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Abstract. Natural rubber (NR) is known to crystallize under strain (SIC) so that NR sam-
ples subjected to loading-unloading cycles exhibit hysteresis. A brief review of the numerous
experiments conducted on this material is given. Detailed information on the microstructure
is therefore available, particularly simultaneous measurements of stress versus elongation and
crystallinity versus elongation. Introducing an internal variable associated to crystallinity, a so-
lution to the evolution of this variable can be found, that is thermodynamically consistent. This
variable enable us to obtain good laws for both stress-strain and crystallinity-strain curves.
This model is assessed by uniaxial tensil tests under cyclic loadings.
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1 Introduction

Natural rubber (NR) exhibits interesting properties due to strain-induced crystallization (SIC)
: for instance, fatigue lifetime is known to be modified by this microstructural evolution [8].
In this material, alignment of the polymer chains due to strain modifies the melting tempera-
ture of the material, thus creating strain-induced crystallization. There is also accumulation of
crystallites during cyclic loading, which again modifies mechanical cycling experiments. The
complexity of these thermomechanical phenomena has made understanding and modelling of
the mechanical behaviour difficult. Nevertheless, thanks to the important experimental work
that has been published up to now, it has become easier to determine what criteria a good model
should obey [2, 6].

The main problem stems from the fact that the constitutive aspects under stress have not
yet been set, and that some of the constitutive mechanisms identified so far contradict each
other [9, 7]. We therefore first review in section 2 state-of-the-art experiments, insisting on
what we think are the constitutive aspects of cyclic behaviour. We then construct in section
3 an adequate free energy and chose the internal variables. Thermodynamical consistency is
formulated then, and yields constitutive equations for stress, entropy, and the thermodynamical
force for crystallization. This enables us to develop evolution laws to be plugged into numerical
models. The model is then verified by numerical testing in section 4 and 5.

Figure 1: Strain-induced crystallization in NR - Scheme

2 Experimental mechanical behaviour of NR in relationship with microstructure [2]

Because it yields numerous material structure properties, Wide Angle X-ray Diffraction
(WAXD) [10] has been the main tool used, among the numerous existing techniques, in or-
der to characterize SIC in rubber. We therefore refer to these WAXD studies to describe the
evolution of the semi-crystalline phase of NR encountered when at ordinary conditions of stress
and temperature.
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2.1 Characterization of the crystalline phase of NR

We are interested in the fine characterization of the semi-cristalline rubber material, particu-
larly the cristallized part, at a nanometer scale. Typical crystallites have dimensions of the order
of 10 nm. The crystalline phase can be identified by X-ray diffraction. Random orientation of
the crystallites yield circles. If preferred orientation exist these typical diffraction circles are
transformed into a structure of spots. The usual spot pattern displays (200), (120) and (002)
as the most intense spots. The structured pattern of diffraction gives quantitative structural ele-
ments such as lattice parameters. The structure of bulk crystalline material can be obtained by
analyzing the distances between spots in the diffraction pattern, each spot being associated to a
particular set of crystal planes. It has been found orthorhombic with a=12.3 A, b=8.3 A, c=8.1
A, or sometimes monoclinic but with a structure very close to the orthorhombic’s parameters.
The main point to remember is that the cell has 4 parallel chains. There are both covalent and
Van der Waals interactions within the unit cell. Under uniaxial extension, the interplanar dis-
tances are modified up to few percents of the standard distances : a and b are diminished while
c increases. Additional information can be extracted from these patterns :

• Sample cristallinity can be deduced by measuring the diffuse halo’s intensity, which stems
from the amorphous phase only

• The distribution around the average angle associated to elongated streaks can also be
observed.

• The broadening of diffraction peaks is detected.

To complete the preceding information about crystallites, the morphology of these crystallites
must be observed. The general opinion regarding morphology [2] is that we have no lamellar
growth at high elongations but that there may be fibrillar and lamellar structures at intermediate
elongation.

2.2 Cyclic mechanical behaviour

There are different ways of performing mechanical experiments on strain-crystallizing rub-
ber. For example, relaxation tests bring information on the characteristics of the phase change[11].
Nevertheless we chose to study mainly cyclic testing, under uniaxial extension, at constant tem-
perature and speed [3]. Sample cristallinity is measured continuously, in real time by using a
synchrotron [2]. Part of the experiment is an out-of equilibrium measurement even if speed is
very low. It is to be noted that several cycles must be performed prior to real testing, in order to
avoid interpretations errors due to the Mullins effect [1].

During uniaxial tension experiments, crystallization appears in natural rubber if amplitude
of loading is sufficient. When a loading cycle is applied at ambient temperature, the strain
is not the same during loading as on unloading. There is hysteresis. The loading cycle can
be “seen” either on the stress-elongation curve, or on the crystallinity curve. One observes
generally crystallization, when the sample is loaded; fusion, when the sample is unloaded. One
can sometimes observe crystallization at the beginning of the unloading phase. At a given
temperature, fusion and crystallization do not happen for the same value of elongation. This is
best seen in figure 2.

Several characteristic points appear in the loading cycle, that can be used as benchmarks.
These special points are noted O, A, B in the elongation phase, C, D, E in the unloading phase.
In order to interpret the results it is useful to list the phenomena at play : crystallization and
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Figure 2: Evolution of a) stress σ and b) crystallinity over a cycle with a speed of 2mm/min (taken from [3])

melting, hysteresis, relaxation of the amorphous phase, hardening of the polymeric network,
supercooling.

Crystallization increases with strain, as shown in the figure 2. After a nearly linear increase,
λ reaches a maximum, at point C . It then decreases in the same way, meaning that melting of
the crystallites has happened, until complete recovery. Hysteresis is seen : the strain trajectory
is not a reversible one. It may be caused as a consequence of several effects: viscoelasticity
(associated with disentanglement of the polymer’s chains), damage (Mullins effect), or crys-
tallinity. The latter is the best candidate to explain the majority of the hysteresis [3]. Relaxation
of the amorphous phase is happening in A-C figure 2. At the end of crystallization the slope of
the stress curve is noticeably higher than the simulated curve for a totally amorphous phase [3].
This proves that the material hardens when crystallization occurs. Finally the melting temper-
ature is seen to shift with stress (figure 3), so that crystallites exist above the standard melting
temperature at strain equal to zero. This shift is parallel to the crystallization temperature shift
in a way that crystallinity is always higher in melting than in crystallization.

The path in the stress-strain curve is now divided in steps going through points A,B,C,D,E :

• From O to A, 1 < λ < λA, there are no traces of cristallinity in the sample, until λA = 4.
The sample is totally amorphous.

• From A to B, λA < λ < λB, crystallinity increases linearly with elongation λ. The stress
plateau which occurs can be seen to derive from two opposing mechanisms. On one hand,
the crystallization allows the amorphous par of the chains to relax, causing the stress to
decrease. On the other hand, the system gets harder. Indeed, the number of crystallites
increases, and, when multichain crystallites come into play, these may act as network
junctions, increasing functionality thereby.

• From B to C, λB < λ < λC(∼ 7), B is an inflection point on the cristallinity curve. At that
point cristallization starts to slow down and hardening is taking the lead.The mechanism
which comes into play could be a change in the morphology of crystallites or percolation.
They will form cages that inhibit relaxation of the amorphous chains more easily. The
network density will be higher. All these elements can also contribute to slowing down
of the relaxation.
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• From C to E, λC < λ < λE(∼ 3), we are in fusion. The mechanisms at play are the
same as from A to C, but with a higher cristallinity, due to supercooling: crystallites that
would normally have melted at a given temperature without strain are still there due to
the presence of strain.

We can associate to this interpretation the dependence of σA and σE on temperature which
emphasize on the supercooling effect (figure 3).

Figure 3: Supercooling effect constructed from data in [3]

3 Constitutive 1D model of strain-induced crystallizing rubber

3.1 Free energy and internal variables

The above interpretation of experimental data is now used to construct a 1D constitutive law
which must be in agreement with the second law of thermodynamics. A constitutive law for the
amorphous part must first be constructed to model the mechanical beahvior of the rubber in the
absence of crystallization.We use the Miehe’s model [5], where a polymer chain is constrained
inside a tube. In view of on-going work, this model can also be integrated in a directional
3D approach [4]. In that model the chain is assumed to follow the behaviour of a Langevin
spring, in interaction with the network.The behaviour is thus determined by chain elongation,
tube contraction and temperature.

In more details, we introduce a representative chain whose elementary response is supposed
to represent the average response of the material. The chain is assumed to be made of Nseg

each of length lseg so the total length is L = Nseglseg.. The average length of the chain at
rest is r0 = lseg

√
Nseg. The elongation λ is defined as ratio of the end-to-end distance to the

initial length r0, and is assumed to be governed by the macroscopic elongation in the considered
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direction
λ =

r

r0
. (1)

In addition we take into account finite extensibility of the chain, by modeling the free energy of
our representative chain by the Langevin potential

ψf = kBTNseg

 λ√
Nseg

L−1

 λ√
Nseg

+ ln
L−1

(
λ√
Nseg

)
sinh

(
L−1

(
λ√
Nseg

))
 , (2)

with L−1 is the inverse Langevin function. The tube contraction energy accounts for repulsion
between different chains. The chain is confined to a tube of diameter d which stores a free
energy of the form

ψc = kBTNseg

α( lseg
d0

)2

ln(λ)

 , (3)

which blows up when λ → 0. It is then assumed that the two energies can simply be added so
that, for nch chains, we will have from 2 and 3.

ψam (λ, T ) = nchkBNsegT

Fβ
 λ√

Nseg

+ Uln(λ)

 , (4)

with

• Fβ
(

λ√
Nseg

)
= λ√

Nseg
L−1

(
λ√
Nseg

)
+ ln

L−1

(
λ√
Nseg

)
sinh

(
L−1

(
λ√
Nseg

)) the Langevin energy,

• U = α
(
lseg
d0

)2
the tube modulus.

We can now construct a model for the semi-crystalline system. Three additional constitutive
mechanisms are introduced :

• relaxation within the amorphous phase,

• network hardening due to morphology change or percolation of crystallites,

• crystal-based increased elasticity observed at high elongation.

Relaxation is taken into account by introducing an internal variable λχ to measure the inelastic
part of elongation induced by crystallization transforming the free energy into

ψsc (λ, λχ, T ) = nchkBNsegT

Fβ
λ− λχ√

Nseg

+ Uln(λ)

 . (5)

The effect of hardening by the crystallites is still unclear. Therefore the interaction between the
amorphous and crystalline parts is modelled phenomenologically by a function g(λχ, λχ,sat)
(see figure 4) meant to be the energy stored during phase transformation. By chosing this shape
of g, we express the fact that there is saturation for λχ = λχ,sat by making the stored enegy go
to infinity for λχ > λχ,sat.

The part dealing with crystal effects is then complete if we add to these terms :
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Figure 4: Stored energy

• a free energy introducing to elastic stiffening at high elongationsψel (λ) = F
(
〈λ− λ∗〉+

)
,

where F is a power function, and 〈λ− λ∗〉+ = |λ−λ∗|+(λ−λ∗)
2

,

• a term corresponding to temperature effect ( latent heat is produced or absorbed on crys-
tallization or fusion) ψT = nchλχ(sfT −hf ) where sf and hf are respectively the entropy
and enthalpy of formation for the crystallite.

Altogether we propose the following free energy for a partially crystallized rubber

ψsc (λ, λχ, T ) = nchkBRAT
[
Fβ

(
λ−λχ√
Nseg

)
+ Uln(λ)

]
+ nchg(λχ, λχ,sat)

+nchλχ (sfT − hf ) + nchkBRBTF
(
〈λ− λ∗〉+

) , (6)

with RA and RB two phenomenological constants.

3.2 Constitutive equations

Constitutive equations are given by imposing that dissipation per unit volume in reference
configuration is positive in any process and is supposed to cancel for an elastic or quasistatic
evolution

D = P
dλ
dt
− dψsc

dt
− sdT

dt
≥ 0. (7)

with P the stress in 1D model and s the entropy. By construction ψsc can be developed into

dψsc (λ, λχ, T )

dt
=
∂ψsc
∂λ

dλ
dt

+
∂ψsc
∂λχ

dλχ
dt

+
∂ψsc
∂T

dT
dt
. (8)

The absence of dissipation in an isothermal evolution with constant cristallinity yields

P =
∂ψsc
∂λ

= Pam + Ptube + Pel, (9)

where

7



L. Thien-Nga, J. Guilie, P. Le Tallec

• Pam = nchRATL
−1
(

λ−λχ√
Nseg

)
,

• Ptube = nchRATUλ
−1,

• Pel = nchRBT
〈λ−λ∗〉+
|λ−λ∗|

∂F(〈λ−λ∗〉+)
∂λ

.

The absence of dissipation in a quasistatic process yields the entropy law

s = −∂ψsc
∂T

= −nchRAFβ

(
λ−λχ√
Nseg

)
− nchRAUln(λ)− nchRBF

(
〈λ− λ∗〉+

)
−nchλχsf .

(10)

Introducing the dual variable associated to λχas the thermodynamical force

π = −∂ψsemi−cris
∂λχ

= Pam − nch
dg (λχ, λχ,sat)

dλχ
− nch (sfT − hf ) , (11)

and taking into account 9 and 10, the dissipation is finally reduced to:

D = π
dλχ
dt
≥ 0. (12)

We now need to introduce and identify a constitutive equation governing the evolution of λχ,
which must be such that 12 is systematically specified in any possible evolution of the system. It
should be noted here that πλχ is specified by 11 as a function of the thermodynamical variables
λ,λχ, T and that it may a priori take positive as well as negative values.

3.3 Evolution laws

We will assume that fusion occurs in equilibrium (π = 0 if dλχ
dt

< 0 ) and we know from 12
that π must be positive in crystallization (dλχ

dt
> 0). We define the evolutions law by comparison

to the equilibrium
π (λχ,eq, λ, T ) = 0. (13)

We will suppose that crystallization can only occur for sufficiently large thermodynamical
forces. Hence, we introduce as in plasticity a yield limit for the thermodynamical force π
characterised by

Y = Y1 (λχ,sat − λχ) , (14)

Above, Y1 is assumed to be a material constant. The dependence of the yield limit with
(λχ,sat − λχ) expresses that the difference between crystallization and fusion curves should
decrease to zero when reaching the saturation limit λχ,sat of crystallization. Figure 5 captions
different cyclic paths of crystallization. In our model, crystallization and fusion curves coincide
at λχ = λχ,sat. And when elongation stops before saturation, there is a plateau between the two
curves linearly decreasing with the distance to saturation. In addition, we will impose that the

constant Y1 is such that nch
d2
g(λχ,λχ,sat)

dλ2χ
> Y1 which guarantees that we have

∂π

∂λχ
=
∂Pam
∂λχ

− nch
d2g (λχ, λχ,sat)

dλ2χ
≤ −nch

d2g (λχ, λχ,sat)

dλ2χ
≤ −Y1. (15)

So, the different evolutions cases are defined by :
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Figure 5: Evolution scheme of crystallinity versus stretch, (Loading in blue) (Unloading in red)

1. If 0 < π < Y1(λχ,sat − λχ) then dλχ
dt = 0 so that D = 0 : the regime is elastic.

2. If π = 0 and ∂π
∂λ

dλ
dt + ∂π

∂T
dT
dt ≥ 0, we take dλχ

dt = 0 hence D = 0. The regime is also
elastic.

3. If π = 0 and ∂π
∂λ

dλ
dt + ∂π

∂T
dT
dt < 0, we take dλχ

dt =
∂π
∂λ

dλ
dt+

∂π
∂T

dT
dt

− ∂π
∂λχ

. From 15 dλχ
dt < 0. This

part represents fusion. We have here π = 0 and dπ
dt = 0, hence D = 0.

4. If π = Y1(λχ,sat − λχ) ≥ 0 and ∂π
∂λ

dλ
dt + ∂π

∂T
dT
dt ≤ 0, we take dλχ

dt = 0, hence D = 0. The
regime is again elastic.

5. If π = Y1(λχ,sat − λχ) > 0 and ∂π
∂λ

dλ
dt + ∂π

∂T
dT
dt > 0, we take

dλχ
dt =

∂π
∂λ

dλ
dt+

∂π
∂T

dT
dt

− ∂π
∂λχ
−Y1

. From 15, we have dλχ
dt > 0. This is a crystallization with dissipation

D = Y1 (λχ,sat − λχ) dλχ
dt > 0.

Finally we cannot have π = Y1(λχ,sat− λχ) ≤ 0 , because the free energy has been constructed
so that λχ ≤ λχ,sat .

To understand the evolution laws, we sum up the different cases on the figure 6.

4 Numerical testing: semi-analytic case

We use a simplified model that will help us understand how this model works and reproduces
the essential features of the stress-strain curves. The model parameters are obtained by using
the phase diagram. Moreover, we assume that the loading stops at λχ = λχ,sat . Finally, we
compute the material’s response to a loading cycle with imposed elongation and compare its
main features to the experimental curves.
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Figure 6: Scheme of the different evolution cases

4.1 Free energy and dissipation potential

In order to simplify the expression of free energy, we take a single chain (nch = 1) and we
suppress the repulsion term (U = 0). The functions Fβ and F are replaced by linear springs

RATFβ

λ− λχ√
Nseg

 ' RA−GT
(λ− λχ)2

2
, (16)

F =
〈λ− λ∗〉2+

2
. (17)

Stored energy is assumed to take the parabolic form

g (λχ, λχ,sat) =

{
g1

λ2χ
2

siλχ ≤ λχ,sat
∞ siλχ > λχ,sat

, (18)

With this choices, the free energy reduces to

ψsc (λ, λχ, T ) = RA−GT
(λ−λχ)2

2
+ g (λχ, λχ,sat) +RBT

〈λ−λ∗〉2+
2

+λχ (sfT − hf ) ,
(19)

We therefore have the constitutive law

P (λ, λχ, T ) =

{
RA−GT (λ− λχ) if λ < λ∗
RA−GT (λ− λχ) +RBT (λ− λ∗) . if λ ≥ λ∗.

(20)

Introducing P1 (λ, λχ, T ) = RA−GT (λ− λχ) , the thermodynamical force π is reduced to

π = P1 (λ, λχ, T )− sfT + hf − g1λχ. (21)

4.2 Cyclic stress-strain curves

The beginning of the cycle displays a linear dependence of stress on elongation. The stiffness
coefficient RA−G can easily be extracted. Three additional conditions at special points A, C, E
can be used. At the start of crystallization (point A) and at the end of fusion (point E) we know
that λχ = 0.

P1 (λA, 0, T )− sfT + hf = Y1λχ,sat. (22)

P1 (λE, 0, T )− sfT + hf = 0. (23)
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When λχ = λχ,sat the stress σC is the same during fusion than during crystallization by hypoth-
esis of saturation

P1 (λC , λχ,sat, T )− sfT + hf − g1λχ,sat = 0. (24)

The linear dependence of P1 (λA, 0, T ) and P1 (λE, 0, T ) on temperature agrees with the phase
diagram (figure 3). We therefore assume that P1 (λE, 0, T ) can be written as

P1 (λE, 0, T ) = CfusT + P1 (λE, 0, TE) . (25)

From the relations 22 to 25, we get

hf = P1 (λE, 0, TE) , (26)

sf = Cfus, (27)

Y1 =
P1 (λA, 0, T )− P1 (λE, 0, T )

λχ,sat
, (28)

g1 =
P1 (λC , λχ,sat, T )− P1 (λE, 0, T )

λχ,sat
. (29)

With these constants, during fusion, we have

P1 (λ, λχ, T )− P1 (λE, 0, T )− (P1 (λC , λχ,sat, T )− P1 (λE, 0, T ))
λχ
λχ,sat

= 0, (30)

and during crystallization

P1 (λ, λχ, T )− P1 (λA, 0, T )− (P1 (λC , λχ,sat, T )− P1 (λA, 0, T ))
λχ
λχ,sat

= 0. (31)

By using the expression of P1we then derive the evolution of λχ in fusion

λχ =
RA−GTλ

RA−GT + P1(λC ,λχ,sat,T )−P1(λE ,0,T )
λχ,sat

− P1 (λE, 0, T )

RA−GT + P1(λC ,λχ,sat,T )−P1(λE ,0,T )
λχ,sat

, (32)

and in crystallization

λχ =
RA−GTλ

RA−GT + P1(λC ,λχ,sat,T )−P1(λA,0,T )
λχ,sat

− P1 (λA, 0, T )

RA−GT + P1(λC ,λχ,sat,T )−P1(λA,0,T )
λχ,sat

. (33)

The slope of these curves is shown to be larger during crystallization than during fusion because

P1 (λC , λχ,sat, T )− P1 (λA, 0, T ) < P1 (λC , λχ,sat, T )− P1 (λE, 0, T ) , (34)

which is observed in the experimental crystallinity curves. Similarly, we have for the stress
curve in fusion

P =


RA−GT

1− 1

1+
P1(λC,λχ,sat,T)−P1(λE,0,T)

RA−GTλχ,sat

λ+ P1(λE ,0,T )

1+
P1(λC,λχ,sat,T)−P1(λE,0,T)

RA−GTλχ,sat

if λ < λ∗

RA−GT

1− 1

1+
P1(λC,λχ,sat,T)−P1(λE,0,T)

RA−GTλχ,sat

λ+ P1(λE ,0,T )

1+
P1(λC,λχ,sat,T)−P1(λE,0,T)

RA−GTλχ,sat

+RBT (λ− λ∗) . if λ ≥ λ∗,

.

(35)
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and in crystallization

P =


RA−GT

1− 1

1+
P1(λC,λχ,sat,T)−P1(λA,0,T)

RA−GTλχ,sat

λ+ P1(λA,0,T )

1+
P1(λC,λχ,sat,T)−P1(λA,0,T)

RA−GTλχ,sat

si λ < λ∗

RA−GT

1− 1

1+
P1(λC,λχ,sat,T)−P1(λA,0,T)

RA−GTλχ,sat

λ+ P1(λA,0,T )

1+
P1(λC,λχ,sat,T)−P1(λA,0,T)

RA−GTλχ,sat

+RBT (λ− λ∗) . si λ ≥ λ∗,

.

(36)
We can see that there is actually stress relaxation during the phase transformation, as the factor
preceding λ is smaller than 1. Also, as P1 (λA, 0, T ) > P1 (λE, 0, T ) relaxation is necessarily
larger during crystallization than during fusion. We can see that the model reproduces the main
features of the experimental data (figure 7). Finally, on this cycle, the dissipation is

Dcycle =
λχ,sat

2
(P1 (λA, 0, T )− P1 (λE, 0, T )) . (37)

So we have obtained a qualitative modeling of the strain-induced crystallization.

Figure 7: Analytical model (Loading in blue) (Unloading in Red)

5 Numerical testing : Experiment vs Model

In our case, these experiments have been performed with a sample of 1.2g NR at a tensile
rate of 2 mm/min submitted to a uniaxial loading-unloading cycle. And, the computed stress is
the nominal stress for an uniaxial incompressible elongation.

The figure 8 shows the result of an experiment conducted in order to mimick the behaviour of
the pure amorphous part of the material, that is, of the amorphous matrix without crystallization.
In order to realize this, the sample is heated at 80 celsius degrees where crystallization does not
take place and the curve is transformed by homothetia into an amorphous curve at 40 celsius
degrees. The curve obtained through pure modelling is found by using 4 and fitting the constants
by a least square method to the experimental curve. The two curves appear to be very similar.

The figure 9 displays the relationship between stress and strain on the same sample quenched
at 40. A good agreement between experiment and theory is found if we use power function for
the phenomenological terms. In order to obtain the constants of the model, one proceeds by
using the phase diagram to get the onset of crystallization and end of fusion, then using the
unloading part which is the equilibrium curve. Finally, we optimize the result by looking at F .
We have found that all the difficulty is concentrated in the optimization of g. So, we think that
the interaction energy should be studied more deeply in its relation to crystal morphologies.
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Figure 8: Cyclic loading amorphous

The figure 10 displays the computed λχ, the efficient component of crystallinity. This ap-
pears to have a behaviour qualitatively similar to the crystallinity curve (figure 11). This may
validate an assumption such as we can find a simple function Λχ which verified

dλχ
dt

= Λ(λχ)
dχ
dt
. (38)

Such a relationship supposes that once created, a crystallite keeps its morphology. There are
three points around which there is discrepancy in the figure 11. The discrepancy around λ =
3 is due to the error between experiment and model amorphous curves at the end of fusion.
The hump juste after unloading can be attributed to the effect of loading rate, which has been
taken into account in further work. Finally the incipient cristallinity found at the beginning
of crystallization has never been unveiled in stress-strain measurements as it should have if
relaxation had occurred. This discrepancy can be attributed to intramolecular crystallization but
remain not very clear.

6 Conclusion

In this paper, we have approached the behaviour of natural rubber under stress as simply
as possible. For this, a review of existing experiments on the cyclic mechanical behaviour has
been done. This literature is quite rich as it displays simultaneous stress-strain and cristallinity
measurements.The main features of these curves can therefore be identified, in the sense that the
mechanical behaviour between special points of these curves can be linked with microstructural
evolution of the semicristalline material. The shape of the curves can be qualitatively explained
in terms of micromechanisms.

One then has to set up a proper free energy to describe the system. Prior work by Flory
[ref] strongly suggests that there is a contribution of the crystalline part, in terms of elongation,
to the amorphous part of the rubber. Therefore the internal variable λχ has been considered:,
whereλχ is the inelastic part of elongation induced by crystallization. Also, hardening of the
material linked to microstructural changes has been taken into account by introduction of a
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Figure 9: Cyclic loading Stress-Stretch

phenomenological stored energy function of λχ.The free energy has then be expressed as a
sum of contributions, from the amorphous part, from the matrix-crystallites interaction, and
from the crystallites only. Constitutive equations have then been deduced from the second law
of thermodynamics. Dissipation is a function of λ, λχand T , and the thermodynamical force
πλχ , a necessary dual variable of λχhas been introduced. Finally evolution laws have been
determined. πλχwas taken to vary between 0 and a critical value describing the delay from
equilibrium in terms of λχ . We have tested this model with a simplified gaussian model for
one chain and a simplified stored energy. The shape of the curves obtained in this way appears
to be satisfactory. This is a first step in numerical testing of the model. In addition, this 1D
calculation can be associated to a 3D model, and used , as presented in [JG paper], in association
with fracture calculations.
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Figure 10: Cyclic loading Inelastic stretch-strech

Figure 11: Cyclic loading Crystallinity
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