Available online at www.sciencedirect.com -
e _ Infernational
. ScienceDirect Journalof
Fafigue

www.elsevier.com/locate/ijfatigue

ELSEVIER International Journal of Fatigue 28 (2006) 18261837

On the possible generalizations of the Kitagawa—Takahashi diagram
and of the El Haddad equation to finite life

M. Ciavarella *, F. Monno

CEMeC — Centre of Excellence in Computational Mechanics, Policlinico di Bari, Viale Japigia, 182, Politecnico di Bari, 70125 Bari, Italy

Received 4 July 2004; received in revised form 5 January 2005; accepted 9 December 2005
Available online 13 March 2006

Abstract

The celebrated Kitagawa—Takahashi (KT) diagram, and the El Haddad (EH) equation, have received great attention since they define
quite successfully the region of non-propagation (or the condition of self-arrest) for short to long cracks. The EH equation can be also
seen as an ‘“‘asymptotic matching” between the fatigue limit and the threshold of crack propagation. Above this curve, finite life is
expected, since cracks propagate and eventually lead to final failure. In this paper, possible extensions of the EH equation to give the
life of a specimen with a given initial crack as a function of the applied stress range, using only “asymptotic matching” equation between
known regimes, namely the Wohler SN curve (or some simplified form, like Basquin law), and the crack propagation rate curve (or just
the Paris’ law). This permits an extension of the so-called “intrinsic crack’ size concept in the EH equation for infinite life. The general-
ized El Haddad equation permits to take into account approximately of some of the known deviations from the Paris regimes, for short
cracks, near the fatigue threshold or fatigue limit, or to the static failure envelope. The new equations are also plotted as SN curves,
showing that power-law regimes seem very limited with many possible deviations and truncations, even when the crack propagation
law has a significant power-law regime. The diagram remains partly qualitative (for example, we neglect geometric factors), and can
be considered a first attempt towards more realistic maps. Particularly interesting are the cases with the Paris exponent m < 2, in which
propagation tends to be very slow until very close to the toughness failure, making the maps qualitatively different.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The Kitagawa-Takahashi (KT) diagram [1] (see Fig. 1)
is today one of the most used simple criteria and graphical
aid to either qualitatively understand the behavior of short-
cracks or design for infinite life taking into account of the
presence of (at least) two thresholds of fatigue, that given
by the classical stress-based fatigue limit, Agy, and that
given by the more recently introduced threshold stress
intensity range AKy, of Paris’ crack propagation law
[2,3], relating the crack growth rate, da/dN, to the ampli-
tude of the applied stress intensity factor, AK. Clearly,
the KT diagram simply visualizes the condition from
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non-propagation, or the condition for self-arrest of cracks
— the two possible interpretations depend also on how the
threshold is defined and measured, since the crack tip plas-
ticity depends on the loading history. The fatigue threshold
in fatigue AKy, differs from the more classical correspond-
ing material property (fatigue limit Agy) by a square root of
a length scale, and the transition size is immediately defined
from dimensional analysis as the constant ay:

1 (AKy) >
= — 1
=g (A(io) ’ (1)
which of course is the “El Haddad” length scale [4]. Some
empirical equations are for example discussed in the recent
paper by Atzori et al. [5]. In the present paper, we shall

consider, as example, a few steels whose properties are de-
scribed in Table 1. SAE1045 is a medium carbon steel used
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Nomenclature

arg final size of the crack

sy final size of the crack in the transition from Bas-
quin to Paris dominated regime

a; initial size of the crack

a transition size of the crack from Basquin to
Paris (or Donahue) dominated regime

ay transition crack size for infinite life in El Had-

dad equation (or “intrinsic crack”)

a3 transition crack size in the “El Haddad” equa-
tion equivalent for static failure

b fatigue strength exponent in Basquin’s law

C constant in Paris’s law

C constant in Basquin’s law

da/dN crack growth rate or advancement per cycle

k exponent in Basquin’s law

m exponent in Paris’s law

N number of cycles to failure

B

number of cycles of transition from static behav-
iour to SN curve (in the schematic Basquin law)
N, infinite life (107 in the following)

t transition from Paris to Basquin dominated re-
gime for a;/ay =i

transition from Paris to El Haddad dominated
regime for a;/ay =i

R stress ratio, ratio between minimum and maxi-
mum stress

Ua advancement per unit cycle in Paris’ power law
(va = da/dN)

vs advancement per unit cycle in Paris’ power law
when AK = Kj(1 — R)

vth advancement per unit cycle in Paris’ power law
when AK = AKy,

AK stress intensity factor range

AKy,  threshold stress intensity range

AKi, s threshold stress intensity range corrected for

short cracks

El Haddad threshold of stress range

Acgpps equivalent El Haddad threshold of stress range
for static life

Acgpg generalized El Haddad threshold stress range
for finite life

AGlimm fatigue limit stress range derived from the

threshold stress intensity range

Kitagawa—Takahashi threshold of stress range

Aokt generalized Kitagawa—Takahashi threshold of
stress range for finite life

Agr  stress range at static failure

A transition stress range from Basquin to Paris
dominated regime

Aay stress range at fatigue limit

K. fracture toughness

o¢ fatigue strength coefficient

in gears, shafts, axles, bolts, studs, and various machine
parts.

Many examples of applications of the KT diagram exist,
Refs. [6-8] discuss weld metals, foreign-object damage and
fretting fatigue, respectively. Also, based on the KT-dia-
gram, various generalized diagrams have emerged for
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Fig. 1. The KT diagram and the El Haddad equation for example steel
1045 material (see Table 1) R = —1.

design [9-11]. A particularly interesting “‘fatigue damage
map”’ of applied stress range vs. crack length is defined in
[11], including 5 areas: (i) crack arrest, (ii) stage I (or short
crack) growth, (iii) stage II or long crack growth, (iv) stage
IIT and (v) toughness failure. The crack arrest zone is
defined not with the El Haddad equation (although the lat-
ter is eventually found to better correlate with experi-
ments), but with a combination of models of dislocations
at crack tip competing with micro structural barriers
(requiring information on grain size, crack closure stress
and grain orientation factors), with empirical equations
for R-ratio dependence of AKy,. The stage I (short crack)
propagation is then described with crack tip plasticity mod-
els, whereas the transition stage I-stage II (where Paris law
can be reasonably be used) is supposed to occur when crack
is long enough that plasticity is accommodated on two
grains without further growth of the crack. Finally, equa-
tions and models for stage I1I propagation and final tough-
ness failure (or general yielding) are given. It is clear,
however, that this approach requires many material con-
stants that are not available in general, and, anyway, we
are rather interested in a more “design-oriented” map, giv-
ing information of the life (actual number of cycles) of a
specimen for a given stress range and initial size of the
crack. This is perhaps close to the ideas towards the end
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Table 1

Mechanical properties of some steels”

Material ~ Stress units UTS  Yield Fatigue  Fatigue Crack growth ~ CGC units/cycle  Crack growth  Thresh SIF  Fracture
strength  strength  strength coeff (CGC) exponent R=0 toughness

coeff exponent

1045 MPa 621 382 948 —0.09 8.20E — 13 m 3.5 7.1 80

A588 MPa 480 355 1036 —-0.123 4.02E — 12 m 3.6 5.2 73

RQT501 MPa 590 472 892 —0.089 1.00E — 10 m 1.72 5.35 80

RQT701 MPa 825 735 955 —0.063 1.00E — 10 m 1.72 5.35 113

# From Multiaxial Fatigue, Analysis and Experiments, Eds. G.E. Leese, D. Socie, SAE Pub. AE-14, 1989. Also, in Fatigue Calculator in the site http://

www.fatiguecalculator.com/ and ref. therein.

of the overview paper on fatigue by Fleck et al. [12], where
a map is given of the allowable stress range for a given life
and initial crack size, for various materials, as obtained by
the simple integration of Paris’ law.

The present paper shall try to pursue a simple strategy,
and in particular define a hybrid “damage tolerant/safe-
life” design procedure without detailed information or
advanced models on the short crack behavior. We shall
start by investigating on the integrated form of Paris law
as it looks in the Kitagawa-Takahashi diagram. Subse-
quently, in order to obtain a life prediction consistent with
other information on the SN data, a “matching asymp-
totic” interpolation procedure is suggested. The idea comes
from the example of the infinite life case, for which the El
Haddad empirical equation [4], is a simple immediate solu-
tion based on “matching” the asymptotic behavior of the
fatigue limit regime (for absence of the crack) to the thresh-
old regimes governed by the ¢, constant (for long cracks),
interpolating as (see also Fig. 1)

Aogy = AKw/\/m(a + ap), (2)

which suggests the perhaps misleading definition of aq as
the ““intrinsic crack”. Notice that geometrical factors are
not included in this equation, which implies that we sup-
pose the same definition of aq intrinsically considered in
(1) holds. The El Haddad equation (2) defines a simple
threshold for crack propagation (or self-arrest), and hence
divides the map into a lower “safe-life”’ no-damage area,
and an upper crack propagation area of finite life, on which
we shall now concentrate our interest. We expect finite life
either because the LEFM threshold condition is over
passed for a large initial crack (Fig. 1, area indicated as
“1”) giving directly a true stage II propagation, or because
the stress level is high enough for the initiation (i.e. short
crack or stage I propagation), and later propagation of
cracks (area indicated as “2” in the figure). A more com-
plex region is “3”, where both the fatigue limit and the fa-
tigue thresholds are over passed.

The first area (“‘1”) is likely to be correctly and relatively
easily modeled with Paris’ law (at most, with possible devi-
ations near the fatigue threshold, as we shall see below),
whereas the second (“2”°) is not, since there is a delicate
interplay of initiation and propagation of short cracks:
propagation occurs also below the (long crack) threshold
(see Suresh [13]). Also, the propagation rate of short crack

is driven by a much higher power law of the stress range
than in the Paris law (Poldk [14], Murakami et al. [15,16],
Nisitani et al. [17,18]). The dependence on the crack size
is not the power law of exponent m/2 as in Paris but a lin-
ear law, suggesting the resulting SN curve has generally a
milder dependence on initial crack size. However, this lin-
ear dependence, may be perhaps still an intermediate
behaviour and for very small cracks, it could further reduce
to no dependence at all, as would be expected from a Bas-
quin—Wohler-like SN law. Here, we shall assume that
region “2” for very small cracks is indeed appropriately
modelled with a Basquin—Wdhler-like SN law, as in the tra-
ditional approach to fatigue. Finally, region “3” is where
more elaborated effort is needed, and where the originality
of the present paper is concentrated. The idea is to gener-
alize the concepts behind the El Haddad equation, i.e.
the use of “asymptotic matching” between two known
regimes.

Notice that an immediate extension of the definition of
the infinite life “intrinsic crack™ size ay, is the correspond-
ing static equivalent aj, defined as a function of Ki, the
toughness of the material, and oy its tensile strength as:

1 /K 2

S Ic

q 3
0 ( >7 ()

which incidentally can be used to define the “‘equivalent” of
the El Haddad equation for static life

AGEHS = AK[C/ TC((I + (18) (4)

Hence, if the size ag is the order of magnitude of the
crack in the material which does not alter the fatigue prop-
erties of it, and the corresponding static equivalent a3, is
the size of crack which does not alter significantly the static
properties of the material, then an intermediate size a,
could be the size of the crack which doesn’t alter the
strength of the material to a certain, finite life N. An impli-
cation is that the definition of “short crack” should be gen-
eralized accordingly. In particular, “short” is nearly always
related to the fatigue limit and fatigue threshold (i.e. from
the El Haddad intrinsic crack a), whereas the definition of
“short” is more correctly done with respect to the size of
the process zone, and hence should also depend on the load
level — in the limit of static failure, the size a3, often orders
of magnitude larger than the El Haddad size, is the correct
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definition of ““short”. Hence, what is short for static failure
is mostly likely “long” around the fatigue limit region. This
reflects the interplay of various mechanisms: certainly, the
interaction occurring between fatigue threshold limit and
fatigue limit (for example, crack self-arrest at grain bound-
aries), is not the same as that between yield static failure
and toughness failure at static life.

2. Classical equations for initiation and propagation in
fatigue

2.1. SN curve equations

The Wohler SN curve gives us at low load levels, High
Cycle Fatigue (HCF), and at higher load levels, Low Num-
ber of Cycles (LCF), with the cyclic plastic deformation cer-
tainly assuming a more relevant role at higher and higher
stress levels.! This empirical Wéhler curve will be assumed
to be of the power law “Basquin” type, of the form:

NoAck = N Ack = NAc* =C Ny <N <N, (5)

where Aog = or(1 — R) is the range of stress at static fail-
ure, Ao the fatigue limit and Ag is the stress range for hav-
ing a life N; also, Ny, and N, are the number of cycles as
defined in Fig. 2 (notice that, for simplicity, we consider the
single case of R= —1 ratio here, with different ratios
requiring accordingly modifications in the constants). Bas-
quin law can also be written in the notation of the Coffin—
Manson equation, of which it is the elastic part only, as

Ac/2 = a,(2N)", (6)

where o} is called fatigue strength coefficient, b is fatigue
strength exponent, and 2N the number of reversals.” Notice
that, in Egs. (5) and (6), we intend for N (or 2N) the num-
ber of cycles (or reversals) to failure.

Moving to the region where both fatigue limit and fati-
gue threshold are over passed (i.e. in the range “3” in the
diagram of Fig. 1), we start already from a condition above
the threshold in the Paris diagram, but for the same applied
stress range we expect a faster propagation than the equiv-
alent condition of stress intensity factor range of region
“1”, deviating from the original Paris’ law prediction.

2.2. Crack propagation equations

Turning to the crack propagation issue, the celebrated
Paris’s power law [2,3] gives the advancement da of fatigue
crack per unit cycle dN, v,, as a function of the amplitude
of stress intensity factor AK (see Fig. 3) as:

! For strain controlled experiments, it is possible to use the total strain
approach, where the sum of Coffin—-Manson law for the plastic strains, and
of the Baquin law for the elastic strains. is used to predict fatigue life.

2 To convert Eq. (6) into the notation of Eq. (5), just notice that b =
—1/k and hence C = (24})F /2.
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Fig. 2. The schematic Basquin—-Wohler law (5) for example steel material
(see Table 1).

da "
Uy = v = CAK™,
where AKy, is the “fatigue threshold™, and Kj. the “fracture
toughness’ of the material; C and m are the so-called Paris’
constants. There is therefore dependence on dimension of
the crack and on stress range level only via the stress inten-
sity factor range AK = YA/na, where Y is a geometrical
factor. The law is mostly valid in the range 107% to
10~% m/cycle, intersecting AK. at about uth = 107° m/
cycle.

To compute the life of a distinctly cracked specimen
having an initial crack size a;, then, in the simplest case
of constant remote stress and removing possible variations
of geometrical factor (and even further simplifying, assum-
ing Y=1), for m # 2 we integrate (7) to get:

-2
a?,m/z B a?m/z _ (mT) Cn"’/zAa’”N, (8)

AKy < AK < K, (7)

where integration is done up to the final size of the crack,
which by definition is obtained for toughness failure

1045
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Fig. 3. Paris law: schematic form (7) for example steel material (see Table
1) SAE1045. We assumed here R = —1.



1830 M. Ciavarella, F. Monno | International Journal of Fatigue 28 (2006) 1826—1837

=l (1#) o)

T

Often, the dependence on the final size of the crack ar (9)
is removed on the grounds that a;>> a; (for m > 2) and
hence it is relatively not influent away from the toughness
failure region. In this case
" = (mT2) Cn"*Ac"N. (10)

It is interesting, however, to remark that this is an
“equivalent” SN fatigue curve which depends on the initial
crack size, a;. Notice also that the threshold condition for
infinite life (which we could define, conventionally, at
10”7 cycles) obtained from Eq. (10) would tend not to coin-
cide with that directly obtained from the threshold value
which also depends on a; but with a different power:

AKth

a; ’

AGlimm = (11)
In practise, when we use the integrated form of Paris law
((8) and (10)), we shall truncate the equation to the fatigue
“limit” defined by Eq. (2), and this truncation will not
occur at 10”7 cycles, as it will be explained in details.
Two possible deviations from Paris’ law occur towards
either the threshold or towards the static failure region
(see Fig. 4), suggesting three regions in the actual crack
propagation law. In Stage I (near the threshold, see also
Fig. 5), the crack growth rate decreases asymptotically to
zero as AK approaches a threshold value AKy;,. This means
that for stress intensities below AKj,, there is no crack
growth, and hence there is a “fatigue threshold”. An early
attempt to model the near- threshold region came from
Donahue et al. [19] as®
da _ ol AK )" 12
= ClAovra — AKy " (12)
The integration of this law is also possible in closed
form, leading to

Vo2 [(AK—AKWT" | AKW(AK - AKy)T T
" CrnAg? 2—m 1 —m -
(13)

For Stage 11, Paris’ law in Eq. (7) works correctly, up to
deviations in Region III (see again Fig. 5) which exhibits a
rapidly increasing growth rate towards ductile tearing and/
or brittle fracture. For this other deviation, it becomes
evident that the toughness condition for the K., = Kj.
is involved, requiring RK;.x = Knin, and hence
AK = K.x(1 — R) = Kj(1 — R), as proposed first by Fore-
man et al. [20] and later in combined equations for both
high and low AK values, for example by McEvily and

3 We are assuming the same power-law intermediate regime (in
particular, the same constant C in Egs. (7) and (12)), but this is not
necessarily the only choice when fitting actual data points.

1045

da/dN

) ' — Paris
101 A Donahue |1

10‘ PR Fi . . e L
10’ 10°
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Fig. 4. Qualitative comparison of Paris’ law with Donahue et al. [19] and
McEvily and Groeger [21] taking for C and m constants the values for
SAE1045 in Table 1. Actual fitting of data points may suggest alternative
comparisons.

Log (da_/dN)

Stage 1 Stage 2 Stage 3

Short cracks

Long cracks (LEFM)

Log (a,) or Log (4K)

Fig. 5. A schematic of the typical fatigue growth behavior of cracks. “b”
and “c” are possible regimes of short cracks.

Groeger [21]. Notice also that these laws tend to show
the R-ratio effect only near the K., where the dependence
of the threshold on R remains implicit in (12) for example,
whereas more appropriate laws would need to show the
R-dependence on the entire curve.

Notice that the El Haddad equation (2) also permits an
interpretation in terms of “reduced” crack propagation
threshold. In fact, it can be rewritten as

[ a
A1<th,s<: - Ath a-+ a0~ (14)

This in principle permits to extend the lower limit for the
Paris law integration below the long crack threshold, making
the actual limit that defined by the El Haddad equation
itself. However, it should be borne in mind that for short
cracks the average crack propagation rate is likely to be
much higher than that obtained from the possible extension
of the original Paris law. Hence, in our approach, the possi-
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ble regimes on the left of the long crack threshold in the
extended KT diagram (i.e. part of region “2” in Fig. 1) will
be modeled by the Basquin SN curve — and the transition,
with a newly defined “generalized El Haddad” equation.

Fig. 5 shows example realistic crack propagation laws,
where the Paris law regime is clearly only obtained in the
intermediate region for sufficiently long cracks. A deviation
similar to the Donahue correction is also distinguished for
long cracks, and two possible deviations from Paris’s law
for short cracks are indicated as “b” and ‘“‘c”. However,
the focus of this paper is on region “3” of Fig. 1 (i.e. short
cracks and high stress range), and hence we shall return on
the deviations of the map obtained near the threshold
(region “1”) using the Donahue equations ((12) and
(13)), in a later paragraph.

Turning back on the issue of short cracks, they give rise,
as also indicated qualitatively in Fig. 5, to multi-valued
functions with either acceleration or decelerations with
respect to the “reference” Paris power law (Pearson [24],
Ritchie and Lankford [25] and Miller [26]). This results
possibly in various “minima” in da/dN, and multiple
small-crack curves, which depend on micro-structural
aspects of crack arrest at grains boundaries (Hobson
et al. [27] and Navarro and de los Rios [28]). Hence, while
the detailed understanding of these various effects and the
development of sophisticated computational models is in
progress [27-30], we shall try a much simpler approach,
which may be oversimplified in some cases, but which we
believe would have the advantage to point out the natural
extensions of very popular concepts such as the Kitagawa
diagram and the El Haddad equation.

3. Preliminary comparisons

If we compare the propagation life of a pre-cracked
specimen, as predicted with the Paris integrated law ((8)
and (10)), with the expected life of the uncracked material
as predicted with Basquin—Wohler’s law ((5) and (7)), we
obtain curves such as in the examples in Fig. 6, and for ini-
tial crack sizes of a;/ay = 1, 10, 100, 1000, and for the steel
1045 in Table 1. The Paris curves are truncated from
above, by the static failure level, and from below, by the
El Haddad threshold. For a;/aq =1, 10, the Paris curve,
particularly in its approximate form (10), actually inter-
sects with the Basquin—Wohler’s law ((5) and (6)), and
above this level its prediction are clearly in error, suggest-
ing the stress level is too high for it to apply. In fact, below
the number of cycles N; of the transition between the two
regimes, failure occurs already for the uncracked material,
and the life for a specimen with such a small initial crack
cannot be higher. For larger cracks, a;/ay,= 100, 1000,
the final size of the crack gives the critical condition, since
static failure becomes dictated by toughness rather than
ultimate strength. Hence, as fatigue limit “lowers” the
long-crack stress intensity range threshold, to the effective
value given by the El Haddad equation (2), then Wohler’s

2000
1242

Ac [MPa]

30 1 I 1l 1 i 1
0 10t 10°

Fig. 6. An example of comparison for Basquin curve (dashed) and the
simplified form of the Paris integrated law (10) (solid) for a;/ay =1, 10,
100, 1000. The Basquin line is truncated to the fatigue limit (defined
conventionally at 10”7 cycles), whereas the Paris lines are truncated to the
El Haddad fatigue limit of Eq. (2).

law ““accelerates” the crack propagation rate of the Paris
law in region “3” of Fig. 1.

In the literature, we could not find this simple compari-
son between the Paris and Basquin predictions. Most mod-
ifications of Paris’s law are attempts to understand the
actual mechanisms of departure from the ideal conditions
or simple ad-hoc modifications for single effects, such as
crack closure, short cracks, see for example [22-26], among
others. A simple transition has not been attempted in the
context of finite life, where the SN behavior of the
uncracked material moves towards the Paris regime.

The transition from one regime to the other is clearly
obtained by equating the two relationships ((5) and (10))
for a given number of cycles, obtaining

. a?*”l/z ﬁ agfm/Z ﬁ
t ((m2) CCTCm/2> ’ Ot ((mz) CCTEm/2>

(15)

or finally in terms of crack size
ay = (Cr"*(m/2 — 1)CAN* )=, (16)

To get a more precise transition, we need to write the
intersection of the curves ((5) and (8)), i.e. including the
effect of the final size of the crack. This results in an
improved estimate for the transition size:

2
=m

a = [ai " + Crn(m 2 — DTN (17)

where we define ay, as

2

1 |Ki (1 —R
af‘t:; 1(71) . (18)

(&)
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Fig. 7. (a) The transition size @, from the Basquin curve to the Paris
integrated from Egqs. (16) (approximate) and (17). (b) The transition
number of cycles N, from the Basquin curve to the Paris integrated from
Eq. (16) (approximate) and from the solution of Eq. (17) (exact), and N, ,,
from the Paris integrated to the El Haddad threshold from Eq. (19).

For example, Fig. 7a gives the transition size a; in terms
of the expected life, according to Eqgs. (16) and (17). It is
clear that the approximate Eq. (16) overestimates the cor-
rect value of the transition size of Eq. (17). Notice also in
the Fig. 7a that the El Haddad “intrinsic” crack size aq
defined from the fatigue threshold (1) and the correspond-
ing static one are indicated, and do not coincide with the
values of the transition size a, at infinite life and static fail-
ure, respectively, because they were obtained from a differ-
ent approach. In particular, the transition size a, becomes
lower than g, already for intermediate lives. This indicates
that the definition of ¢, as a possible “finite life” flaw-toler-
ance crack size, may be questionable.

The other interesting transition of regimes is obtained
from intersection of the Paris integrated law (10) with the
El I;Iaddad threshold (2), obtaining as a function of crack
size

4 A more correct equation for the Paris integrated law (Eq. (8)) is really
not needed here.

1=(m/2)
a:
Ntoo =

(a; + ao)m/2

(mT_Z) C(AKLh)m

(19)

Fig. 7b shows the two transitions in terms of number of
cycles as a function of the original crack size (N, from Bas-
quin to Paris, and N, ., from Paris to the El Haddad
threshold).

The curve for N, starts from 10”7 cycles since the Bas-
quin law is valid, then rapidly decays to very small num-
ber of cycles, to finally disappear completely when «;
becomes comparable to the size aj of the transition from
the stress-dominated static failure to the toughness-domi-
nated failure. In the mean time, the curve N, starts from
10"7 cycles but decays a lot less rapidly, until it starts
growing again, and then reaches values greater than
10”7 cycles.

4. The KT diagram extended to finite life

Clearly, the importance of the transitions is evident.
The transitions defined by N, and a, permit to distinguish
between a ‘“Basquin—Wohler” dominated regime to a
“Paris”’-dominated regime. These two regimes are consid-
ered as the natural analogous of the stress range fatigue
limit, and the stress intensity range threshold, respec-
tively. A natural extension of the KT diagram for infinite
life is then obtained for the finite life, by using this idea.
In particular, for very small crack, the Basquin—Wdhler
curve condition applies, whereas for larger cracks,
namely a;> a(N), the crack propagation law applies for
the finite life. Hence, as the original KT diagram can
be obtained from the minimum of fatigue limit and fati-
gue threshold

AUKT (a) = mil’l(AO'(), AKth/\/E) (20)

then the extended KT (KT-Generalized, or KTG as an
acronym in the following) for finite life for N can be imme-
diately written as the minimum between Egs. (5) and (10)

_ —1m
Avira(N.a) =min <(E/N>”k, (252)crnn] )

(21)

where notice the dependence on the initial crack size is the
inverse square root expected in the KT diagram, but in-
creased by a factor 1/m. Obviously, Eq. (21) gives an
abrupt transition from the SN curve limit to the Paris inte-
grated curve limit, which can be corrected by adding the
transitional size of the crack as “intrinsic crack’ «;, deriv-
ing a generalized El Haddad equation (Generalized EH, or
EHGQG) as

m—2 i 11
Acma(l,a) = KT) Cﬂ’””N] (a+a (N,

(22)

However, a more precise treatment has to use the full
form of the Paris integrated Eq. (8), leading to
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This form of equation is implicit, given a, and a; both
depend on the given number of cycles. Hence, one needs
to solve (23) for a given N, obtaining a curve of stress range
as a function of initial crack size «a (later, we shall also see
how to use this equation as a SN curve, for a given a rather
than for a given N). Fig. 8 shows some example for the
usual 1045 steel, including Paris truncated to the El Had-
dad fatigue limit, as well as the original Basquin law for
the uncracked material, and the new EHG in the full form
(23) (indicated as “EHG”) or in the approximate form (22)
without consideration of the a; term (indicated as “EHG,
no ag’). It is clear that the EHG tends to be conservative
with respect to the original Paris law, and hence can be
considered particularly useful for design purposes. Notice
also that the approximate form of EHG (22) is convenient
and quite correct for large number of cycles, whereas at low
N, the full form is needed (23). This reflects also the fact
that the region “3” at low N is the interaction of various
regimes, i.e. the original Basquin regime towards the Paris
regime and finally toughness failure.

The extended KT diagram may turn out very useful to
understand the limits of validity of Paris’ law from a new
perspective. In fact, as in the derivation of toughness it is
well known that a sufficiently large crack and specimen is
needed, similar care should be used for Paris’ law constants
measurement, where the requirements on intermediate
points generally would depend on appropriate intermediate
conditions. We can also say that the effects of crack prop-
agation rate curves are here given in a different (integrated)
plot, which may be convenient to explore the data for
design purposes, when the final life is important and not
the instantaneous speed of propagation.

1045

| El Haddad

100 [ seereees Paris
J— EHG.noaf
— EHG
50 syl PRI B R ER T " ;num- n n | EETE R RTITT ] 0. .

w® 1w ot gt go?
a, [m]
Fig. 8. The extended KT diagram with EHG equation (23) or EHG

approximate form (22), as compared to the integrated Paris in the full
form (8), truncated to the Basquin law (5) level.

Notice also in particular the region for very low applied
stress ranges, which shows very long fatigue lives, unless
the initial crack is very large. This indicates a possible dif-
ficulty in measuring data in this range.

5. The generalized El Haddad equation as a new SN curve

The obtained Eq. (23) can clearly also serve as a new SN
curve interpolating between Basquin—-Wo&hler and Paris
regimes. The different regions of the extended KT diagram
result in the SN curves of Fig. 9. Notice that, starting from
the Basquin “upper” limit, we find that the EHG curve
interpolates for the high stress range case. This is generally
discussed in the context of deviations from Paris law, since
it is known that the two effects (which depend on the size of
the crack) are the decay towards the threshold (for long
cracks) and the acceleration for short cracks well below
the long-crack threshold and well above the level of the
Paris law — this second effect is what we modeled with
the EHG curve, the former with the Donahue curve.

This is shown in the following Fig. 9 for the usual exam-
ple material, and for a;/ay = 1, 10, 100, 1000. Notice in par-
ticular that for low a;/ay = 1, 10 the transition given by the
generalized EH equation (23) interpolates between the Bas-
quin—-Wohler and the Paris regimes, and is rather abruptly
truncated at the fatigue threshold. For larger a;/ay, = 100,
1000, the static failure condition is given by the toughness
condition, and no longer by the Basquin—-Wohler law (5).
Hence, the starting point is Paris law in its full formulation
of Eq. (8), i.e. taking the final size of the crack into
account. This transition however occurs naturally in the
generalized El Haddad in its full form (23).

6. Further equations near the fatigue threshold
In the derivations of the new generalized El Haddad

equations, we have assumed as a basic crack propagation
curve, the original Paris power law curve (7). We return

1045
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e e
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A0 L i i i ...J....."'-
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Fig. 9. The SN curves obtained with the generalized EH (Eq. (23)), and
Paris (8), for a;/ap =1, 10, 100, 1000.
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now to the issue of deviations from the power law regime,
in particular near the threshold, using for example the
Donahue et al. equations ((12) and (13)). It should be
borne in mind that the form given with the same Paris con-
stants (C, m) of the Paris law, clearly shows slower propa-
gation rates than the simpler Paris law, and hence the
generalized El Haddad equations so far obtained remain
a conservative, simpler approach. In the generalized El
Haddad equation obtained (23), as confirmed by the curves
of Fig. 9, gives essentially the transition from the Basquin—
Wohler to the Paris regime (for small initial crack sizes) or
directly from the Paris law in its full form depending on the
final crack size. The Donahue curve ((12) and (13)) follow-
ing the same reasoning, can be extended into another gen-
eralized El Haddad form, by defining a new transition
crack size from the intersection of the Basquin—Wdhler
curve at a given number of cycles, to the corresponding
Donahue curve. The expression is not obtained in closed
form and hence will not be given here. Further, by adding
this size to the initial crack size in Eq. (13), the new equa-
tion is obtained, as plotted in Fig. 10a in the generalized
KT diagram, or as a new SN curve, in Fig. 10b. The result-
ing expression, as expected, is a smoother transition than
the simpler EHG equation (23), particularly as a SN curve
in the transition towards the fatigue threshold. Notice also
that in Fig. 10c the transition size is given for the Donahue
equation, noting that the principal difference is obtained
towards the small values of crack sizes, since this tends here
towards the a, value.

7. Other materials

So far, we have only presented maps elaborated on the
1045 steel. Other materials having m > 2, like the steel
A588 in Table 1, would show similar behavior. More differ-
ences would be present for materials having m<2, like the
steel RQTS501 and RQT701 in Table 1. We present in fact
in the following Fig. 11, the resulting maps for the other 3
steels, showing that the case of steel RQT501 and RQT701
is very different from the previous two steels. In particular,
there seems to be a much large region of possible propaga-
tion, because of the very high number of cycles attained
before the crack reaches the critical size. In fact, in the inte-
grated form of the Paris equation, namely Eq. (8), not only
it is no longer possible to neglect the effect of the initial size,
but actually the shape of the entire contour line depends
critically by the effect of the difference between the two
terms, that involving the initial crack size, and than involv-
ing the final crack size. As a consequence, the intersection
of the Basquin line and the Paris line (i.e. the transition size
a;) 1s so high that most of the generalized El Haddad con-
tour lines are concentrated towards the toughness failure
line. Also, notice for values above a certain life, namely
N = 10”5 cycles in this example, the intersection does not
exist, which makes the Paris lines to cross the El Haddad
equation (2) for the threshold. For this reason, and also
to keep consistency with the previous plots, we do not show
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Fig. 10. The fatigue map (a) and fatigue SN curves (b) obtained with the
generalized EH (Eq. (23), using Paris), or the Donahue equation for
a;/ap =1, 10, 100, 1000. Finally (c) is the crack size transition size a for the
Donahue equation.

lines above N = 10”5 cycles (also consistently with the pre-
vious cases for the other materials).

Fig. 12 shows the resulting SN curves, again for the 3
steels, and here we can see that materials with m <2 show
a very “concentrated” decrease of fatigue strength towards
the high number of cycles.

8. Discussion

The “asymptotic matching” practice of a fictitious
increase of the crack size, used in the El Haddad equation
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Fig. 11. The fatigue map obtained with generalized EH (Eq. (23)) for the
other materials in Table 1, as compared to the integrated Paris (8),
truncated to the Basquin law level.

(2), and its newly derived generalized form (23), corre-
sponds also qualitatively to the Dugdale strip-yield concen-
trated plastic damage models which have been developed
for fatigue by Newmann [30-32] and Nguyen et al. [33],
or Desphande et al. [34] among others. Accurate models
in principle should capture the delicate interplay between
bulk cyclic plasticity, closure (possibly all mechanisms of
closure, such as plasticity-induced or roughness-induced
or others), and gradual decohesion at the crack tip. The
increase of the crack could be considered proportional to

1500
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Fig. 12. The fatigue SN curves obtained with generalized EH (Eq. (23))
for ajay=1, 10, 100, 1000, as compared to the integrated Paris (8),
truncated to the Basquin law level.

the “‘instantaneous” cyclic yield zone and appropriate
“constraint factors” could be defined to account for the
transition from flat-to-slant crack growth, ie. from
plane-strain conditions at low stress-intensity factors, to
plane stress as the plastic-zone size becomes large com-
pared to thickness. The capability to take into account of
local and instantaneous plastic properties of the material,
and of geometrical and shape factors, make these models
potentially very accurate, but also very complicated,
requiring a significant amount of computational effort
and additional knowledge of material properties (particu-
larly, of plastic cyclic hardening, as for example present
models simply use perfect plasticity). Our approach should
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not be considered as a direct alternative to these sophisti-
cated simulations, but a perhaps less quantitative, simpler
route for qualitative discussion and design maps.

Various authors have suggested classifications of short
cracks (see Ritchie and Lankford [35], or Miller [26]) into
(i) microscopic short crack (‘“microstructurally small”, for
which continuum mechanics breaks down and Microstruc-
tural Fracture Mechanics is needed, see for example the
models of Hobson et al. [36] and later Navarro and de
los Rios [28]; this is perhaps the most complex category,
since crack deceleration or self-arrest are very dependent
on the grains size and orientations, and possible accelera-
tion decelerations or “minima” in da/dN and multiple
small-crack curves can be found (Ritchie and Lankford
[25)). (i) physically small crack (‘“‘mechanically small” com-
pared to the scale of local plasticity, for which Elastic—Plas-
tic Fracture Mechanics (EPFM) is needed, first introduced
by Tomkins (see Miller, [26]), who equated da/dN to crack
tip decohesion (from knowledge of the cyclic stress—strain
curve), and thence to the bulk plastic strain field such as
occurs, for example, under high strain fatigue. Further gen-
eralizations of our model could also be considered to incor-
porate these definitions and alternative formulation in the
extended Kitagawa diagram.

Finally, two other remarks on possible connections with
existing literature, partly suggested by one referee. Firstly,
we should mention that the static equivalent of the El Had-
dad equation (2) has been already proposed by some
authors (see, for example [37-39]) and is the basis for the
size scale effect studied for large structures. Secondly, there
are various approaches proposed to obtain the initiation
life from a Basquin—-Coffin—-Manson type of equation
(which, however, needs to be “extracted” in the sense of
initiation of a crack, and not of final failure), and summing
this to the propagation life using Paris law:

(1) In the specific context of fatigue of welded structures
[40-43], often it is assumed that the transition occurs
at a given, fixed, size of the crack (0.25 or 0.15 mm).

(2) In the generic case of notched member [44], the stress
ahead of the notch, which is decreasing, is used to
estimate the da/dN crack initiation rate from Bas-
quin—Coffin—-Manson, and the crack propagation
curves da/dN from Paris law. When the two lines
cross, it is assumed that crack propagation
dominates.

However, these two Initiation-Propagation (IP) ap-
proaches are rather different from our approach, and a
detailed comparison is quite difficult: in the former case,
the assumption of a given size for crack initiation is some-
what arbitrary. Even assuming a Coffin-Manson law can
be used to define “initiation” in the sense of generation
of a crack of length 0.25 or 0.15 mm, then it is not necessar-
ily true that Paris law can be used for cracks of this size,
because, for example, for large enough applied stress range,
EPFM is needed even at this sizes. On the other hand, at

low enough applied stress range, this arbitrary initial crack
size may not be sufficient for crack propagation to start
(since the product of stress range and square root of crack
size may be well below the long crack fatigue threshold).
The fact that this approach is used mainly with the welded
joints problem may be due to the fact that welded joints
have intrinsic long cracks introduced by the welding pro-
cess, and hence their fatigue life has more to do with prop-
agation in the Paris law sense than with initiation. If this is
the case, one really would need to define this “critical size”
for initiation accurately and appropriately (and not just
0.25 or 0.15mm as probably appropriate only for some
typical classes of welded joints), and yet it is not entirely
clear if the idea of summing initiation and propagation
leads to the correct shape of the SN curve (particularly at
HCF), as Hou and Charng [43] themselves recognize: ““it
is still controversial whether the SN curve of welded joints
becomes less steep at a high cycle regime as is commonly seen
in the calculated SN curves of the IP model”. We suppose
that in fact, if our picture above is correct, i.e. if the “fati-
gue limit” of the welded joint has more to do with a tran-
sition to the fatigue threshold, then the slope in the area of
HCF has nothing to do with the initiation slope as sug-
gested by the IP approach. The IP approach basically
assumes that we can record or experimentally evaluate
the occurrence of a crack of a given size (by strain gages
or other means) and we can use a unique “initiation”” Cof-
fin-Manson law, i.e. not recognizing the initial defects in the
material (with their variability), essentially requires a differ-
ent law — this is recognized by the authors of Ref. [43]
who admit there is large scatter in the results of initiation.

In the latter case, the use of a law derived with an unnot-
ched specimen to estimate the initiation life of a notched
one locally is again somewhat arbitrary. What we are pro-
posing is rather a comparison between the Basquin curve
for the uncracked material, and the Paris curve neglecting
short crack effects. The interpolation between the two gives
a “map” by filling the missing information in the simplest
possible way, i.e. by interpolation between the well known
regimes.

9. Conclusions

We have proposed new diagrams and new equations,
generalizing the Kitagawa—Takahashi diagram and the El
Haddad equation, respectively, to finite life. In particular,
in the absence of geometrical effects and for constant
amplitude loading, a general equation (Eq. (23)) has been
obtained for fatigue life by interpolating between the Bas-
quin-Wohler’s law for the uncracked material and the
Paris integrated equation, either in a simplified form, inde-
pendent on the final size of the crack, or in its full form,
which permits to take into account also of possible regime
of static toughness failure. The resulting expression can
also be seen as a SN curve, for a given initial crack size,
and has the merit to show the various transitions between
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known regimes from a new perspective. Also, as an empir-
ical equation, it does not contain explicit description of
physical mechanisms, but being an interpolation proce-
dure, it does not have the risks associated to the inevitable
“extrapolation” nature of the many other phenomenologi-
cal but essentially empirical models. The new generalized
El Haddad equation deals with the regime of short cracks
and high stress range values, whereas a second equation
obtained starting from the Donahue correction of the Paris
law, suggests the deviations near the threshold, which,
however, can be avoided considering the simpler general-
ization of the El Haddad equation as a conservative esti-
mate for design purposes.
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