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Abstract

Atoms at a free surface experience a different local environment than do atoms in the bulk

of a material. As a result, the energy associated with these atoms will, in general, be different

from that of the atoms in the bulk. The excess energy associated with surface atoms is called

surface free energy. In traditional continuum mechanics, such surface free energy is typically

neglected because it is associated with only a few layers of atoms near the surface and the ratio

of the volume occupied by the surface atoms and the total volume of material of interest is

extremely small. However, for nano-size particles, wires and films, the surface to volume ratio

becomes significant, and so does the effect of surface free energy. In this paper, a framework is

developed to incorporate the surface free energy into the continuum theory of mechanics.

Based on this approach, it is demonstrated that the overall elastic behavior of structural

elements (such as particles, wires, films) is size-dependent. Although such size-dependency is

negligible for conventional structural elements, it becomes significant when at least one of the

dimensions of the element shrinks to nanometers. Numerical examples are given in the paper

to illustrate quantitatively the effects of surface free energy on the elastic properties of nano-

size particles, wires and films.
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1. Introduction

Nanomaterials in general can be roughly classified into two categories. If the
characteristic length of the microstructure, such as the grain size of a polycrystal, is
in the nanometer range, it is called a nano-structured material. If at least one of the
overall dimensions of a structural element is in the nanometer range, it may be called
a nano-sized structural element. This may include nano-particles (Alymov and
Shorshorov, 1999; Pei and Hwang, 2003), nano-belts (Pan et al., 2001), nano-wires,
nano-films, etc. Clearly, nano-sized structural elements must, by necessity, be made
of nano-structured materials.
This paper is primarily concerned with the elastic behavior of nano-sized

structural elements such as nano-particles, nano-wires and nano-films. In particular,
the size dependency of the overall elastic behavior of such nano-sized structural
elements will be investigated.
The elastic behavior of a material is characterized by its elastic modulus, which

defines the proportionality between the stress and strain when the material is
subjected to external loads. Strictly speaking, modulus is an intensive property
defined at each material point when the material is assumed to be a continuum.
Therefore, it should be independent of the size of the material sample being
considered. However, for inhomogeneous materials such as composites, it is often
convenient for engineering design to define the overall (or effective) modulus of the
material. Such effective modulus of a composite may depend on the properties of its
constituents and the relative volume fraction of each constituent.
The reduced coordination of atoms near a free surface induces a corresponding

redistribution of electronic charge, which alters the binding situation (Sander, 2003).
As a result, the energy of these atoms will, in general, be different from that of the
atoms in the bulk. Thus, the elastic moduli of the surface region may differ from
those of the bulk. In this sense, all structural elements (large or small), are not strictly
homogeneous. However, the surface region is typically very thin, only a few atomic
layers. It is thus perfectly acceptable to neglect the surface region and to use the bulk
modulus of a structural element as its overall modulus, when the size of the element
is in micrometers or larger. For nano-sized structural elements, however, the surface-
to-volume ratio is much higher and the surface region can no longer be neglected
when considering the overall elastic behavior of nano-sized structural elements.
Consequently, the effective modulus of nano-sized structural elements should be
considered, and by definition becomes size-dependent.
To include the surface region in modeling nano-sized structural elements

inevitably involves discrete (or atomistic) analysis because the boundary region is
only a few atomic layers thick. So, one of the fundamental issues that needs to be
addressed in modeling the macroscopic mechanical behavior of nano-sized structural
elements is the large difference in length scales. To establish a link between the
atomistic structure of surfaces and macroscopic bulk elastic behavior, we propose a
two-step approach. First, the surface atomistic structure and interactions should be
captured and cast into surface free energy, a thermodynamic quantity of a
continuum. Then, this surface free energy will be included in the phenomenological
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description of strain energy density in modeling the macroscopic behavior of nano-
sized structural elements. The surface energy calculation based on molecular
dynamics will be presented in a separate paper (Dingreville et al., 2005). In the
present paper, we focus on the second step, namely, developing a continuum
framework that incorporates the surface free energy into the analysis of macroscopic
deformation of nano-sized structural elements. In particular, we study the effects
of surface free energy on the effective modulus of nano-particles, nano-wires and
nano-films.
Previous work most relevant to this paper is the study on surface and interface

stress effects in thin films. It has been found (Cammarata and Sieradzki, 1989, 1994;
Kosevich and Kosevich, 1989; Banerjea and Smith, 1987; Nix and Gao, 1998) that
the surface free energy could increase the apparent in-plane bi-axial modulus of a Cu
(1 0 0) free standing film of 2 nm thick by about 15–25%. Some experimental work
(Catlin and Walter, 1960) seems to indicate that the modulus enhancement could be
as much as 50%, although it has been pointed out by later studies (Itozaki, 1982;
Baker et al., 1993) that such a large enhancement might be due to experimental
errors. When the thickness reduces to below 5 nm, modulus enhancement/reduction
of 20% was also predicted (Streitz et al., 1994a, b; Cammarata and Sieradzki, 1989)
and confirmed experimentally for several multilayered metal films such as Cu–Nb
(Fartash et al., 1991). More recently, Miller and Shenoy (2000) developed a simple
model to incorporate surface stress in determining the size-dependent elastic
modulus of plates and rods. Using molecular dynamic simulations, Zhou and Huang
(2004) have shown that, depending upon the crystallographic orientations, the
effective elastic modulus of a thin free-standing film can either increase or decrease as
the film thickness decreases. The effect of surface stress on the growth of thin films
has been investigated by several researchers (e.g., Cammarata, 1997; Nix and
Clemens, 1999; Cammarata et al., 2000).
Another relevant area of research is the examination of elastic properties of grain

boundaries. A number of publications have suggested that the elastic moduli in the
grain boundary domain may differ significantly from those of the bulk. Wolf and co-
workers (Wolf et al., 1989; Wolf and Lutsko, 1989; Kluge et al., 1990; Wolf and
Kluge, 1990), who studied superlattices of (0 0 1) twist boundaries, as well as Adams
et al. (1989), who examined the S ¼ 5ð0 0 1Þ twist boundary in a thin film of copper,
have found an increase of the Young’s modulus perpendicular to the boundary plane
and a substantial decrease of the shear modulus in the boundary plane in the atomic
layers adjacent to the boundary. Bassani and co-workers (Alber et al., 1992; Bassani
et al., 1992; Vitek et al., 1994; Marinopoulos et al., 1998) defined the local elastic
modulus tensor and determined the values of the local elastic modulus tensor near
grain boundaries in several face center cubic metals using molecular dynamic
simulations. They, too, found that the local elastic moduli are significantly different
for atoms near the grain boundaries.
Since grain boundaries have distinct elastic properties, the effective modulus of

polycrystalline materials should also be dependent on the grain size because the
interface-(grain boundary) to-volume ratio is inversely proportional to the grain size.
Unlike the thin film case, however, existing literature has shown mixed results on the
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dependency of modulus on grain sizes. Some have reported reduction of elastic
modulus by as much as 30% (Suryanarayana, 1995; Gleiter, 1989; Korn et al., 1988)
for nano-structured materials. Others (e.g., Nieman et al., 1991; Krstic et al., 1993;
Fougere et al., 1995) argued that such reduction is purely due to porosities. However,
careful molecular dynamic simulations of copper polycrystal (Schiøtz et al., 1998)
have shown that the Young’s modulus is indeed reduced by over 25% when the grain
size is reduced to 5 nm, even when the polycrystal is fully dense. Similar reduction is
seen in simulations where the nanocrystalline metal is grown from a molten phase
(Phillpot et al., 1995).
It should be mentioned in passing that an elegant mathematical theory

incorporating surface stress and interfacial energy into the continuum mechanics
formulation was proposed in the 1970s by Gurtin and his co-workers (e.g., Gurtin
and Murdoch, 1975, 1978; Murdoch, 1976; Gurtin et al., 1998). Based on this theory,
Sharma and Ganti (2003) have developed the size-dependent Eshelby’s tensor for
embedded nano-inclusions incorporating interfacial energy. The size-dependent
effective modulus of an elastic matrix containing spherical nano-cavities at dilute
concentration was obtained by Yang (2004).
2. Surface free energy and surface stress

There are different ways in which the properties of the surface can be defined and
introduced. For example, if one considers an ‘‘interface’’ separating two otherwise
homogeneous phases, the interfacial property may be defined either in terms of an
inter-phase, or by introducing the concept of a dividing surface. In the first approach,
the system is considered to be one in which there are three phases present—the two
bulk phases and an inter-phase; the boundaries of the inter-phase are somewhat
arbitrary and are usually chosen to be at locations at which the properties are no
longer varying significantly with position. The inter-phase then has a finite volume
and may be assigned thermodynamic properties in the normal way (e.g., Capolungo
et al., 2005, 2005). In the second approach where a single dividing surface is used to
separate the two homogeneous phases, the interface contribution to the thermo-
dynamic properties is defined as the excess over the values that would obtain if the
bulk phases retained their properties constant up to an imaginary surface (of zero
thickness) separating the two phases. In this paper, we adopt this second approach.
The concept of a dividing surface was first introduced by Gibbs (1928) through the

use of Gibbs surface free energy (also called surface tension in some literature). The
Gibbs density of surface free energy, g, is defined as the reversible work involved in
creating a unit area of new surface at constant temperature, volume, and total
number of moles. To further illustrate the concept of surface free energy density for a
discrete system, consider a representative volume near the surface of a bulk crystal as
shown in Fig. 1(a). For simplicity, assume the surface is flat and homogeneous.
Results derived under these assumptions remain valid for non-planar surfaces
provided that the radius of curvature is significantly greater than the width of the
transition region, which is typically a few atomic layer thick (Blakely, 1973).
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The surface free (excess) energy, wn, of a near-surface atom is defined by the
difference between its total energy and that of an atom deep in the interior of a large
crystal. Clearly, wn depends on the location of the atom. For the crystal surface
shown in Fig. 1(a), the x3-dependence of wn is schematically shown in Fig. 1(b), i.e.,
it reaches its maximum value on the surface and tends to zero deep into the crystal.
In addition, wn is a function of the intrinsic crystal surface properties, as well as the
relative surface deformation. If there are N atoms underneath an area A, see
Fig. 1(a), then the total surface free energy associated with area A is given byPN

n¼1 wn. Thus, the Gibbs surface free energy density is defined by

g ¼
1

A

XN

n¼1

wn. (1)

Note that the above definition is in the deformed configuration. It can be viewed
as the Eulerian description of the surface free energy density. For solid crystal
surfaces, the Lagrange description of the surface free energy density can be defined
by

G ¼
1

A0

XN

n¼1

wn, (2)

where A0 is the area originally occupied in the undeformed configuration by the same
atoms that occupy the area A in the deformed configuration. It can be easily shown
that the two areas are related through

A ¼ A0ð1þ �sZZÞ, (3)

where �sab is the Lagrange surface strain relative to the undeformed crystal lattice.
Continuity of the strain field requires, for example, in the particular coordinate
system shown in Fig. 1(a),

�sab ¼ �ab
��
x3¼0

; a;b ¼ 1; 2,
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where �ij is the bulk Lagrange strain of the crystal under a given external loading. In
the above and the rest of this paper, Roman indices range from 1 to 3 and Greek
indices range from 1 to 2, unless otherwise indicated. For future reference, the
Lagrangian strain measure will be used in this paper.
Having defined the surface free energy density, one can now introduce the concept

of surface stress. Surface free energy corresponds to the work of creating a unit area
of surface, whereas surface stress is involved in computing the work in deforming a
surface. Specifically, the change in surface free energy should be equal to the work
done by the surface stress as it deforms the surface area, i.e.,

dðGA0Þ ¼ A0Ss
ab d�

s
ab, (4)

where Ss
ab is the second Piola–Kirchhoff surface stress tensor. It thus follows that

Ss
ab ¼

dG
d�sab

. (5)

This can be considered as the Lagrange description of the well-known Shuttle-
worth (1950) relation.
Now consider the total surface free energy of a given surface. Let S be the surface

area after the deformation, and S0 be the corresponding area in the undeformed
crystal lattice. It then follows from Eq. (4) that the total strain energy stored in the
deformed surface is given by

U surface ¼

Z
S0

Z �sab

0

Ss
abðeklÞdeab

� �
dS0, (6)

where �s
ab is the surface strain in the final deformed configuration, eab is the

integration variable representing the surface strain, and the fact that the surface
stress is a function of the surface strain is explicitly indicated.
Assuming the surface free energy density is a smooth function of the surface

strain, one may expand the surface free energy density into power a series of surface
strain, �sab,

Gð�sabÞ ¼ G0 þ
qG
q�sab

�sab þ
1

2

q2G
q�sabq�

s
kl

�sab�
s
kl þ

1

6

q3G
q�sabq�

s
klq�

s
gZ

�sab�
s
kl�

s
gZ � � �

¼ G0 þ Gð1Þ
ab �

s
ab þ

1

2
Gð2Þ
abkl�

s
ab�

s
kl þ

1

6
Gð3Þ
abklgZ�

s
ab�

s
kl�

s
gZ � � � , ð7Þ

where G0, G
ð1Þ
ab ; � � � are material and surface dependent. For a given material surface,

they can be either measured experimentally or computed using atomistic simulations
(Ackland and Finnis, 1986). Their values computed using molecular dynamic
simulation will be reported in a separate publication (Dingreville et al., 2005) for

some common materials. Because of symmetry, one has Gð1Þ
ab ¼ Gð1Þ

ba , G
ð2Þ
abkl ¼ Gð2Þ

klab ¼

Gð2Þ
bakl and Gð3Þ

abklgZ ¼ Gð3Þ
baklgZ ¼ Gð3Þ

klabgZ ¼ Gð3Þ
klgZab. These conditions imply that there are

at most three independent parameters in Gð1Þ
ab , six in Gð2Þ

abkl and eighteen in Gð3Þ
abklgZ.
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Substitution of Eq. (7) into Eq. (5) yields,

Ss
ab ¼ Gð1Þ

ab þ Gð2Þ
abkl�

s
kl þ

1
2G

ð3Þ
abklgZ�

s
kl�

s
gZ. (8)

Clearly, Gð1Þ
ab ¼ Gð1Þ

ba gives the internal stress of the surface. It represents the part
of surface stress that exists even when the surface strain is absent (i.e., when
the surface atoms remain in their positions as if they were deep inside a large

crystal). The two-dimensional fourth-order tensor Gð2Þ
abkl ¼ Gð2Þ

klab ¼ Gð2Þ
bakl ¼ Gð2Þ

ablk

represents the surface elasticity tensor, while the two-dimensional sixth-order
tensor Gð3Þ

abklgZ can be viewed as the tensor of the third-order elastic constants of the
surface.
Another important comment that must be made here is that both surface free

energy density and surface stress are macroscopic thermodynamic quantities. The
basic idea of Gibbs surface energy is based on the concept of a dividing surface that
separates the two adjacent phases. Under this assumption, the surface contributions
to the thermodynamic quantities (e.g., surface free energy and surface stress) are
defined as the excesses over the values that would obtain if the bulk phases retained
their properties constant up to the dividing surface. In other words, the interface (not
interphase) is a mathematical surface of zero thickness over which the thermo-
dynamic properties change discontinuously from one bulk phase to the other. The
excess amount is associated only with the dividing surface. Obviously, this is only an
idealization of the realistic situation. In the case of a free surface, for example,
contributions to the surface free energy come from several layers of atoms near
the surface. Molecular dynamics simulations show that free surface induced lattice
distortion extends about three layers of atoms into the bulk. So, strictly speaking, the
surface free energy derives from not only atoms at the free surface, but also other
atoms near the surface. The idealization of the dividing surface is thus valid if and
only if the bulk crystal is much larger than several atomic sizes. If the bulk crystal
contains only a small number of atoms, the validity of macroscopic thermodynamic
quantities such as surface free energy is questionable.
To close this section, we note that deformation in an elastic solid due to surface

stresses has been studied quite extensively. Although not explicitly related to surface
free energy, Gurtin and Murdoch (1975, 1978), and Gurtin et al. (1998) have
developed a continuum framework for elastic surfaces of solids.
3. Effective modulus of a particle

Conventionally, the elastic modulus of a material is an intensive property. It is
defined as a point-wise quantity that relates the stresses and strains at each point in
the material. When a material is not homogeneous, such as a composite material, its
elastic modulus may vary from point to point. In this case, the concept of effective
modulus can be introduced. For example, effective modulus is used to characterize
the overall stiffness of a fiber reinforced composite, where the fiber and matrix have
different elastic moduli.
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Now consider a particle made of a single-phase material. On or near the particle
surface, the atomistic structure is somewhat different from that of the bulk.
Therefore, a particle of a single-phase material, strictly speaking, is not a
homogeneous body. The overall stiffness of the particle needs to be characterized
by its effective modulus. However, when the particle size is large enough, the surface
region is negligible in comparison to the particle volume. In this case, the surface
region can be neglected and the particle can be considered as a homogeneous body.
Therefore, its elastic modulus is uniform and is the same as that of the material from
which the particle is made. This is no longer the case when the particle size shrinks to
the nanometer range, where the surface region becomes significant in comparison to
the particle size. Consequently, the particle must be viewed as an inhomogeneous
body, and the effective modulus of the particle needs to be used to characterize the
stiffness of the particle. In this section, a formulation is developed to compute the
effective modulus of a particle that incorporates the effect of its surface.
To this end, consider a perfect crystal of infinite extent. Within the infinite crystal,

let O be an ellipsoidal region consisting of a certain number of atoms. Let the initial
volume of O be V 0, and its surface area be S0. Now imagine that O is removed from
the infinite crystal to become a stand-alone particle, as shown in Fig. 2. The newly
created surface of the particle gives rise to surface stresses. Consequently, the particle
may deform. The self-equilibrium state of the particle will be discussed later in this
section. For now, simply let V̂ and Ŝ be the volume and surface area, respectively, of
the particle in its self-equilibrium state.
To describe the deformation of the particle, let us introduce a uniform strain �ij in

the bulk of the particle, where �ij is measured from the perfect lattice of an
undeformed crystal of infinite extent. For an ellipsoidal particle, see Fig. 3, the
surface strain is related to the absolute bulk strain within the particle through a
coordinate transformation

�sab ¼ taitbj�ijjS, (9)

where the transformation tensor tai for the ellipsoidal surface is derived in
Appendix A.
Fig. 2. A particle is created by removing it from a bulk crystal.
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The total strain energy of the particle corresponding to �ij can then be written as,

U ¼ Ubulk þ U surface, (10)

where Ubulk is the total strain energy in the bulk of the particle,

Ubulk ¼

Z
V0

Z �ij

0

qF
qeij

deij dV0 ¼

Z
V0

½Fð�ijÞ � Fð0Þ	dV0, (11)

where F is the bulk elastic potential, which can be expanded into a series of the bulk
strain tensor,

F ¼ 1
2
Cijkl�ij�kl þ

1
6
C

ð3Þ
ijklmn�ij�kl�mn þ � � � , (12)

where Cijkl and C
ð3Þ
ijklmn are, respectively, the tensors of second- and third-order elastic

constants of the perfect crystal lattice. Substituting Eq. (12) into Eq. (11) and
neglecting higher order of strains leads to

Ubulk ¼ V 0
1
2
Cijkl�ij�kl þ

1
6
C

ð3Þ
ijklmn�ij�kl�mn

h i
. (13)

The total surface free energy on the entire particle surface follows from Eq. (6),

U surface ¼

Z
S0

Z �sab

0

Ss
abðeklÞdeab

� �
dS0. (14)

Substituting Eq. (5) into Eq. (14) yields,

U surface ¼

Z
S0

Z �sab

0

dG
deab

deab

� �
dS0 ¼

Z
S0

½Gð�sabÞ � Gð0Þ	dS0. (15)
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Making use of the expansion (8) in Eq. (15), one has

U surface ¼

Z
S0

Gð1Þ
ab �

s
ab þ

1
2
Gð2Þ
abkl�

s
ab�

s
kl þ

1
6
Gð3Þ
abklgZ�

s
ab�

s
kl�

s
gZ

h i
dS0, (16)

where the surface strain is related to the bulk strain within the particle through the
coordinate transformation (9). Substitution of Eq. (9) into Eq. (16) yields the strain
energy stored in the surface of the ellipsoidal particle O when it is subjected to the
bulk strain �ij,

U surface ¼
V 0

a
tij�ij þ

V 0

2a
Qijkl�ij�kl þ

V 0

6a
Pijklmn�ij�kl�mn, (17)

where a is the smallest of the three semi-axes of the ellipsoid and

tij ¼
a

V0

Z
S0

Gð1Þ
ab taitbj dS0; Qijkl ¼

a

V 0

Z
S0

Gð2Þ
abkltaitbj tkktll dS0, (18)

Pijklmn ¼
a

V 0

Z
S0

Gð3Þ
abklgZ taitbj tkktll tgmtZn dS0. (19)

The fourth-order tensor Qijkl can be viewed as the surface rigidity tensor. It
represents the combined effect of the surface stiffness, Gð2Þ

abkl, and the surface
geometry. Note that the surface rigidity tensor has the dimension of force per unit
length. It possesses the usual symmetry of stiffness tensors, Qijkl ¼ Qklij ¼

Qjikl ¼ Qijlk. The integrals in Eqs. (18)–(19) can be further written as

tij ¼
3

4p

Z 2p

0

Z p

0

Gð1Þ
ab taitbjrdf

� �
dy, (20)

Qijkl ¼
3

4p

Z 2p

0

Z p

0

Gð2Þ
abkltaitbj tkktllrdf

� �
dy, (21)

Pijklmn ¼
3

4p

Z 2p

0

Z p

0

Gð3Þ
abklgZtaitbj tkktll tgmtZnrdf

� �
dy, (22)

where

r ¼ sin f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2f cos2 yþ

a2

b2
sin2 f sin2 yþ

a2

c2
cos2 f

s
. (23)

It is important to observe that these tensors depend on the shape of the ellipsoid, but
not the size.
It then follows from substituting Eqs. (17) and (11) into Eq. (10) that

U ¼
V0

a
tij�ij þ

V0

2
Cijkl þ

1

a
Qijkl

� �
�ij�kl þ

V0

6
C

ð3Þ
ijklmn þ

1

a
Pijklmn

� �
�ij�kl�mn.

(24)

This gives the total strain energy of the particle when it deforms relative to the
undeformed perfect crystal lattice of an infinite extent.
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Because of surface stresses, the self-equilibrium state of the particle is different
from the perfect crystal lattice of an infinite extent. The strain tensor, �̂ij , that
describes the deformation from the perfect crystal lattice to the self-equilibrium state
of the particle can be found by minimizing the total strain energy. To this end,
consider

qU

V0q�ij

����
�ij¼�̂ij

¼ Cijkl þ
1

a
Qijkl

� �
�̂kl þ

1

2
C

ð3Þ
ijklmn þ

1

a
Pijklmn

� �
�̂kl �̂mn þ

1

a
tij ¼ 0.

(25)

This is a set of six quadratic equations which, in general, needs to be solved
numerically for the six components of self-equilibrium strain tensor �̂ij . Once �̂ij is
found, the effective modulus tensor of the particle at the state of self-equilibrium can
be defined as

C̄ijkl ¼
q2

q�ijq�kl

U

V 0

� �����
�¼�̂

¼ Cijkl þ
1

a
Qijkl þ C

ð3Þ
ijklmn þ

1

a
Pijklmn

� �
�̂mn. (26)

Note that in deriving Eq. (26), it has been assumed that the strain in the ellipsoid
bulk is uniform. Consequently, the effective modulus tensor given by Eq. (26) is
generally an upper bound.
When the self-equilibrium strain is small, i.e., �̂ij51, the quadratic term in Eq. (25)

can be neglected. This yields the self-equilibrium strain,

�̂ij 
 �
1

a
Cijkl þ

1

a
Qijkl

� ��1

tkl . (27)

Substitution of Eq. (27) into Eq. (26) leads to

C̄ijkl ¼ Cijkl þ
1

a
Qijkl �

1

a
C

ð3Þ
ijklmn þ

1

a
Pijklmn

� �
Cmnpq þ

1

a
Qmnpq

� ��1

tpq. (28)

This is the effective elastic modulus tensor of the particle.
Further, if one assumes

Cijklb
1

a
Qijkl ; C

ð3Þ
ijklmnb

1

a
Pijklmn, (29)

Eqs. (27)–(28) can be simplified to obtain the explicit expressions of the self-
equilibrium strain and the effective elastic modulus tensor,

�̂ij 
 �
1

a
C�1

ijkltkl ¼ �
1

a
Mijkltkl , (30)

C̄ijkl ¼ Cijkl þ
1

a
ðQijkl � C

ð3Þ
ijklmnMmnpqtpqÞ. (31)

where Mijkl ¼ C�1
ijkl is the compliance tensor of the bulk crystal.

As mentioned earlier, Qijkl and Pijklmn are independent of the particle size a.
Therefore, the assumptions made in Eq. (29), for a given material, effectively place a
lower limit on the particle size for which the explicit expressions (30)–(31) are valid.
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All of our numerical experiments have shown that Eq. (29) is met for a as small as a
few nanometers.
It is seen that the contribution of the surface energy to the effective modulus of the

particle is inversely proportional to the particle size. It will be shown later
numerically that the surface energy contribution is negligible unless the particle size
approaches the nanometer range.
To close this section, it is worth mentioning that if the surface stiffness tensor is

independent of the location, i.e., the surface is homogeneous, then the tensor Qijkl

can be obtained analytically for spherical particles ða ¼ b ¼ cÞ, wires and fibers.
Their expressions are given in Appendix C.

3.1. Thin films

Consider a thin film made of a single crystal with cubic symmetry. Further, it is
assumed that the top and bottom surfaces of the film are the f1 0 0g planes of the
cubic crystal. In the crystallographic coordinate system shown in Fig. 4, the second-
and third-order elasticity tensors of the crystal are denoted by Cijkl and C

ð3Þ
ijklmn,

respectively. Using the Voigt notation, the non-zero, independent components of
these tensors are C11, C12 and C44 for Cijkl , and C111, C112, C123, C144, C155 and C456

for C
ð3Þ
ijklmn. The relationship between indices of the Voigt and tensorial notations is

given in Appendix B. For example, 11 ! 1, 23 ! 4, thus, C1123 ¼ C14 and
C

ð3Þ
112323 ¼ C144.
In this particular case, the integrals in Eq. (18) can be easily evaluated to yield the

non-zero components of tij and Qijkl

t22 ¼ t33 ¼ G11, (32)

Q2222 ¼ Q3333 ¼ K s þ ms; Q2233 ¼ K s � ms; Q2323 ¼ ms, (33)

where G11, K s and ms are related to Gð1Þ
ab and Gð2Þ

abkl as indicated in Appendix B.
Substituting the above into Eq. (31) yields the effective modulus tensor. Non-zero
components of the effective modulus tensor for the thin film in terms of the Voigt
notation are given in Appendix C.
x1

x2

x3

2a

Fig. 4. A single crystal film.
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It is seen from these expressions that the effective modulus tensor no longer has
cubic symmetry. It becomes orthotropic. One quantity of interest is the in-plane
unidirectional Young’s modulus in the h1 0 0i direction,

Ēh1 0 0i ¼ Ē22 ¼ Ē33 ¼ ðC̄22 � C̄23Þ 1þ
C̄11C̄23 � C̄

2

12

C̄11C̄22 � C̄
2

12

" #
. (34)

Substituting Eqs. (C.4)–(C.9) into Eq. (34) and keeping terms only up to 1=a yields

Ēh1 0 0i ¼ Eh1 0 0i þ
1

a
ðK skþ G11wÞ, (35)

where

Eh1 0 0i ¼ C11 �
2C2

12

C11 þ C12
(36)

is the unidirectional Young’s modulus of the bulk crystal in the h1 0 0i directions and

k ¼
ms

K s

C11 þ 2C12

C11C12

� �2

þ
C11

C11 þ C12

� �2

, (37)

w ¼
Z

ðC11 þ C12Þ
2

2C3
12 � C3

11 � 2C12C
2
11 � 2C2

12C11

C11C12

� �
C111

�

þ 6C11 �
C2
11

C12
þ
4C2

12

C11

� �
C112 þ 2 C11 � 2C12 �

2C2
12

C11

� �
C123

�
. ð38Þ

Clearly, k and w are due to surface stress and third-order elastic constants. The
parameter Z in the above equation is defined in Appendix C by Eq. (C.10).
The in-plane biaxial Young’s modulus is defined as

Ēb ¼ C̄22 þ C̄23 �
2C̄

2

12

C̄11

. (39)

Substituting Eqs. (C.4)–(C.9) into Eq. (39) and keeping terms only up to 1=a yields

Ēb ¼ Eb þ
1

a
ð2K s þ G11wÞ, (40)

where

Eb ¼ C̄11 þ C̄12 �
2C̄

2

12

C̄11

(41)

is the biaxial Young’s modulus of the bulk crystal in the f1 0 0g planes and

w ¼ Z
4C2

12

C3
11

�
1

C12

 !
C111 þ 3

2

C11
�

1

C12
�
4C12

C2
11

 !
C112 þ

6

C11
C123

" #
. (42)

Clearly, w is due to surface stress and third-order elastic constants.
Under biaxial loading, s22 ¼ s33 and s11 ¼ 0, one can define an effective biaxial

Poisson’s ratio, n̄b ¼ ��11=�, where � ¼ �22 ¼ �33 because of the cubic symmetry in
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the x2x3-plane of the film. Making use of the above equations in conjunction with
Eqs. (C.4)–(C.9), one arrives at

n̄b ¼
2C12

C11
þ

2G11Z
aC11C12

4C12

C11
� 1

� �
C112 �

2C2
12

C2
11

C111 � C123

" #
, (43)

where the first term is the biaxial Poisson’s ratio for a bulk crystal.
It is noted here that when n̄b is assumed to be independent of the film thickness,

i.e., neglecting the second term in Eq. (43), the effective biaxial Young’s modulus
(40) reduces to the effective biaxial modulus derived by Streitz et al. (1994a).
The self-equilibrium strain of the film follows directly from Eq. (27),

�̂ ¼
G11Z

a

2=C11 0 0

0 �1=C12 0

0 0 �1=C12

2
64

3
75. (44)

Clearly the sign of G11 determines whether there is a negative (contraction) or
positive (dilatation) relaxation of the film in the plane directions. For C1240,
positive G11 would yield negative in-plane strain and positive transverse stain. The
same result for the in-plane self-equilibrium �̂22 ¼ �̂33 has been obtained by Streitz
et al. (1994a).
3.2. Thin wire of square cross-section

Now, consider a thin wire of square cross-section made of a single crystal with
cubic symmetry as shown in Fig. 5. Again, assume that the surfaces of the wire are
the f1 0 0g planes of the cubic crystal. The corresponding effective modulus tensor of
the wire can be directly computed from the general formulas given by Eqs. (27)–(40).
The non-zero components of the effective modulus tensor are given in Appendix C,
see Eqs. (C.20)–(C.25).
It is seen from Eqs. (C.20)–(C.25) that, just like in the case of the film, the effective

modulus tensor becomes orthotropic. The unidirectional Young’s modulus in the
axial direction is given by

Ēh1 0 0i ¼ Eh1 0 0i þ
1

a
ðK skþ G11wÞ, (45)
x1

x2

x3

2a

Fig. 5. A thin wire of square cross-section.
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where

Eh1 0 0i ¼ C11 �
2C2

12

C11 þ C12
(46)

is the unidirectional Young’s modulus of the bulk crystal in the h1 0 0i directions and

k ¼
ms

K s

C11 þ 2C12

C11 þ C12

� �2

þ
C2
11 þ 4C2

12

ðC11 þ C12Þ
2
, (47)

w ¼
Z

ðC11 þ C12Þ
2
3 2C11 � 4C12 �

C2
11

C12

� �
C112

�

þ
4C2

12

C11
�

C2
11

C12

� �
C111 þ 6C11C123

�
. ð48Þ

The Poisson’s ratio is given by

n̄13 ¼ n̄23 ¼ n13 þ
1

a
K skþ G11wð Þ, (49)

where

n13 ¼ n23 ¼
C12

C11 þ C12
(50)

is the Poisson’s ratio of the bulk crystal and

k ¼
C11

C11 þ C12ð Þ
2
�

ms

K s

C11 þ 2C12

ðC11 þ C12Þ
2
, (51)

w ¼
Z

ðC11 þ C12Þ
2

1� 2
C12

C11

� �
C111

�

þ 4�
3C11

C12
�
4C12

C11

� �
C112 þ 3�

C11

C12
þ
2C12

C11

� �
C123

�
. ð52Þ

The self-equilibrium strain is given by

�̂ ¼
�G11Z

a

C11 � 2C12

C11C12
0 0

0
C11 � 2C12

C11C12
0

0 0
2

C12

2
66666664

3
77777775
. (53)

3.3. Spherical particles

Consider a spherical particle made of an isotropic elastic solid. Furthermore,
assume that the particle’s surface is homogeneous and isotropic. Clearly, this is an
idealized case, for in reality a curved crystal surface inevitably involves different
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crystallographic surfaces, and thus becomes non-homogeneous and anisotropic. It is
nevertheless interesting to study such an idealized case because of the simplicity of
the solution.
Under such assumptions, the tensors Qijkl and Rijkl ¼ C

ð3Þ
ijklmnMmnpqtpq can be easily

obtained analytically by setting a ¼ b ¼ c in the equations derived earlier. Their
expressions are given in Appendix C, see Eqs. (C.26)–(C.28).
Making use of Eqs. (C.26)–(C.28), one can easily find that the effective stiffness

tensor is still isotropic for an isotropic spherical particle with isotropic surface. For
such a particle of radius a, the effective bulk and shear moduli are

K̄ ¼ K þ
4

3a
K s �

G1

K

3

2
L þ 3M þ

4

3
N

� �� �
, (54)

m̄ ¼ mþ
1

a

1

5
ðK s þ 6msÞ �

2G1

3K
ð3M þ 4NÞ

� �
, (55)

where K and m are, respectively, the bulk and shear moduli of the bulk material, L,
M and N are the third-order elastic constants related to Cijk, see Appendix B.
Making use of Eq. (27), one can compute the self-equilibrium strain of the

spherical particle,

�̂ij ¼ �
1

a
Mijkltkl ¼ �

2G11

3aK
dij. (56)

This is identical to the result given by Cammarata (1997). It is seen from Eq. (56)
that a positive G11 would mean a contraction of the sphere due to surface stress.
4. Numerical examples and discussion

In this section, several numerical examples for the effective modulus and effective
Poisson’s ratio of copper spherical particles, wires of square cross-section and films
are presented. For the films and wires, it is assumed that they are made of copper
single crystals and that their crystallographic directions coincide with the surfaces of
the films and wires as shown in Figs. 4 and 5. The cubic (second-order) elastic
constants of the copper single crystals are C11 ¼ 167:38GPa, C12 ¼ 124:11GPa. The
third-order elastic constants and the surface properties are given in Table 1. For
the spherical particles, the isotropic elastic properties given in Table 2 are used. The
elastic properties listed in Tables 1 and 2 are taken from (Dingreville et al., 2005).
Table 1

Bulk and surface elastic constants for single crystal copper

C111 (GPa) C112 (GPa) C123 (GPa) G11 ðJ=m2Þ Ks ðJ=m2Þ ms ðJ=m2Þ

832.02 �621.92 15.29 1.3961 2.6755 �3.5524
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Table 2

Bulk and surface elastic constants for polycrystal copper (isotropic)

K (GPa) m (GPa) G11 ðJ=m2Þ Ks ðJ=m2Þ ms ðJ=m2Þ

138.53 43.28 1.3961 2.6755 �3.5524
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Fig. 6. Normalized effective Young’s modulus of Cu films and wires of various sizes.
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The effective unidirectional and biaxial moduli for single crystal Cu films and
wires of various thicknesses are plotted in Fig. 6. For the wires, the axial Young’s
modulus increases as the wire becomes thinner. For a Cu wire with diameter of 4 nm,
the axial modulus is almost 20% more than its bulk value. A similar trend is seen for
the biaxial modulus of Cu films. However, the uniaxial Young’s modulus for the film
shows the opposite trend, i.e., it decreases with film thickness. For a 2 nm thick film,
the uniaxial modulus is almost 20% less than its bulk value. Intuitively, one would
think that the uniaxial Young’s modulus for the film should behave more like the
axial Young’s modulus of the wire, because a film under uniaxial tension can be
viewed as a row of many wires placed side-by-side under identical axial tension. This
would be the case if the surface effect were not a factor. When the surface effect is
significant, a row of wires placed side-by-side is no longer equivalent to a film
because the surface area for the row of wires would be much larger.
The Poisson’s ratio for the wire and the biaxial Poisson’s ratio for the film are

plotted in Fig. 7 for wires and films of various thicknesses. The dashed lines indicate
the bulk values without the effect of free surfaces. It is seen that the bi-axial Poisson’s
ratio of the film decreases with decreasing film thickness, while the axial Poisson’s
ratio of the wire increases with decreasing wire thickness. In both cases, a sharp
change occurs around thickness of 2 nm. It is interesting to note that molecular
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dynamic simulations by Diao et al. (2003, 2004) have shown that single crystal gold
wires undergo a phase transformation from face-centered cubic symmetry to body
centered tetragonal symmetry when the wire diameter reduces to around 2 nm due to
surface stress, giving rise to a significant increase in Poisson’s ratio.
Plotted in Fig. 8 is the self-equilibrium strain for the films and wires. The in-plane

strain for the film and the axial strain for the wire are both negative, indicating a
reduction in size (area of the film, or length of the wire). This is due to the tensile
surface stress for Cu in the h1 0 0i direction. Accompanying the size reduction is the
thickness increase indicated by the positive transverse strain for both film and wire.
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It is noted that the self-equilibrium strain is rather significant. For example, a film of
4 nm thickness could have an in-plane shrinkage of over 0.6% and transverse
expansion of almost 1%.
Now, consider a spherical particle made of isotropic elastic material with elastic

properties given in Table 2. The effective shear and bulk moduli of the particle are
shown in Fig. 9. It is seen that the shear modulus is much less influenced by the
surface energy. The self-equilibrium strain of the particle is shown in Fig. 10. Clearly,
for a Cu particle, the surface tension tends to shrink the particle. For a particle of
2 nm in diameter, the radial strain is about 1%.
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Finally, as a partial validation of the model developed here, the effective Young’s
modulus of thin films of various thickness was also computed using molecular static
(MS) simulations. The embedded atom method was used in conjunction with the
conjugate gradient method in the MS simulations. A detailed description of the MS
simulation can be found in Dingreville et al. (2005). It is worth mentioning here,
though, that the MS simulation is much more computationally intensive than the
method developed here. The MS simulation results for the in-plane uniaxial Young’s
modulus are shown in Fig. 11 together with the results from the present model. It is
seen that the agreement is excellent for a film as thin as 1 nm. It is also noted that the
values shown in Fig. 11 also agree very well with the results by Zhou and Huang
(2004) using molecular dynamic simulations and ab initio calculations.
5. Summary

In this paper, a framework is developed to incorporate the surface free energy into
the continuum theory of mechanics. Analytical expressions were derived for the
effective elastic modulus tensor of nano-sized structural elements that account for
the effects of surface free energy. Explicit expressions of the effective elasticity
tensors were obtained for thin films, wires and spherical particles. The solutions
derived here show that the overall elastic properties of structural elements (such as
particles, wires, films) are size-dependent. Although such size-dependency is
negligible for conventional structural elements, it becomes significant when at least
one of the dimensions of the structural element shrinks to nanometers. Numerical
examples for copper were given in the paper to quantitatively illustrate the effects of
surface free energy on the elastic properties of nano-sized particles, wires and films.
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It is found that the effect of surface energy on the elastic behavior becomes
significant when one of the characteristic dimensions is below about 10 nm.
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Appendix A. Coordinate transformation

Consider the ellipsoid O shown in Fig. 3. When the ellipsoid is subjected to a
uniform strain field, �ij, the surface of the ellipsoid deforms accordingly. Let the two-
dimensional surface strain tensor, �sab, be defined in a local coordinate system
ði1; i2; i3Þ, where i1 and i2 are tangent to the surface, and i3 is normal to the surface.
Clearly, the choice of i1 and i2 is not unique. The following approach is taken to
uniquely define the local coordinate system on the ellipsoidal surface.
In the spherical coordinate system,

x1 ¼ r cos y sin f; x2 ¼ r sin y sin f; x3 ¼ r cos y,

0pyp2p; 0pfpp, ðA:1Þ

a point on the surface of the ellipsoid can be represented by the vector,

Rðy;fÞ ¼ a cos y sin fI1 þ b sin y sin fI2 þ c cos fI3. (A.2)

A local coordinate system at this point may be introduced by the following three
unit vectors:

i3 ¼
1

d1
cos y sin fI1 þ

a

b
sin y sin fI2 þ

a

c
cos fI3

� �
, (A.3)

i2 ¼
qR
qy

�
qR
qy

����
���� ¼

1

d2
�

a

b
sin yI1 þ cos yI2

� �
, (A.4)

i1 ¼ i2 � i3 ¼
a

cd1d2
cos y cos fI1 þ

a2

bcd1d2
sin y cosfI2 �

d2

d1
sin fI3, (A.5)

where

d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 y sin2 fþ

a2

b2
sin2 y sin2 fþ

a2

c2
cos2 f

s
, (A.6)

d2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

b2
sin2 yþ cos2 y

s
, (A.7)
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The transformation matrix between the global ðI1; I2; I3Þ and the local ði1; i2; i3Þ
coordinate systems is thus given by

½tij 	 ¼

a

cd1d2
cos y cos f

a2

bcd1d2
sin y cos f �

d2

d1
sin f

�
a

bd2
sin y

1

d2
cos y 0

1

d1
cos y sin f

a

bd1
sin y sin f

a

cd1
cos f

2
66666664

3
77777775
. (A.8)

Therefore, according to the tensor transformation rule, the surface strain in the
local coordinate system can be written as

�sab ¼ taitbj�ij . (A.9)

For a spherical particle ða ¼ b ¼ cÞ, the transformation matrix reduces to

½tij 	 ¼

cos y cos f sin y cos f � sin f

� sin y cos y 0

sin f cos y sin f sin y cos f

2
64

3
75. (A.10)
Appendix B. Bulk and surface elasticity tensors

When subjected to a strain field �ij , the strain energy of an elastic body can be
written as

F ¼ 1
2

Cijkl�ij�kl þ
1
6

C
ð3Þ
ijklmn�ij�kl�mn þ � � � , (B.1)

where Cijkl is a fourth-order tensor consisting of (second-order) elastic constants,
and C

ð3Þ
ijkl is a sixth-order tensor consisting of the third-order elastic constants of the

solid. It can be easily shown that the following symmetry conditions must be met by
these tensors:

Cijkl ¼ Cjikl ¼ Cklij, (B.2)

C
ð3Þ
ijklmn ¼ C

ð3Þ
jiklmn ¼ C

ð3Þ
klmnij ¼ C

ð3Þ
mnijkl ¼ C

ð3Þ
ijmnkl ¼ C

ð3Þ
mnklij ¼ C

ð3Þ
klijmn. (B.3)

Instead of the tensorial notation, it is convenient in certain cases to use the Voigt
(contracted) notation for these tensors. For example, C11 is used for C1111, C12 is
used for C1122, C123 is used for C112 233, etc. The general rules to contract the indices
are ð11Þ ! ð1Þ, ð22Þ ! ð2Þ, ð33Þ ! ð3Þ, ð12Þ ! ð6Þ, ð13Þ ! ð5Þ, ð23Þ ! ð4Þ. Of course,
the symmetry properties of the elasticity tensor remain in their contracted form, e.g.,
C12 ¼ C21 and C123 ¼ C312.
For solids with cubic symmetry, there are three independent non-zero second-

order elastic constants for Cijkl ,

C11 ¼ C22 ¼ C23; C12 ¼ C13 ¼ C23; C44 ¼ C55 ¼ C66 (B.4)
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and six independent non-zero third-order elastic constants for C
ð3Þ
ijklmn,

C111 ¼ C222 ¼ C333; C144 ¼ C255 ¼ C366, (B.5)

C112 ¼ C113 ¼ C122 ¼ C133 ¼ C223 ¼ C233, (B.6)

C155 ¼ C166 ¼ C244 ¼ C266 ¼ C344 ¼ C355; C123; C456. (B.7)

For isotropic solids, the number of independent elastic constants is further
reduced. For Cijkl , there are only two independent ones. They are

C11 ¼ C22 ¼ C33 ¼ K þ
4m
3
; C12 ¼ C13 ¼ C23 ¼ K �

2m
3
, (B.8)

C44 ¼ C55 ¼ C66 ¼ m, (B.9)

where K is called the bulk modulus, m the shear modulus.
For isotropic solids, C

ð3Þ
ijklmn has three independent non-zero constants L, M, N.

They are related to Cijk by

C111 ¼ C222 ¼ C333 ¼ L þ 6M þ 8N, (B.10)

C144 ¼ C255 ¼ C366 ¼ M, (B.11)

C112 ¼ C113 ¼ C122 ¼ C133 ¼ C223 ¼ C233 ¼ L þ 2M, (B.12)

C155 ¼ C166 ¼ C244 ¼ C266 ¼ C344 ¼ C355 ¼ M þ 2N, (B.13)

C123 ¼ L; C456 ¼ N. (B.14)

In terms of the Kronecker delta dij , these elasticity tensors can be written
conveniently as,

Cijkl ¼ Kdijdkl þ m dikdjl þ dildjk �
2

3
dijdkl

� �
, (B.15)

C
ð3Þ
ijklmn ¼ Ldijdkldmn

þ Mðdijdkmdln þ dijdkndlm þ dimdjndkl þ dindjmdkl þ dikdjldmn

þ dildjkdmnÞ þ Nðdikdjmdln þ dimdjkdln þ dildjmdkn þ dimdjldkn

þ dikdjndlm þ dindjkdlm þ dildjndkm þ dindjldkmÞ. ðB:16Þ

Next, consider the surface elasticity tensors Gð1Þ
ab and Gð2Þ

abkl. Again, it follows from
the definition (7) that certain symmetry conditions must be met,

Gð1Þ
ab ¼ Gð1Þ

ba ; Gð2Þ
abkl ¼ Gð2Þ

klab ¼ Gð2Þ
bakl. (B.17)

In general, Gð1Þ
ab and Gð2Þ

abkl can be anisotropic in the surface (where they are

defined). For isotropic surfaces, both Gð1Þ
ab and Gð2Þ

abkl should be isotropic. It can be

shown (Aris, 1962) that Gð1Þ
ab is isotropic if and only Gð1Þ

12 ¼ Gð1Þ
21 ¼ 0 and Gð1Þ

11 ¼ Gð1Þ
22 ,

and Gð2Þ
abkl is isotropic if and only Gð2Þ

1112 ¼ Gð2Þ
1222 ¼ 0, and Gð2Þ

1111 ¼
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Gð2Þ
2222 ¼ Gð2Þ

1122 þ 2Gð2Þ
1212. This is the case if the surface has a rotation axis of three-fold

or higher symmetry (Buerger, 1963). Therefore, for a f1 1 1g surface, which has
three-fold symmetry, and for a f1 0 0g surface, which has four-fold symmetry, the
surface stiffness tensors can be written as

Gð1Þ
ab ¼ G11dab; Gð2Þ

abkl ¼ K sdabdkl þ msðdakdbl þ daldbk � dabdklÞ. (B.18)
Appendix C. Special cases

C.1. Films

For the film shown in Fig. 4, the integrals in Eq. (18) can be written as integrals on
the top and bottom surfaces of the film. On these surfaces, the integrands in both
integrals are constants. Thus, they can be easily carried out to yield Eqs. (32)
and (33). Consequently, the non-zero components of the fourth-order tensor Rijkl ¼

C
ð3Þ
ijklmnMmnpqtpq are obtained as

R1111 ¼ 2G11Z
C112

C12
�

C111

C11

� �
; R1122 ¼ R1133 ¼ G11Z

C123 þ C112

C12
�
2C112

C11

� �
,

(C.1)

R2222 ¼ R3333 ¼ G11Z
C111 þ C112

C12
�
2C112

C11

� �
; R2233 ¼ 2G11Z

C112

C12
�

C123

C11

� �
,

(C.2)

R2323 ¼ 2G11Z
C155

C12
�

C144

C11

� �
; R1313 ¼ R1212 ¼ G11Z

C144 þ C155

C12
�
2C155

C11

� �
,

(C.3)

where Cijk are related to their third-order elastic constants as indicated in Appendix
B and Z is defined by Eq. (C.10). The non-zero components of the effective elasticity
tensor for the thin film in terms of the Voigt notation can then be obtained from
Eq. (31),

C̄11 ¼ C11 þ
2G11Z

a

C111

C11
�

C112

C12

� �
, (C.4)

C̄12 ¼ C̄13 ¼ C12 þ
G11Z

a

2C112

C11
�

C123 þ C112

C12

� �
, (C.5)

C̄22 ¼ C̄33 ¼ C11 þ
1

a
K s þ msð Þ þ G11Z

2C112

C11
�

C111 þ C112

C12

� �� �
, (C.6)
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C̄23 ¼ C12 þ
1

a
K s � msð Þ þ 2G11Z

C123

C11
�

C112

C12

� �� �
, (C.7)

C̄44 ¼ C44 þ
1

a
ms þ 2G11Z

C144

C11
�

C155

C12

� �� �
, (C.8)

C̄55 ¼ C̄66 ¼ C44 þ
G11Z

a

2C155

C11
�

C144 þ C155

C12

� �
, (C.9)

where Z is a non-dimensional constant given by

Z ¼
C11C12

ðC11 þ 2C12ÞðC11 � C12Þ
. (C.10)

Note that the positive definiteness of the strain energy density requires C114jC12j.
Thus, ZX0 if C12X0.

C.2. Wires

For the wire shown in Fig. 5, the integrals in Eq. (18) can be written as integrals on
the lateral surfaces of the wire. On these surfaces, the integrands in both integrals are
constants. Thus, they can be easily carried out to yield,

t11 ¼ t22 ¼ G11; t33 ¼ 2G11, (C.11)

Q1111 ¼ Q2222 ¼ K s þ ms; Q3333 ¼ 2 K s þ msð Þ, (C.12)

Q1133 ¼ Q2233 ¼ K s � ms; Q2323 ¼ Q1313 ¼ ms. (C.13)

Consequently, the non-zero components of the fourth-order tensor Rijkl ¼

C
ð3Þ
ijklmnMmnpqtpq are obtained as

R1111 ¼ R2222 ¼ G11Z
C111 þ 3C112

C12
�
2ðC111 þ C112Þ

C11

� �
, (C.14)

R3333 ¼ 2G11Z
C111 þ C112

C12
�
2C112

C11

� �
, (C.15)

R1122 ¼ 2G11Z
C112 þ C123

C12
�
2C112

C11

� �
, (C.16)

R1133 ¼ R2233 ¼ G11Z
C123 þ 3C112

C12
�
2ðC112 þ C123Þ

C11

� �
, (C.17)

R2323 ¼ R1313 ¼ G11Z
C144 þ 3C155

C12
�
2ðC144 þ C155Þ

C11

� �
, (C.18)

R1212 ¼ 2G11Z
C144 þ C155

C12
�
2C155

C11

� �
. (C.19)
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The non-zero components of the corresponding effective elasticity tensor are thus
given by

C̄11 ¼ C̄22 ¼ C11 þ
1

a
ðK s þ msÞ þ G11Z

2ðC111 þ C112Þ

C11
�

C111 þ 3C112

C12

� �� �
,

(C.20)

C̄33 ¼ C11 þ
1

a
2ðK s þ msÞ þ 2G11Z

2C112

C11
�

C111 þ C112

C12

� �� �
, (C.21)

C̄12 ¼ C12 þ
2G11Z

a

2C112

C11
�

C123 þ C112

C12

� �
, (C.22)

C̄13 ¼ C̄23 ¼ C12 þ
1

a
ðK s � msÞ þ G11Z

2ðC112 þ C123Þ

C11
�
3C112 þ C123

C12

� �� �
,

(C.23)

C̄44 ¼ C̄55 ¼ C44 þ
1

a
ms þ G11Z

2ðC144 þ C155Þ

C11
�

C144 þ 3C155

C12

� �� �
, (C.24)

C̄66 ¼ C44 þ
2G11Z

a

2C155

C11
�

C144 þ C155

C12

� �
. (C.25)

C.3. Spherical particles

Qijkl ¼
4

3
Ksdijdkl þ

1

5
ðK s þ 6msÞ dikdjl þ dildjk �

2

3
dijdkl

� �
, (C.26)

tij ¼ 2G11dij , (C.27)

Rijkl ¼
2G11

3K
3L þ 6M þ

8

3
N

� �
dijdkl

þ
2G11

3K
ð3M þ 4NÞ dikdjl þ dildjk �

2

3
dijdkl

� �
. ðC:28Þ

References

Ackland, G.J., Finnis, M.W., 1986. Semi-empirical calculation of solid surface tensions in B.C.C.

transition metals. Philos. Mag. A 54, 301–315.

Adams, J.B., Wolfer, W.G., Foiles, S.M., 1989. Elastic properties of grain boundaries in copper and their

relationship to bulk elastic constants. Phys. Rev. B 40, 9479–9484.

Alber, I., Bassani, J.L., Khantha, M., Vitek, V., Wang, G.J., 1992. Grain boundaries as heterogeneous

systems: atomic and continuum elastic properties. Philos. Trans. R. Soc. London A 339, 555–586.



ARTICLE IN PRESS

R. Dingreville et al. / J. Mech. Phys. Solids 53 (2005) 1827–1854 1853
Alymov, M.I., Shorshorov, M.K., 1999. Surface tension of ultrafine particles. NanoStruct. Mater. 12,

365–368.

Aris, R., 1962. Vectors, Tensors, and Basic Equations of Fluid Mechanics. Prentice-Hall, Englewood

Cliffs, NJ.

Baker, S.P., Small, M.K., Vlassak, B.J., Daniels, B.J., Nix, W.D., 1993. The search for the supermodulus

effect. In: Nastasi, M., Parkin, D. M., Gleiter, H., (Eds.), Mechanical Properties and Deformation

Behavior of Materials Having Ultra-Fine Microstructures. Kluwer Academic Publishers, Netherlands,

pp. 53–67.

Banerjea, A., Smith, J.R., 1987. Continuum elasticity analysis of the enhanced modulus effect in

metal–alloy superlattice films. Phys. Rev. B 35, 5413–5420.

Bassani, J.L., Vitek, V., Alber, I., 1992. Atomic-level elastic properties of interfaces and their relation to

continua. Acta Metall. Mater. 40, S307–S320.

Blakely, J.M., 1973. Introduction to the Properties of Crystal Surfaces. Pergamon Press, New York.

Buerger, M.J., 1963. Elementary Crystallography. Wiley, New York (Chapter 11).

Cammarata, R.C., 1997. Surface and interface stress effects on interfacial and nanostructured materials.

Mater. Sci. Eng. A 237, 180–184.

Cammarata, R.C., Sieradzki, K., 1989. Effects of surface stress on the elastic moduli of thin films and

superlattices. Phys. Rev. Lett. 62, 2005–2008.

Cammarata, R.C., Sieradzki, K., 1994. Surface and interface stresses. Annu. Rev. Mater. Sci. 24, 215–234.

Cammarata, R.C., Trimble, T.M., Srolovitz, D.J., 2000. Surface stress model for intrinsic stresses in thin

films. J. Mater. Res. 15, 2468–2474.

Capolungo, L., Jochum, C., Cherkaoui, M., Qu, J., 2005. Homogenization method for strength and

inelastic behavior of nanocrystalline materials. Int. J. Plasticity 21, 67–82.

Capolungo, L., Cherkaoui, M., Qu, J., 2005, A self consistent model for the inelastic deformation of

nanocrystalline materials. ASME J. Eng. Mater. Technol., to appear.

Catlin, A., Walter, W.P., 1960. Mechanical properties of thin single-crystal gold films. J. Appl. Phys. 31,

2135–2139.

Diao, J., Gall, K., Dunn, M.L., 2003. Surface-stress-induced transformation in metal nanowires. Nat.

Mater. 2, 656–660.

Diao, J., Gall, K., Dunn, M.L., 2004. Atomistic simulation of the structure and elastic properties of gold

nanowires. J. Mech. Phys. Solids 52, 1935–2186.

Dingreville, R., Qu, J., Cherkaoui, M., 2005. Calculating surface energy using molecular static

simulations., in preparation.

Fartash, A., Fullerton, E.E., Schuller, I.K., Bobbin, S.E., Wagner, J.W., Cammarata, R.C., Kumar, S.,

Grimsditch, M., 1991. Evidence for the supermodulus effect and enhanced hardness in metallic

superlattices. Phys. Rev. B 44, 13760–13763.

Fougere, G.E., Riester, L., Ferber, M., Weertman, J.R., Siegel, R.W., 1995. Young’s Modulus of

nanocrystalline Fe measured by nanoindentation. Mater. Sci. Eng. A 2004, 1–6.

Gibbs, J.W., 1928. The Collected Works of J. Willard Gibbs. Longmans, New York.

Gleiter, H., 1989. Nanocrystalline materials. Prog. Mater. Sci. 33, 223–315.

Gurtin, M.E., Murdoch, A.I., 1975. A continuum theory of elastic material surfaces. Arch. Rat. Mech.

Anal. 57, 291–323.

Gurtin, M.E., Murdoch, A.I., 1978. Surface stress in solids. Int. J. Solids Struct. 14, 431–440.

Gurtin, M.E., Weissmuller, J., Larche, F., 1998. A general theory of curved deformable interfaces in solids

at equilibrium. Philos. Mag. A 78, 1093–1109.

Itozaki, H., 1982. Mechanical properties of composition modulated copper–palladium foils. Ph. D. Thesis,

Northwestern University.

Kluge, M.D., Wolf, D., Lutsko, J.F., Phillpot, S.R., 1990. Formalism for the calculation of local elastic

constants at grain boundaries by means of atomistic simulation. J. Appl. Phys. 67, 2370.

Korn, D., Morsch, A., Birringer, R., Arnold, W., Gleiter, H., 1988. Measurements of the elastic constants

and the specific heat and the entropy of grain boundaries by means of ultrasound. J. Phys. 49, C5–769.

Kosevich, Y.U., Kosevich, A.M., 1989. On the possibility of measuring the tensor of surface stress in thin

crystalline plates. Solid State Commun. 70, 541–543.



ARTICLE IN PRESS

R. Dingreville et al. / J. Mech. Phys. Solids 53 (2005) 1827–18541854
Krstic, V., Erb, U., Palumbo, G., 1993. Effect of porosity on Young’s modulus of nanocrystalline

materials. Scr. Metall. Mater. 29, 1501–1504.

Marinopoulos, A.G., Vitek, V., Bassani, J.L., 1998. Local and effective elastic properties of grain

boundaries in silicon. Phys. Stat. Sol. A 166, 453–473.

Miller, R.E., Shenoy, V.B., 2000. Size dependent elastic properties of nanosized structural elements.

Nanotechnology 11, 139–147.

Murdoch, A.I., 1976. A thermodynamical theory of elastic material interfaces. Q. J. Mech. Appl. Math.

29, 245–275.

Nieman, G.W., Weetman, J.R., Siegel, R.W., 1991. Mechanical behavior of nanocrystalline Cu and Pd.

J. Mater. Res. 6, 1012–1027.

Nix, W.D., Clemens, B.M., 1999. Crystallite coalescence: a mechanism for intrinsic tensile stresses in thin

films. J. Mater. Res. 14, 3467–3473.

Nix, W.D., Gao, H., 1998. Atomistic interpretation of interface stress. Scr. Mater. 39, 1653–1661.

Pan, Z.W., Dai, Z.R., Wang, Z.L., 2001. Nanobelts of semiconducting oxides. Science 291, 1947–1950.

Pei, Z.W., Hwang, H.L., 2003. Formation of silicon nano-dots in luminescent silicon nitride. Appl. Surf.

Sci. 212, 760–764.

Phillpot, S.R., Wolf, D., Gleiter, H., 1995. Molecular dynamic study of the synthesis and characterization

of a fully dense, three-dimensional nanocrystalline material. J. Appl. Phys. 78, 847–860.

Sander, D., 2003. Surface stress: implications and measurements. Curr. Opin. Solid State Mater. Sci. 7,

51–57.

Schiøtz, J., Di Tolla, F.D., Jacobsen, K.W., 1998. Softening of nanocrystalline metals at very small grain

sizes. Nature 391, 561–563.

Sharma, P., Ganti, S., 2003. Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating

surface/interface energies. Private Communications.

Shuttleworth, R., 1950. The surface tension of solids. Proc. R. Soc. London A 63, 444–457.

Streitz, F.H., Cammarata, R.C., Sieradzki, K., 1994a. Surface-stress effects on elastic properties, I: thin

metal films. Phys. Rev. B 49, 10699–10706.

Streitz, F.H., Cammarata, R.C., Sieradzki, K., 1994b. Surface-stress effects on elastic properties, II:

metallic multilayers. Phys. Rev. B 49, 10707–10716.

Suryanarayana, C., 1995. Nanocrystalline materials. Inter. Mater. Rev. 40, 41–64.

Vitek, V., Wang, G.J., Alber, I., Bassani, J.L., 1994. Relationship between modeling of the atomic

structure of grain boundaries and studies of mechanical properties. J. Phys. Chem. Solids 55,

1147–1156.

Wolf, D., Kluge, M., 1990. Relationship between shear resistance and local atomic structure at grain

boundaries in FCC metals. Scr. Metall. 24, 907–914.

Wolf, D., Lutsko, J.F., 1989. Structurally-induced elastic anomalies in a supperlattice of (0 0 1) twist grain

boundaries. J. Mater. Res. 4, 1427–1443.

Wolf, D., Lutsko, J.F., Kluge, M., 1989. Physical properties of grain-boundary materials: comparison of

EAM and central-force potentials. In: Vitek, V., Srolovitz, D.J. (Eds.), Atomistic Simulation of

Materials: Beyond Pair Potentials. Plenum Press, New York, pp. 245–264.

Yang, F., 2004. Size dependent effective modulus of elastic composite materials: spherical nanocavities at

dilute concentrations. J. Appl. Phys. 95, 3516–3520.

Zhou, L.G., Huang, H., 2004. Are surfaces elastically softer or stiffer? Appl. Phys. Lett. 84, 1940–1942.


	Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films
	Introduction
	Surface free energy and surface stress
	Effective modulus of a particle
	Thin films
	Thin wire of square cross-section
	Spherical particles

	Numerical examples and discussion
	Summary
	Acknowledgements
	Coordinate transformation
	Bulk and surface elasticity tensors
	Special cases
	Films
	Wires
	Spherical particles

	References


