Differential Equation to solve by
Eigenvalue and Eigenvector approach

We have the equation,
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We can write the solution of Equation (1) as
y(x) = cre” " 4 coe™” (2)

The other 2nd order ODE we have is
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the solution of which is given by
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Equation (3) will be same as Equation (1) when b = 0. But in the solution,
we do not get (2) by putting b =0 in (4).



The calculations what we have done are as follows.
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So, in the limit b — 0 the only existing term is
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Then, the solution is of the form :



y(z) = Clxﬁef[%wz] + ngﬁe[%wx] (7)

As mentioned earlier, Equation (4) and hence Equation (7) should conform
to the Equation (2) when b — 0. But, we cannot match them. May be, we
have missed something and want help on this.

To find the gap we want to solve the Equation (1) by Eigenvalue, Eigenvec-
tor approach.

Equation (3) can be written as
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We know the procedure to solve the system when the matrix is of constant
elements but here it contains elements function of x.

I think boundary conditions will not be required to find the solution. We
actually want the general solution.



