3.6 AN ALTERNATIVE COROTATIONAL
FORMULATION USING ENGINEERING STRAIN

In all of the previous developments. the coordinate axes x, - (and v) have remained
fixed in direction even if, as in Sections 3.3.5 and 3.3.6, we have updated the co-
ordinates. We will now apply a ‘corotational’ formulation and will show that it gives
the same results as those previously obtained in Section 3.4. The procedure adopts
a set of corotational axes (x;, 2, - - Figure 3.7) which rotate with the element. In these
circumstances, the engineering strain is given by
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In the above equation and throughout this section a subscript E for engineering will
be implied but omitted on all strain and stress measures. Equation (3.123) is obvious
but it could be derived by relating the shape-function approaches of the previous
sections to the local coordinate system. Following from (3.123), the principle of virtual
work gives
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Ta TAUSS ELEMENTS AND SOLUTIOMNS
We can now apply standard transformation procedures [C22]. to give
q, =Ty, = 40T, 1.125)

where the transformation matrix, T, relates the local displacements, ppto the “global”
cartesian displacements, p. so that
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The terms ¢ and 5 in (3.126) are cos @ and sin # respectively, where @ is illustrated in
Figure 3.7, I T' is multiplied by ¢, from (3.123), it cin be shown that
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where oix'] is given in (3.92). Hence substitution into (3.125] gives
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which coincides with {3,107, which was obtained with the aid of "fixed coordinates”.

We could now proceed (o diferentiate (3.128) to obtain the tangent stiffness matox
given by the components (3111} (3.013) and (3.114). However, we will instead adop
the spirit of the corotational approach and fArstly diferentiate §3.124) to oblain a
“local langent stilfeess matein’. From (3.023) and (3.124) this gives
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In arder 1o relate this local stilfness matria to the fxed cartesian coordinate system,
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131250 can be dilferentiated to give

g =T "%ip, + 6T7q, = TK, Tdp+ 6T'q, = K, ip {3.130)
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where use has heen made of (3.126) Substitation from (3,127 imo the first of the two
slilfness terms in (3.130) gives
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which comncades wath (21111
In order to deal with the second stilfness erm in (3,130}, the T matrix in (3.126)

can be dilferentiated so that
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Friom Figure 3.8, a unit vector normal (o the rotaling element is given by
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which is orthogonal to the truss vector, x;,. The infinitesimal relative displacement
veclor (Figure 3.8) can be expressed as
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Resolving this vector in the direction m gives a scalar length:
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Consequently, the angle 68 (Figure 3.8] is given by
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Hence, using (3.124) and (3.132), the second stiffness term o (3.130) s given by
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with ¢ from [3.123). Alternatively
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It can easily he shown that the matrix K,, in (3, 138) coincides with the sum of K,,,
and K, from (3.113) and (3.114), Hence, identical solutions are produced by the two
formulations using (1) a fixed cartesian system and (b) a rotating {corotatiomal)
coordinate system. A similar correspondence can be shown for the log-strain
formulation.



