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Abstract We derive the evolution equation of a sharp, coherent interface
in a two-phase body having elongated shape. To this aim, we model the
body as a one-dimensional polar continuum, we introduce a system of forces
acting at the interface, and we apply the method of virtual powers to derive
a balance law involving these forces. By exploiting the dissipation inequality
we manage to write this balance law in terms of a scalar field analogous to the
configurational stress in a Cauchy continuum. The actual evolution equation
obtains by postulating suitable constitutive equations for the forces acting
at the interface.
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1 Introduction

In this paper we provide a short, self-contained derivation of the evolution
equation governing the motion of a sharp interface in a two-phase slender
body, i.e., a two-phase body having elongated shape. As customary in struc-
tural mechanics, we model this body as a one-dimensional continuum whose
material particles, which we call sections, are endowed with translational and
rotational degrees of freedom. For simplicity, we restrict attention to planar
motions, and we leave thermal effects out of the picture.

Our viewpoint is the same as Gurtin’s [6]: a sharp phase interface should
be treated as a material structure ruled by a configurational balance law
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standing on the same footing as the standard balance laws of continuum
physics; the actual law governing the evolution of the interface should result
from the combination of the configurational balance law with constitutive
prescriptions accounting for the diversity of materials. Our approach, being
based on the principle of virtual powers, is slightly different from [6], and it
is closer to [15].

Basic to our derivation is the introduction of an internal force G and an
external force F which enter in the expressions of the internal and external
powers as work conjugates of the referential velocity of the interface. Thanks
to these extra terms, the application of the method of virtual powers yields,
besides the standard balance laws in the bulk (i.e. away from the interface),
the interface condition (cf. §3.2):

G + [[u′n + v′t + ϑ′m]] = F . (1)

Here u, v, and ϑ are scalar fields delivering the axial displacement, the trans-

verse displacement, and the rotation of the typical section; a prime sign
denotes partial differentiation with respect to arc length; n, t, and m are
scalar fields accounting for, respectively, axial force, shear force, and bending

moment. A pair of double brackets denotes the jump of the enclosed scalar
field across the interface.

Following a procedure of Podio–Guidugli [13], we identify inertial inter-
actions using the requirement that the power they expend on any part of the
body be equal to minus the rate of change of kinetic energy of the same part.
By doing so, we find that the inertial part of the external force acting on the
interface is:

F in =
1

2
[[̺u′2 + ̺v′2 + ιϑ′2]]V2, (2)

where ̺ and ι are positive constants accounting for linear and rotional inertia,
and V is the (referential) velocity of the interface.

We decompose the internal force into its equilibrium and non-equilibrium
parts: Geq and Gne, respectively. Then, we exploit the dissipation inequality
to show that the equilibrium part must be equal to minus the jump of the
free-energy density across the interface, and that the non-equilibrium part
expends non-negative power during every process (cf. (42)):

Geq = −[[ψ]], GneV ≥ 0.

On setting:
c = ψ − u′n − v′t − ϑ′m, (3)

and on dispensing of the non-inertial part of the external force, we can write
the interface condition (1) as:

[[c]] − Gne = −
1

2
[[̺u′2 + ̺v′2 + ιθ′2]]V2, (4)

which is the sought-for configurational balance.
The treatment of configurational forces in strings, bars, and beams is not

new, and its many applications span from fracture mechanics to structural
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optimization [3,8,9,12,14,16]. In particular, an equation ruling the motion
of a sharp interface in a setting similar to ours has been derived by O’Reilly
[12] by postulating a balance of configurational forces.

The scalar field c is the one-dimensional analogue of the configurational
stress in a three-dimensional micropolar continuum [10,11]. In the more stan-
dard setting of Cauchy continua, the counterpart of (3) is the Eshelby rela-
tion:

C = ϕI −∇uTS,

which defines the Eshelby stress [5] in the so-called displacement-based for-
mulation [6, Chap. 13]. Here ϕ is the free energy per unit volume, I is the
identity tensor, u is the displacement, and S is the stress. In the same setting,
the motion of a sharp, coherent interface is ruled by the normal configura-
tional balance (cf. [6, Eq. (14-4)] and [7, Eq. (6.2)]):

m · [[C]]m + γ = −
1

2
[[ρ|(∇u)m|2]]V 2. (5)

Here m is the unit vector normal to the interface, ρ is the referential mass
density, V is the normal velocity of the interface, and γ is the internal force
acting on the interface. The latter must satisfy:

γV ≤ 0,

as a consequence of the dissipation inequality. When the balance of linear
momentum is taken into account, (5) implies:

−[[ϕ]] + 〈S〉m · [[∇u]]m = −γ, (6)

whose left-hand side is the driving traction at the interface [1,18]. Inasmuch
(5) implies (6), the configurational balance (4) implies (we give a proof in
the Appendix):

−[[ψ]] + 〈n〉[[u′]] + 〈t〉[[v′]] + 〈m〉[[ϑ′]] = −Gne, (7)

which can be regarded as a special case of the jump condition given in [12, Eq.
(31)] when no point supplies of linear and angular momentum are present.

2 Evolution equations in the bulk

In this section we assemble the balance equations in the bulk, i.e., away from
the interface. We accomplish this task by restricting attention to parts of the
body that do not contain the interface.

2.1 Bulk kinematics. We take as body manifold the interval B = (0, l)
of the real line, and we call its elements sections. At time t, the typical section
s occupies a position P (s, t) of a two-dimensional Euclidean point space, and
is endowed with an orientation d(s, t), a planar vector with unit norm. Next,
as customary in solid mechanics, we select a reference placement for B. This
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Fig. 1 Placement and orientation of the typical section.

we do by choosing a position A along with two mutually-orthogonal unit
vectors a and b, and by setting:

P0(s) = A+ sa, d0(s) = b.

On writing:

P (s, t) = P0(s) + u(s, t), d(s, t) = cos(ϑ(s, t))a + sin(ϑ(s, t))b,

we represent position and orientation of the typical section s at time t through
its displacement u(s, t) and its rotation ϑ(s, t) with respect to the reference
placement. Finally, we decompose the displacement into its axial and trans-

b

Reference placement
a

b

b

Placement at time t

u(s, t)

ua

vb
u

displacement

ϑ

rotation

Fig. 2 Displacement and rotation of the typical section.

verse components:

u = u · a, v = u · b,

and, we introduce the strain measures :1

ε = u′, γ = v′ + ϑ, χ = ϑ′,

which account for axial extension, shear, and bending, respectively; implicit
in this choice is the assumption that both displacements and rotations are
small.

2.2 Balance equations. By a part of the body we mean an open interval
P ⊂ (0, l). By a virtual velocity we mean an ordered list (u̇v, v̇v, ϑ̇v) of
smooth scalar fields on (0, l). We stipulate that, given a part not containing

1 With a prime mark we indicate partial differentiation with respect to s.
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the interface and a virtual velocity with support compactly contained2 in the
same part, the internal and the external powers have the form:

W int(P) =

∫

P

nε̇v + tγ̇v +mχ̇v ds and W ext(P) =

∫

P

pu̇v +qv̇v +rϑ̇v ds,

respectively, where

ε̇v = u̇′v, γ̇v = v̇′v + ϑ̇v, χ̇v = ϑ̇′v,

are the virtual strain rates associated to the virtual velocity (u̇v, v̇v, ϑ̇v). Here
p, q, and r are, respectively, the external axial force, the external transverse

force, and the external couple (per unit referential length). Moreover, we
require that the internal and the external powers be equal:

W int(P) = W ext(P) (8)

for every such pair of a part P and a virtual velocity (u̇v, v̇v, ϑ̇v). A standard
argument based on by-parts integration and localization yields the balance

equations in the bulk :3

n
′ + p = 0, t

′ + q = 0, m
′ − t + r = 0. (9)

2.3 Inertia. We split the external forces p and q, and the external couple
r into their non-inertial and inertial parts:

p = pni + pin, q = qni + qin, r = rni + rin. (10)

Then, we state that the power expended by inertial forces on any part during
any realizable process be equal to minus the temporal change of kinetic energy
of the same part:

∫

P

pinu̇+ qinv̇ + rinϑ̇ ds = −
d

dt

∫

P

k ds. (11)

We accompany this statement with the usual choice for the kinetic energy
per unit referential length:

k =
1

2
̺(u̇2 + v̇2) +

1

2
ιϑ̇2, (12)

where ̺ > 0 and ι > 0 account for linear and rotational inertia. In view of
(12), the statement (11) becomes:

∫

P

(pin + ̺ü)u̇+ (qin + ̺v̈)v̇ + (rin + ιϑ̈)ϑ̇ ds = 0. (13)

2 Should we consider virtual velocities that do not vanish on ∂P , then we must
include additional terms in the expression of the external power to account for work
expenditure by contact forces and contact couples acting on the boundary of P .

3 Equations (9) may also be derived by asking that the total force and the total
moment on any part be null, as in standard Strength-of-Materials textbooks (cf.
e.g. [17]).
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A consequence of (13) and of the arbitrariness of P is that

(pin + ̺ü)u̇ + (qin + ̺v̈)v̇ + (rin + ιϑ̈)ϑ̇ = 0 (14)

must hold identically at all sections, and at all times. In order to meet (14)
we choose:

pin = −̺ü, qin = −̺v̈, rin = −ιϑ̈. (15)

2.4 Dissipation inequality. For notational convenience we write:

s = (n, t,m), and e = (ε, γ, χ).

We consider constitutive equations of the form:

s = ŝ(e, ė), (16)

with ŝ a smooth function. In writing (16) we have in mind s(s, t) =
ŝ+(e(s, t), ė(s, t)) if s < I(t), and s(s, t) = ŝ−(e(s, t), ė(s, t)) if s > I(t).
Hence, ŝ stands for ŝ+ or ŝ− depending on whether a section follows or pre-
cedes the interface. In the same spirit we write the constitutive equation for
the free energy:4

ψ = ψ̂(e), (17)

with ψ̂ smooth. Next, we assume that during every process the dissipation
inequality:

d

dt

∫

P

ψ ds ≤

∫

P

s · ė ds (18)

holds for every part P not containing the interface. At those times, we have
d
dt

∫

P
ψ ds =

∫

P
ψ̇ ds. Then, by taking into account of (16) and (17) and

using the arbitrariness of P , we obtain:
(

∂ψ̂(e) − ŝ(e, ė)
)

· ė ≤ 0, (19)

an inequality to be satisfied at all points away from the interface during every
evolution process.

Following Coleman & Noll [4], we argue that (19) must hold whatever
the choice of e ∈ R

3 and ė ∈ R
3. By splitting ŝ into its equilibrium and

non-equilibrium parts, respectively,

ŝeq(e) = ŝ(e,0) and ŝne(e, ė) = ŝ(e, ė) − ŝeq(e),

we can use the algebraic lemma in Appendix B of [2] to obtain the following
representation for the equilibrium part of ŝ:

ŝeq(e) = ∂ψ̂(e) . (20)

An immediate consequence of (20) is that the local version (19) of the dissi-
pation inequality turns into a restriction on the sole non-equilibrium part of
ŝ:

0 ≤ ŝne(e, ė) · ė.

4 A slight modification of the argument that follows would rule out any depen-
dence of ψ on ė.
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3 Derivation of the interface condition

3.1 Interfacial kinematics. We denote by I(t) ∈ (0, l) the section

where the interface is located at time t. We allow the velocities (u̇, v̇, ϑ̇),

b

I(t)0 l

b

P (I(t), t)

Fig. 3 The moving interface.

the strains (ε, γ, χ), and the stresses (n, t,m) to jump across the moving
interface, but we require that u(·, t), v(·, t), and ϑ(·, t) be continuous across
the interface at each time t. This requirement characterizes the interface
as coherent and has two well-known consequences. First, the velocities u̇,
v̇, ϑ̇, and the (referential) velocity of the interface V = İ must satisfy the
compatibility conditions (cf. [6, Eq. (10-2a)])

[[u̇]] + [[u′]]V = 0, [[v̇]] + [[v′]]V = 0, [[ϑ̇]] + [[ϑ′]]V = 0; (21)

second, the transported velocities :

�

u(t) :=
d

dt
u(I(t), t),

�

v(t) :=
d

dt
v(I(t), t),

�

ϑ(t) :=
d

dt
ϑ(I(t), t)

are well defined, and satisfy:

�

u = 〈u̇〉 + 〈u′〉V ,
�

v = 〈v̇〉 + 〈v′〉V ,
�

ϑ = 〈ϑ̇〉 + 〈ϑ′〉V , (22)

where the brackets 〈 · 〉 denote the average of the enclosed field at either side
of the interface.

3.2 Balance equations at the interface. We generalize the notion of
virtual velocity by augmenting (u̇v, v̇v, ϑ̇v) with a quadruplet of real numbers

(Vv,
�

uv,
�

vv,
�

ϑv). We refer to Vv as the virtual velocity of the interface, and to

(
�

uv,
�

vv,
�

ϑv) as the virtual transported velocities of (u, v, ϑ). On account of
(21) and (22), we require that the elements of a generalized virtual velocity
satisfy:

[[u̇v]] + [[u′]]Vv = 0, [[v̇v]] + [[v′]]Vv = 0, [[ϑ̇v]] + [[ϑ′]]Vv = 0 (23)

and

�

uv = 〈u̇v〉 + 〈u′〉Vv,
�

vv = 〈v̇v〉 + 〈v′〉Vv,
�

ϑv = 〈ϑ̇v〉 + 〈ϑ′〉Vv. (24)
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In order to capture the physics underlying the evolution of the interface,
we stipulate that for every part P containing the interface the internal power
be:

Wint(P) =

∫

P

nε̇v + tγ̇v + mχ̇v ds+ GVv, (25)

where we interpret G as the internal force at the interface. Then, we stipulate
that the virtual external power expended on P be:5

Wext(P) =

∫

P

pu̇v + qv̇v + cϑ̇v ds+ FVv + P
�

uv +Q
�

vv +R
�

ϑv, (26)

whenever (u̇v, v̇v, ϑ̇v) has support contained in P . We interpret F , P , Q, and
R as external forces acting at the interface. We show in the Appendix that:

Wint(P) = −

∫

P

n
′u̇v + t

′v̇v + (m′ − t)ϑ̇v ds+ (G + [[nu′ + tv′ + mϑ′]])Vv

− [[n]]
�

uv − [[t]]
�

vv − [[m]]
�

ϑv. (27)

By using (26) and (27), and by taking into account (9), we deduce the fol-
lowing consequence of the balance of powers (8):

(G+[[nu′+tv′+mϑ′]]−F)Vv−([[n]]+P )
�

uv−([[t]]+Q)
�

vv−([[m]]+R)
�

ϑv = 0. (28)

By asking that (28) hold for every generalized virtual velocity, we obtain the
interface condition:

G + [[u′n + v′t + ϑ′m]] = F . (29)

along with the jump conditions :

[[n]] + P = 0, [[t]] +Q = 0, [[m]] +R = 0, (30)

3.3 Inertia. By following the line of reasoning adopted in Section 2.3, we
split into inertial and non-inertial parts the work conjugates of the velocities
appearing in (26). Besides (10), we now write:

P = P in + P ni, Q = Qin +Qni, R = Rin +Rni,

and

F = F in + Fni. (31)

We characterize the inertial parts by requiring that the inertial power :

W in(P) =

∫

P

pinu̇+ qinv̇ + rinϑ̇ ds+ F inV + P in�

u+Qin�

v +Rin
�

ϑ

5 In configurational mechanics the point of view that the external power should
be a linear functional of both referential and transported velocities is not new (cf.
[7, Section 4]).



9

be equal to minus the time derivative of the kinetic energy of P , that is to
say:

∫

P

pinu̇+ qinv̇ + rinϑ̇ ds+ F inV + P in�

u+Qin�

v +Rin
�

ϑ = −
d

dt

∫

P

k ds. (32)

By a standard transport theorem,

−
d

dt

∫

P

k ds = −

∫

P

k̇ ds+ [[k]]V . (33)

On combining (32) and (33) with the identity (for a derivation, see the Ap-
pendix):

[[k]] =
1

2
[[̺u′2 + ̺v′2 + ιθ′2]]V2 + [[̺u̇]]

�

u+ [[̺v̇]]
�

v + [[̺ϑ̇]]
�

ϑ, (34)

and on recalling (15), we conclude that:

(

F in −
1

2
[[̺u′2 + ̺v′2 + ιθ′2]]V2

)

V

+ (P in − [[̺u̇]]V)
�

u+ (Qin − [[̺v̇]]V)
�

v + (Rin − [[ιϑ̇]]V)
�

ϑ = 0.

By arguing as in Section 2.3, we are led to

F in =
1

2
[[̺u′2 + ̺v′2 + ιϑ′2]]V2, (35)

(cf. (2)) alongside with:

P in = [[̺u̇]]V , Qin = [[̺v̇]]V , Rin = [[ιϑ̇]]V , (36)

as the appropriate constitutive equations for the inertial interactions at the
interface.

3.4 Dissipation inequality. For the internal force, we restrict attention
to constitutive equations of the form:

G = Ĝ(e+, e−,V), (37)

where Ĝ is a smooth function and where e± denote the limiting values at-
tained by e = (ε, γ, χ) at either side of the interface. We now consider a part
P that contains the interface. In order to be consistent with (25), we replace
(18) with:

d

dt

∫

P

ψ ds ≤

∫

P

s · ėds+ GV ,

when writing the dissipation inequality for P . By a standard transport the-
orem, we have:

∫

P

ψ̇ ds− [[ψ]]V ≤

∫

P

s · ėds+ GV (38)
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By localizing (38) at the interface, we obtain:

(G + [[ψ]])V ≥ 0. (39)

By introducing the equilibrium and non-equilibrium parts of G:

Ĝeq(e+, e−) = Ĝ(e+, e−, 0),

Ĝne(e+, e−,V) = Ĝ(e+, e−,V) − Ĝeq(e+, e−),

and by using the constitutive equations (17) and (37), we write inequality
(39) as:

(Ĝeq(e+, e−) + Ĝne(e+, e−,V) + [[ψ̂(e)]])V ≥ 0.

By arguing as in Section 2.4, we conclude that the equilibrium part must
have the form:

Ĝeq(e+, e−) = −[[ψ̂(e)]] (= ψ̂(e−) − ψ̂(e+)), (41)

and that the non-equilibrium part must satisfy:

Ĝne(e+, e−,V)V ≥ 0 (42)

for every e+, e−, and V . We can read into (41) and (42) what we anticipated
in the Introduction, namely:

Geq = −[[ψ]], GneV ≥ 0. (43)

On combining (29), (31), (35), and (43), and on setting F in = 0 and

c = ψ − u′n − v′t − ϑ′m,

we eventually arrive at the configurational balance:

[[c]] − Gne = −
1

2
[[̺u′2 + ̺v′2 + ιθ′2]]V2,

which is the principal result of this paper.

4 Appendix

In this section we prove (27) and (34), and we show that (7) follows from (4)
when P ni = 0, Qni = 0, and Rni = 0.

Since u̇v has support compactly contained in P , a by-parts integration
yields:

∫

P

nε̇v ds = −

∫

P

n
′u̇v ds− [[nu̇v]].

On recalling the identity:

[[αβ]] = [[α]]〈β〉 + 〈α〉[[β]], (44)
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and using (23) and (24) we obtain:

−[[nu̇v]] = −[[n]]〈u̇v〉 − 〈n〉[[u̇v]] = −[[n]]
�

uv + [[n]]〈u′〉Vv + 〈n〉[[u′]]Vv

= −[[n]]
�

uv + [[nu′]]Vv,

whence:
∫

P

nε̇v ds = −

∫

P

n
′u̇v ds+ [[nu′]]Vv − [[n]]

�

uv.

By handling in the same fashion the other terms in the integral sign on the
right-hand side of (25), we obtain (27).

As to (34), the chain of equations:6

1

2
[[̺u̇2]] = [[̺u̇]]〈u̇〉 = [[̺u̇]]

�

u − [[̺u̇]]〈u′〉V = [[̺u̇]]
�

u+ [[̺u′]]〈u′〉V2

=
1

2
[[̺u′2]]V2 + [[̺u̇]]

�

u

should satisfy the reader.

We close with the derivation of (7) from (4). Let P ni = 0, Qni = 0, and
Rni = 0. Using the identity (44), the jump conditions (30), the constitutive
equations (36), and the compatibility conditions (21) we get:

−[[u′n]] = −〈u′〉[[n]] − [[u′]]〈n〉 = 〈u′〉P in − [[u′]]〈n〉 = 〈u′〉[[̺u̇]]V − [[u′]]〈n〉

= −
1

2
[[̺u′2]]V2 − [[u′]]〈n〉.

It is now apparent that:

−[[u′n + v′t + ϑ′m]] = −
1

2
[[̺u′2 + ̺v′2 + ιϑ′2]]V2 − [[u′]]〈n〉 − [[v′]]〈t〉 − [[ϑ′]]〈m〉,

an identity which we combine with (3) and (4) to arrive at the desired result.
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