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“I have spent half my life having hard time to get my idea published, and the
other half having hard time with people copying my ideas”

«l am having hard time completing my 8 volumes authobiography....»

BB. Mandelbrot, personal communications after ICF11 dinner, Torino 2005



BB Mandelbrot (1924-2010)

 Papers in geometry, finance, physics,
Image creation and compression,
turbulence, fracture, hydraulics, medicine
and many more. Which SSD is he In?
Would he get one or more ASN?

e has today In GS 114808 citations and h-
Index = 92

 The oldest prof to get tenure @Yale
(Economics), after long IBM career

* Possible ground for collaboration...




Frost crystals occurring
naturally on cold glass form
fractal patterns

In the most basic sense,
fractals are objects that
display self-similarity over a
wide (??) range of scales

A fractal is formed when pulling apart two glue-covered acrylic sheets 4
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1.5<D<2

1.5000 a Welerstrass function

1.5849 Sierpinski triangle

1.8928 3D Cantor dust




2<D<2.5

2<D<2.3 Pyramid surface .

2.06 £0.01 Lorenz attractor

2.3219 Fractal pyramid




nature

Letter = Published: 19 April 1984

Fractal character of fracture surfaces of
metals

BenoitB. Mandelbrot, Dann. E. Passoja & Alvin 1. Paullay

MNature 308, 7T21-722 (19 April 1984) Download Citation £

Abstract

When a piece of metal is fractured either by tensile or impact loading
(pulling or hitting), the fracture surface that is formed is rough and
irregular. Its shape is affected by the metal's microstructure (such as
grains, inclusions and precipitates, whose characteristic length is large
relative to the atomic scale), as well as by ‘macrostructural’ influences
(such as the size, the shape of the specimen, and the notch from which
the fracture begins). However, repeated observation at various
magnifications also reveals a variety of additional structures that fall
between the ‘micro’ and the ‘'macro’ and have not vet been described
satisfactorily in a systematic manner. The experiments reported here
reveal the existence of broad and clearly distinct zone of intermediate
scales in which the structure is modelled very well by a fractal surface.
A new method, slit island analysis, is introduced to estimate the basic

quantity called the fractal dimension, D. The estimate is shown to agree

with the valle.phisinsd-br=fisstmsepaailaanalusic 3 spectral method.
nally, D is shown to be a measure of toughness in metals.

Many earlier oversimplified

conclusions by Mandelbrot

have not resisted the test of
time.

Fracture mechanics
essentially dissipates energy
both on a surface and on a
volume (plastic deformation),
So one can artificially say that
it dissipates over a fractal
surface and then the fractal
dimension needs to change
(multifractal...)...

Never heard again of D as
measure of toughness in
metals...
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Science, Vol 279, Issue 5347, 39-40 , 2 January 1998
[DOI: 10.1126/science.279.5347.39]

4 Previous Article » Next Article
APPLIED MATHEMATICS:
Is the Geometry of Nature Fractal?
— There was also a bitter
e debate at the end of
I 1990’s about too much
I literature claiming
— «fractal» scaling when
u in fact geometry had at
i3 most4 2decades of
i selfsimilarity

10 20 a0 40 Bo
Numbaer of decades

Limited scaling range. The number of decades (factors of 10) spanned by experimentally
led to the labeling of the studied systems as fractal (4).
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Fractals & chaos
Lorenz Attractor

e Can be used In
non linear
dynamics to
classify the
dimension of
strange attractors
and hence the
«degree» of chaos

11



Nothing new under the sun?

e Pure mathematicians tend to dismiss
Mandelbrot as a mere salesman.

 Mandelbrot claims that even if the objects
he brings forth have been known to pure
mathematicians, they tended to be
disgusted by them as mere pathological
monsters, and it is he who showed how
natural and useful they really are for the
study of nature.
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Turbulence

Mandelbrot (1982) ‘turbulence involves
many fractal facets’ — claims geometric
aspects of turbulence have been ignored

But his own investigations of 1974,1975
‘they Iinvolve suggestions with few hard
results as yet.” (Mandelbrot 1982)
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Finance

« another example is the modeling of
commodity prices, which he claimed did
not follow the standard Brownian motion
with Gaussian distributions, but hyperbolic
ones and not independently but showing
some traces of memory. In particular this
led to models with much bigger
fluctuations, more in accordance with
observations.

14



Mandelbrot set z..=z. 2+C

a vindication of the Platonic view of
mathematics

15



Application to tribology

 Archard 1957 was a fractal ante Iteram (magnification-
dependent solution)

ay b <Y

- ;/ - 75%, M'

{d) {e)

0

* Fractal dimension was introduced in tribology by
Majumbdar and Bhushan in 1990, but the contact area
was arbitrarily defined as non fractal by a geometrical
Intersection of the rough surface with a plane, leading to
a power law distribution of contact spot diameters

(Korcak’s law). h



First rigorous contact theory

@l THE ROYAL

Linear elastic contact of the Weierstrass profilej
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A contact problem is considered in which an elastic half-plane is pressed against
a rigid fractally rough surface, whose profile is defined by a Weierstrass series. It
is shown that no applied mean pressure is sufficiently large to ensure full contact
and indeed there are not even any contact areas of finite dimension—the contact

area consists of a set of fractal character for all values of the geometric and loading
parameters.

(o]
The Weierstrass function: 2(x) = go Y ¥ P72 cos(2my"z/ Xo).
n=0 17



Welerstrass model
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Figure 2. Evolution of the contact pressure distribution for 42! < 2. A full contact region (1)
evolves to (2) at the next scale. With one further reduction of scale, regions (2A) evolve once
again to (2), while regions (2B) evolve to (3).

Maghnification
dependent
solution

The Archard load redistribution process showed that what looks full contact
eventually is split at smaller scales into partial contact, and so on. For some
combination of parameters (in particular, for a nearly continuous spectrum), there
Is convergence towards full contact: despite the contact area tends to zero, the
actual areas of contact are in full contact. This has profound implications as later
on we cannot simplify the full Persson’s theory. 18



Welestrass model

e Cilavarella Demelio Barber & Jang in 2000
showed Instead contact area is Itself a
fractal of dimension less than a surface

 the elastic model for the tribological
problem is essentially ill-posed as in the
limit that the load P Is shared on an infinite
number of points, where the local pressure
IS Infinite! P=0 X o

 Bowden-Tabor old plastic model is more
reasonable, but is forgotten..........

19



Persson 2001

 Persson (2001) introduced a very elegant
theory for Gaussian random (fractal)
surfaces which has evolved over the years
to this day, permitting to solve the elastic
contact problem in great details.

e It tries to solve the problem as a function
of «magnification», and does not worry
that the fractal limit is bizzarre.

 How to fix «magnification» then?

20



Persson’s force vs separation solution

e Curiously, we have seen a long debate and “contact
challenges” between “asperity models (GW, 1966)” and
“Persson theory (2001)” mainly about the correct expression
of contact area.
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* Most interesting and relevant part of Persson’s theory
(2007, 2008) is perhaps that force vs mean separation
converges in the fractal limit, and so does electrical
resistance or elastic stiffness, which depend on
macroscopic quantities not on tail of the PSD spectrum  ,



Predicting Friction?

Almost all models predict linearity of real contact area with
load, which is then used as argument to justify Amonton’s law
--- this implies that there is a constant shear strength, which
seems to sugpest a plastic deformation. The argument is
really circular!

We have no elastic contact model today that can predict the
friction coefficient, based on the rough surface details

Perhaps some effects of roughness on friction in viscoelastic
materials are understood qualitatively, but extremely sensitive
to the so-called large wavevector cutoff, which remains rather
arbitrary (Persson suggests to truncate to h’'rms=1.3).

Ciavarella, M., 2018, Journal of Tribology, 140(1), 011403.
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Adhesion

* Adhesion started with Bradley 1932 for rigid
sphere, to JKR 1971 for elastic sphere, starting a
long discussion for the case of a single sphere
with the DMT «semi-rigid» solution, still ongoing

e David Tabor clarified in 1979 the controversy
between the Cambrldge School with the energetic
approach (JKR) and the russian school of DMT
Fsemlrlgld superposition of repulsive solution with
orces In the gaps), introducing a parameter
which is the ratio between length scale of the
singular «fracture mechanics» field, and the
contact area or sphere radius

23



| ennard-Jones

3'/6¢ and is 0 = 16A~y/9/3e¢.

[l
i’

Figure 1: The Lennard-Jones traction law between two half spaces. The interface energy A~y
corresponds to the shaded area.

Van der Waals forces are quite strong and they should
lead to theoretical strength for a perfect crystal
(adhesion paradox of Kendall's “sticky Universe”).

This doesn’t happen for inevitable roughness Ny



From DMT to JKR

1

\_/’ 1=0,0.05,0.25,1,5

Fig.2 - Solutions of JKR. DAMT and Maugis intermediate Tabor parameter

range 1 =0.005.023 1.5 JKR 15 obtained verv closely at positive
indentations for t = 1

The DMT limit
becomes non
hysteretic, and is
captured well with the
Maugis solution
simplifying the force
gap relationship

The original DMT
solution is not good
unless Tabor
parameter is
extremely close to O

25



Generalization of JKR approach

4)

1 A

Figure 3: Two-step loading scenario. (i) “repulsive’ loading without adhesive forces until a given
contact area is reached (point A in the figure); (i1) Unloading at constant total contact area up point
B

JKR original energy calculation can be generalized approximately
(Ciavarella, IMPS, 2018), but does not work in the fractal limit 26



Adhesion — FT, PR, PS theories

 Much less is known for rough surfaces:

e Fuller and Tabor 1975 using the GW
asperity model and JKR theory seemed
to fit results for rubber spheres in contact
with rough perspex plates: adhesion was
destroyed for very low amplitude of
roughness

« DMT approaches: Pastewka and
Robbins PNAS 2014, and Persson and
Scaraggi J Chem Phys 2014.

27



Adhesion Paradoxes in the
fractal limit

* Fuller and Tabor suggest stickiness is always zero
(regardless of any other feature)!

e Pastewka and Robbins suggest stickiness is
always infinite for all surfaces having D>2.4 (which
Include most of the natural and even man made
surfaces)!

28



Bearing Area Model For Adhesion - 1

w

0.3

Fizg.1 - (a] A paraholic elastic body in adhesive contact with a rigid plane:

1.0 15 10

(b} Maugis forces of attraction

30

A
e ()

The main idea of «<BAM» model
IS purely geometrical.

1)the entire DMT solution for the
sphere in the form reported by
Maugis (not given by DMT), is
obtained also by considering a
Maugis constant force for
separations up to a characteristic
distance dr and force of
attraction the product of theoret
strength and overlap area
A(d+dr)-A(d).

2)This is superposed to Hertz
theory for the repulsive force
F(d)

29



Bearing Area Model For Adhesion - 2

for not too

large .., (Persson 2007, eqt.20})*

rep

Orep 0.5 % 0.7

= - Repulsive stress
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where 7 = U.4. gg 15 the small wavevector in the self-affine process, and £,...-
is the rms amplitude of roughness.

Therefore. using a simple Maugis model for adhesion. and the bearing
area estimate for the area of attraction for a rough contact. we compute the
difference of the bearing area at separation u,, = u — Ar. and u, and the
attractive pressure can be estimated in a single line as

Tate _ 1 L (o Attractive stress
Tk N 2k I:E?ﬁfc ( \/Ehr“r"s) Erfﬁ ( \J@hrm&):[

30



Bearing Area Model For Adhesion - 3

_UTin/ Oth

Full-BAM

Full-BAM refers to the version

0.1
including high fractal
dimensions where there s
16+ dependence also on slopes.

Comparison with PR data for
pull-off shows reasonable

=3
10 agreement.

. ‘ h
1 10 10/
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Stickiness of multiscale randomly rough
suﬁaces§%018)
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In DMT theory, using a Maugis potential the adhesive contact area is easily defined
integrating the probability distribution of gaps P(u) from 0 to the Maugis range of
attraction. We showed that P(u) converges with the magnification ¢, thus any
criterion on stickiness within the DMT assumptions cannot depend on the PSD

large wavevector components.
32



On stickiness of multiscale randomly
rough surfaces

3.0
C PR(H=0.8) i
10 \ 238!
’ 2.6/
5 s |
2.4!
1y 2.2}

; d Jarep=0'065 i g=1000

030 100 1000 10* 105 10° 280 01 02 03 04 05

4 Brep

The attractive contact area can be written as

A 3 . e \*/*
Anom B 2 avprep hrms

where p,., is the dimensionless average repulsive pressure, € is the Maugis
range, h,ns IS the surface rms and ay is a coefficient that can be obtained from

A
theﬂvs( € 33
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On stickiness of multiscale randomly
rough surfaces

The external pressure is the sum between the repulsive and the adhesive contribution

Pest _ Prep 00 A _ Apep v/2ma [1_la3 ay ( ¢ )2/3

Ex  E* E A Apom 2 € 2qohrms \ Prms
- . . . | _ Peat/(E*V2m3)
Stickiness is obtained when the slope becomes negative |, = Avep/Anom

In particular for low fractal dimension, high magnification and assuming ay = 3
(neglecting the weak dependence on pressure) simple criterion for stickiness is

obtained
Ry (9 la/e)B/S
< _
€ 4 eqq

Which depends only on the shortest wavevector g, and on the surface RMS. Both are
converging quantities with magnification. This contrast with the currently available
stickiness criterion from Fuller and Tabor (1966) and Pastewka and Robbins (2014),
which depend on the PSD truncation, thus are also difficult to check experimentally.

34



On stickiness of multiscale randomly
rough surfaces
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Our predictions has been checked against full numerical
results obtained using the Contact-App from Lars
Pastewka over a wide range of parameters.



On stickiness of multiscale randomly
rough surfaces

| A =N
Unsticky
| B_JT L i Pext
o 0.1 y >
= S Sticky
Y
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(patterns) -
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Using our criterion for stickiness we can define a sticky and region where
surfaces are expected to naturally snap into contact after a gentle approach.
From JTB's results, we know that complex instabilities and patterns form at very
low RMS amplitude of roughness, and hence in the sticky range, DMT type of
analysis can be expected to hold only above the dashed line in panel A. 36



On stickiness of multiscale randomly
rough surfaces

100 1000  10° 105  10° 107 108
q [1/m]

A self-affine randomly rough surface is defined by its PSD, C(q) =
Coq~2H*+L) | Qur criterion can be written directly as a function of C,.
Assuming reasonable estimates for the rest of parameters we obtain that
real surfaces should stick for E* < 0.3 MPa, which is in agreement with the3

7
very well known Dahlquist criterion for adhesives.



Comparison with BAM

Improved
ad/Anom ,
1.000¢ Persson’s theory
0.500¢

0.100
0.050

0.010

0.005 i
. BAM prediction

0.001 iy i . . P | .
0.050.10 050100  5.00™

Fig.4. Comparison of the attractive area ;‘—ad estimated by Persson’s
theory (black, blue and red line respectively for ¢ = 10,100, 1000) as
improved by Afferrante et al. (2018). Red dashed line shows BAM

(Ciavarella, 2017) prediction, and dashed black line indicates a guide to the
2/3
: ) . Case of Fig.2

hrms

eye with (
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Comparison with BAM

(figﬁ%le)thresh Present
3 criterion for
stickiness

N

100}
50F

500}

\ BAM prediction

I,/ €

1 10 100 1000 10* €q,

Fig.8. Estimates of the limit RMS amplitude of roughness for the BAM

model

(blue solid line) and the present one (black solid line).
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Wear Resistance, W*'

Precipitation -
hardening alloys

Wear

HMardness of the Materio

Wear remains one the least
scientifically understood
tribological processes. The most
common approach in wear refers
to Archard [2] as wear volume V
iIs proportional to the sliding
length, the normal force, and
inverse with the hardness H of
the material. Hence, the wear
rate is proportional to pressure p:

v ot
H

40



Critical Length Scale In Wear

* One of the interesting ideas for adhesive wear (one of the
most prevalent types of wear) was suggested in 1958 by
Rabinowicz [12] in Wear and was later forgotten (the paper
has 12 citations in Google Scholar!), except rediscovered
recently in numerical experiments by Molinari’'s group at
EPFL.

 There Is a critical size (of contact radius), such that smaller
fragments remain adherent while larger fragments come off in
loose form. W
aD — }VG—Z

O

Aghababaei, R., Warner, D.H., Molinari, J.-F., 2008itical length scale controls adhesive wear mechanisms,
Nature Communications, 7, 11816.

Aghababaei, R., Warner, D.H., Molinari, J.-F., 20Qi the debris-level origins of adhesive wear, Proceedingls of the
National Academy of Sciences, 114(30), pp. 79356794



Predicting Archard Wear
Coefficient?

e wear coefficients vary by more than 7 orders of
magnitude.

« Archard "We postulate: worn volume ~a3 and effective
sliding distance ~a, therefore, the contribution of this
contact to the wear per cm of sliding ~a?; also load
supported by contact ~a2. Therefore, for this contact, the
contribution to the wear rate is proportional to the load
supported by it. A similar argument applies to all other
contacts, and the total wear rate is proportional to the
load".

« Unconvincing: constant density of asperities with height,
all asperities are wearing in his model, in contrast with

the Rabinowicz Ahababaei critical size concept.
42



Upscaling The Concept Of Rabinowicz
Length Scale In Multiscale Contact.

* Frérot et al. [16] for example inserted the Rabinowicz-Aghababaei
critical scale in the Archard model, i.e. assumed K is the probability that
contact area A is larger than A" (where A" is the area of critical length
scale a’) for a given load W

00

K =P(a>AY)=[" p(AW)da

* More precisely, starting from analytical predictions, using the quasi-
realistic Greenwood-Williamson model with exponential distribution of
asperities ¢=(C/o )exp(-z /o) for z>0, and o, being a scale parameter
of the order of RMS amplitude, p(A,W) turns out a negative exponential
independent of the applied load W

1 exp] - A
bo bo

Frerot, L., Aghababaei,R. Molinari, J.F., 2018n the understanding of the wear
coefficient: from single to multiple asperities contact, submitted, IMPS

p(AW) =

43



Wear Paradox

 Therefore, (i) the wear coefficient K is also independent

of the load, :
A

K=exp ———

p[ basj

o (i) there is a linear relationship between the contact area
and the applied load in both elastic and plastic cases.

 However, the sensitivity to radius to resolution of the
Instrument (or to truncation of the fractal process) is
extremely high, this would mean that in the fractal limit
the elastic model predicts always infinitesimally small
wear! Notice this is not just consequence of the asperity
model

44



Simple Way Out Of Paradox?

* Pel et al. show that plasticity produces distribution of
contact clusters closer to the very simple overlap
model than to the elastic model.
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Fig. 2 An example of contact area prediction for: a)
elastic; b) elasto-plastic and c) rigid overlap ®lod
(adapted from [19])

Pei, L., Hyun, S., Molinari, J. F., & Robbins, M.,Q005,Finite element modeling of elasto-plastic
contact between rough surfaces, Journal of the Mechanics and Physics of Solidsl 53(2385-2409.
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Predicting Friction? A plastic model
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Fig.22 Comparison of static friction coefficient for generated Gauss-
ian surfaces with varions plasticity indices under 8 dimensionless
normal load £, / (A, 5,) = 0.155

Interesting that for fractal limit, friction coefficient tends to a
universal value 0.25 (which is curiously enough, the value
predicted by Leonardo 500 years ago!) Strangely instead,
the low plasticity index and large R leads to strange infinite
friction... 46



Intermediate conclusions - 1

 The contact of rough surfaces has been studied for a
long time (from 1957), with the hope to explain friction,
adhesion, wear and other tribological problems

e Some considerable progress has been made in the
area of elastic contact, where we knaow In details the
solution for nominally flat, infinite surfaces. The choice
of elasticity is mainly for mathematical convenience!

 However, friction has been studied since the times of
Leonardo and in 500 years, no predictive model has
emerged, nor significant improvement from rough
contact models."Indeed, plastic models of friction
today are more well posed and recognize f=0.25 like
Leonardo predicted in his notebooks!

a7



Intermediate conclusions - 2

 For adhesion, we described progress with BAM by Ciavarella
(2017) and with the criterion of Violano, Afferrante, Papangelo
& Ciavarella (2018) who have found early claims to be
Incorrect: stickiness does not depend on truncation of the
PSD spectrum

* Recently, rough contact models have also been attempted in
the hope to predict the coefficient of proportionality between
wear loss and friction dissipation which was observed already
by Reye in 1860, and then Archard in the 1950’s. (both
papers were ignored in the new papers in top journals!)

e Resolution-dependence of contact area make the models very
Ill-defined, and many predictions quite hard.

48



Conclusions

* the contact “sport” of simulating elastic
multiscale contact with fractal accurate models
that has dominated the specialized literature
(including my own contributions!), iIs mostly a
little remote still from real tribological problems

 With fractals, it Is easy to end up with
paradoxical limit conclusions. We made the
example of two important theories in adhesion.
The way out of the paradox requires very
significant effort (Persson’s solution) or simple
but clever ideas (BAM).

 And after this effort, we are just about to seeing
perhaps some really quantitative applications... 4s



