
PSD spectrum

• Recently, rough contact models have also been attempted in 
the hope to predict the coefficient of proportionality between 
wear loss and friction dissipation which was observed already 
by Reye in 1860, and then Archard in the 1950’s. (both 
papers were ignored in the new papers in top journals!)

• Resolution-dependence of contact area make the models very 
ill-defined, and many predictions quite hard.
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Conclusions
• the contact “sport” of simulating elastic 

multiscale contact with fractal accurate models 
that has dominated the specialized literature 
(including my own contributions!), is mostly a 
little remote still from real tribological problems 

• With fractals, it is easy to end up with 
paradoxical limit conclusions. We made the 
example of two important theories in adhesion. 
The way out of the paradox requires very 
significant effort (Persson’s solution) or simple 
but clever ideas (BAM).

• And after this effort, we are just about to seeing 
perhaps some really quantitative applications….49


