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Abstract

We have used the Mori–Tanaka method to study the effect of nonlinear interface debond-

ing on the constitutive behavior of composite material with high particle volume fraction. The

interface debonding is characterized by a nonlinear cohesive law determined from the fracture

test of the high explosive PBX 9501. Using the example of the composite material with spher-

ical particles subject to hydrostatic tension, we show that the particle size has an important

effect on the behavior of the composite material, namely hardening for small particles and

softening for large particles. The critical particle size that separates the hardening and soften-

ing behavior of the composite material is determined. For the composite material with large

particles, the particle/matrix interface may undergo catastrophic debonding, i.e., sudden,

dynamic debonding even under static load. The energy release during catastrophic debonding

can be very large, thus may trigger the reaction or detonation of high explosives. For the high

explosive PBX 9501, the energy release due to catastrophic debonding of coarse (large)
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particles is equivalent to the free drop of the high explosive from a height of 110 m. This value

become much higher, 455 m, once the debonding of fine (small) particle is accounted for.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Many composite materials have high particle volume fraction, such as metal ma-

trix composite materials reinforced with 48–65% of alumina particles to improve stiff-

ness and wear resistance (Zhou et al., 2004), and solid propellants and high explosives

which contain more than 60% (e.g., Kimura and Oyumi, 1998; Ide et al., 1999; Balzer

et al., 2004) and 90% (e.g., Bennett et al., 1998; Liu, 2003b) of energetic particles in

polymeric binder matrix, respectively. These composite materials have high specific

surface (i.e., high interface area per unit volume of the composite material) such that

the behavior of particle/matrix interfaces may significantly influence the macroscopic
behavior of composite materials. For example, interfacial debonding between matrix

and particles is a major damage mechanism that governs nonlinear and anisotropic

behavior of the composite material (e.g., Voyiadjis and Allen, 1996). The interfacial

debonding also governs fracture of composite materials with high particle volume

fraction. The macroscopic crack propagation is mainly along the particles/matrix

interface in solid propellants (e.g., Ho and Fong, 1987; Sciammarella and Sciamma-

rella, 1998; Ide et al., 1999), high explosives (e.g., Wiegand and Pinto, 1996; Rae et al.,

2002a,b), and some metal matrix composites (Zhou et al., 2004).
The direct consequence of interfacial debonding is the decrease of modulus of the

composite material as compared to that with perfect interfacial bonding. For exam-

ple, the energetic particles (HMX) in the high explosive PBX 9501 have the volume

fraction f = 92.7% (e.g., Bennett et al., 1998; Liu, 2003b) and elastic bulk modulus

Kp = 12.5 GPa (Zaug, 1998). The binder matrix has the volume fraction of 7.3%,

Young�s modulus Em = 1 MPa at the low strain rate, Poisson�s ratio mm = 0.499

(Cady et al., 2000; Mas et al., 2001), and lm = Em/[2(1 + mm)] is the shear modulus

of the matrix. If the bonding between the particles and matrix were perfect (i.e.,
no interfacial debonding), the bulk modulus 1.96 GPa for the high explosive PBX

9501 would be

�K ¼ Km þ f ðKp � KmÞ
1þ ð1� f Þ Kp�Km

Kmþ4lm=3

¼ 1:96 GPa: ð1Þ

The above expression is established from both Mori–Tanaka method (e.g., Taya and

Chou, 1981; Weng, 1984, 1990; Benveniste, 1987) and generalized self-consistent

method (Christensen, 1990; Huang et al., 1995), and is an accurate expression for

the bulk modulus of the composite material. However, the experimentally measured

Young�s modulus of the high explosive PBX 9501 is 1 GPa at the low strain rate, and
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the Poisson�s ratio is 0.35 (e.g., Olinger and Hopson, 1978; Gray et al., 1998; Wetzel,

1999; Banerjee and Adams, 2003). These give the bulk modulus of PBX 9501 as
�K ¼ 1:11 GPa, which is more than 40% lower than the bulk modulus 1.96 GPa given

in Eq. (1). Therefore, the interfacial debonding is mainly responsible for this signif-

icant difference between the experimental and theoretical bulk moduli (1.11 GPa ver-
sus 1.96 GPa). The finite element simulations on the high explosive PBX 9501,

assuming perfectly bonded interfaces, also predicted the elastic modulus higher than

the experimental data (Banerjee and Adams, 2002).

Another consequence of the interfacial debonding is the particle size effect, which

has been repeatedly observed in composite materials with high particle volume frac-

tion. Rae et al. (2002a) observed that the interfacial debonding always starts around

large particles in the high explosive PBX 9501. Fleming et al. (1985) and Kimura and

Oyumi (1998) showed that the size of energetic particles plays a critical role in the
explosiveness of high explosives and solid propellants, respectively. Under the same

total volume fraction of particles, a mix of large and small particles gives much

higher explosiveness than that with small ones only. These experiments suggest a

critical particle size that strongly influences the performance of high explosives.

The classical theories of composite materials involve no intrinsic material length

(e.g., Budiansky, 1965; Hill, 1965; Mori and Tanaka, 1973; Christensen and Lo,

1979; Christensen, 1990; Huang et al., 1994a,b, 1995; Huang andHu, 1995), and there-

fore cannot predict the observed particle size effect (Huang and Li, 2004; Huang et al.,
2004; Hwang et al., 2004; Liu and Hu, 2005; Rashid et al., 2004; Wen et al., 2005).

There are extensive experimental studies on composite materials with high particle

volume fraction, such as high explosives (e.g., Rae et al., 2002a), solid propellants

(e.g., Balzer et al., 2004), and metal matrix composite materials (e.g., Zhou et al.,

2004). These experiments usually involve multiple mechanisms of deformation, such

as interface debonding, particle cracking, and matrix deformation and tearing. It is

difficult to isolate a single mechanism (e.g., interface debonding) from these experi-

ments. Furthermore, the experiments on energetic materials could be potentially haz-
ardous and therefore very expensive. It is desirable to develop computational or

analytical models for the fundamental understanding of deformation mechanisms

in composite materials with high particle volume fraction since these models can

quantitatively characterize the effect of a single mechanism of deformation.

There are some computational models for high explosives and solid propellants

(e.g., Bennett et al., 1998; Hackett and Bennett, 2000; Banerjee and Adams, 2002,

2003, 2004), but very few on interface debonding and its effect on the macroscopic

behavior. Zhong and Knauss (1997, 1999) used the cohesive-based finite element
method to study the dewetting (debonding) process of spherical rigid particles

embedded in an elastic rubbery matrix. However, it is difficult for the computational

models to capture the large variation of particle size in high explosives and solid pro-

pellants. For example, the size of large particles is more than two orders of magni-

tude larger than the size of small particles in the high explosive PBX 9501. The small

particles, however, also contribute significantly to the macroscopic behavior of the

high explosive and must be accounted for in computational models. The advanced

multiscale simulation methods are needed to capture the deformation of both large
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and small particles (e.g., Raghavan et al., 2001; Ghosh et al., 2001; Banerjee and

Adams, 2003, 2004; Carrere et al., 2004; Iwamoto, 2004; Raghavan et al., 2004;

Raghavan and Ghosh, 2004; Roos et al., 2004; Voyiadjis et al., 2004; Ghosh and

Raghavan, submitted for publication; Raghavan and Ghosh, submitted for publica-

tion). It is desirable to develop analytical models that account for the effect of inter-
face debonding on the macroscopic behavior of composite materials with both large

and small particles.

The linear cohesive zone model for the particle/matrix interface, which gives a lin-

ear relation between stress traction and displacement discontinuity across the parti-

cle/matrix interface during debonding, has been used in the analytical studies of

interface debonding and its effect on the macroscopic behavior of composite materi-

als (Mal and Bose, 1975; Benveniste and Aboudi, 1984; Benveniste, 1985; Achenbach

and Zhu, 1989; Pagano and Tandon, 1990; Hashin, 1991a,b, 2002; Qu, 1993; Zhong
and Meguid, 1997). The linear cohesive zone model gives an unphysical infinite cohe-

sive energy, and cannot characterize the nonlinear behavior of the interface, such as

softening associated with interface debonding. There are very few analytical studies

on the effect of nonlinear cohesive law that involves softening. Levy (1996, 2000)

studied the special cases of unidirectional composite reinforced by circular fibers

of same radius subject to equibiaxial load and uniaxial tension in the fiber direction,

respectively. Tan et al. (submitted for publication) established a theoretical frame-

work for particle-reinforced composite materials to incorporate the nonlinear cohe-
sive law for the particle/matrix interface. But their analysis is limited to the dilute

solution which only holds for low particle volume fraction.

The objective of this paper is to investigate the effect of nonlinear interface deb-

onding on the macroscopic behavior of composite materials with high volume frac-

tion of particles, such as high explosives and solid propellants. We establish an

analytic model that incorporates the nonlinear cohesive law of the particle/matrix

interface to establish the constitutive model of the composite material. Such an ana-

lytic model avoids the difficulty associated with numerical methods, and is capable of
capturing the size effect for particles with very different sizes.

The paper is outlined in the following. Based on the experimental studies of the

high explosive PBX 9501, we establish a nonlinear cohesive law for the particle/ma-

trix interface in Section 2. This nonlinear cohesive law involves softening, and can

characterize the debonding of particle/matrix interface. The Mori–Tanaka method,

which is applicable to composite materials with high particle volume fraction, is

adopted in Section 3 to study the effect of interface debonding on the macroscopic

behavior of the composite material. In order to illustrate our approach, we present
an example of a composite with spherical particles subject to hydrostatic tension.

This example captures the effects of particle size and interface debonding, but avoids

the complexity of tension/shear coupling in the cohesive law.

The nonlinear macroscopic behavior of composite materials containing particles

of the same size is studied in Section 4. For given properties of the particles, matrix

and interfaces, different particle sizes may lead to very different behavior of the com-

posite material, namely hardening of the composite for small particles, and softening

for large particles. A critical particle size separating the softening and hardening of
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the composite material is determined, and the catastrophic debonding of the particle/

matrix interface is discussed in Section 5.

In Section 6, we study the macroscopic behavior of composite materials contain-

ing two different sized particles because solid propellants and high explosives display

a bimodal distribution of particle size (Fleming et al., 1985; Skidmore et al., 1997;
Bennett et al., 1998; Hackett and Bennett, 2000). For example, the high explosive

PBX 9501 is mixed with coarse particles (radii �125 lm) and fine particles (radii

�4 lm) with 3:1 volume ratio (Skidmore et al., 1997; Berghout et al., 2002). Results

in this section capture the experimentally observed particle size effect on interface

debonding (Rae et al., 2002a; Balzer et al., 2004).

The composite materials with particles of many sizes are studied in Section 7. The

particle size distribution in the high explosive PBX 9501 is used. It is shown that the

analysis including the particle size contribution but not the contribution from
the interface cannot address the observed size effect in the composite materials.

The bulk modulus predicted by the present analysis accounting for the particle/

matrix interface debonding agrees well with the experimental data.
2. Cohesive law for the high explosive PBX 9501

The high explosive PBX 9501 can be viewed as a composite material composed of
92.7 vol% HMX (energetic) crystals and 7.3 vol% of polymeric binder. The poly-

meric binder consists of 50% Estane and 50% nitroplasticizer. Estane is segmented

block copolymer of polyester and polyurethane, with good adhesion properties.

Fig. 1(a) shows the microstructure of PBX 9501, which has a very wide spectrum

of size distribution of HMX crystals in order to achieve such a high volume fraction.

The size distribution of HMX in PBX 9501, as shown in Fig. 1(b), displays a bimodal

distribution with average size of large particles around 250 lm and small particles

around 8 lm. In fact, PBX 9501 is mixed with coarse particles (radii �125 lm)
and fine particles (radii �4 lm) with the 3:1 volume ratio (Skidmore et al., 1997;

Berghout et al., 2002). The volume fractions of the coarse and fine particles are there-

fore 69.5 and 23.2 vol%, respectively.

Liu (2003a) and Tan et al. (submitted for publication) used a specially modified

compact tension specimen, together with the digital image correlation technique

(Chu et al., 1985), to measure the distributions of cohesive stress r and opening dis-

placement d ahead of a tensile crack tip in the high explosive PBX 9501. Details of

the experiments are not presented in this paper. The relation between the cohesive
stress r and opening displacement d gives the macroscopic cohesive law for PBX

9501, and is shown in Fig. 2. The ratio of cohesive strength rmax (maximum cohesive

stress) to the Young�s modulus E is around 1.66 · 10�3. Since the Young�s modulus

of PBX 9501 varies from E = 0.96 GPa for quasi-static loading (Gray et al., 1998;

Bennett et al., 1998; Banerjee and Adams, 2003) to 1.15 GPa for low-strain rate
_e ¼ 0:44 s�1 (Gray et al., 1998), the cohesive strength varies accordingly from

rmax = 1.66–1.90 MPa. Before the cohesive strength is reached, the macroscopic

cohesive law has a very steep rising portion, which corresponds to a very large initial



Fig. 1. (a) Micrograph of the high explosive PBX 9501; (b) distribution of particle size in PBX 9501

(courtesy of Cary Skidmore of Los Alamos National Laboratory).
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slope around 1.55 GPa/lm. The opening displacement at the cohesive strength is

very small, less than 0.2 lm. Once the opening displacement exceeds this value,

the cohesive stress decreases (approximately) linearly with the opening displacement,

as shown by the straight line in Fig. 2. This straight line has the slope �0.015 mm�1

in Fig. 2 and its intercept with the horizontal axis is dc = 0.11 mm. This intercept rep-

resents the critical opening displacement at which the cohesive stress reaches zero
and the crack starts to propagate. The cohesive energy (i.e., fracture energy), defined

by the total area underneath the r � d curve, ranges from 85 to 102 J/m2 for the

aforementioned variation of Young�s modulus, and it agrees reasonably well with

the fracture energy for high explosives reported by Wiegand (1998) and Dienes

and Kershner (1998).
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Fig. 2. Cohesive law of the high explosive PBX 9501 under quasi-static loading condition.
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It is important to note that we can infer the microscopic cohesive law for the

particle/matrix interface from the macroscopic cohesive law in Fig. 2. This is be-

cause the high explosive PBX 9501 has a very large particle volume fraction
(92.7%) such that the crack propagation in PBX 9501 always follows the parti-

cle/matrix interfaces (e.g., Wiegand and Pinto, 1996; Rae et al., 2002a,b). The

macroscopic fracture energy is dominated by the particle/matrix interface energy

since the contribution from the matrix cracking is negligible. Two key variables in

the cohesive law are the opening displacement and the cohesive stress. The open-

ing displacement d in the macroscopic cohesive law in Fig. 2 is essentially the

same as the separation of particle/matrix interfaces on the microscale because

the crack always propagates along the interfaces. The cohesive stress at the par-
ticle/matrix interface, in general, is different from the macroscopic cohesive stress

in Fig. 2. However, as to be shown in the next section, the difference between the

microscopic and macroscopic cohesive stresses is very small (<0.3%) for the high

explosive PBX 9501 because

(i) the elastic modulus of HMX particles is three orders of magnitude larger than

that of the polymeric matrix, and the matrix is nearly incompressible;

(ii) the stress field around the tensile crack tip in the modified compact tension

experiment has a large stress triaxiality such that its stress state is approximately
the hydrostatic tension studied in the next section.

These two conditions ensure that the macroscopic and microscopic stresses are

very close. Therefore, the cohesive law measured from the macroscopic fracture test

is a good representation of the interface cohesive law for the high explosive PBX 9501.



Fig. 3. Interface cohesive model.
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As seen from Fig. 2, the rising, descending, and complete debonding portions of

the cohesive curve are approximately straight lines, and can be represented by a

three-stage (I, II, III), piecewise linear interface cohesive law shown in Fig. 3. This

interface cohesive law involves three parameters, namely, the interface cohesive

strength rmax, and the linear modulus kr and softening modulus ~kr of the interface,
which are the slopes of the rising and descending segments, respectively. The relation

between the normal traction rint and the opening displacement [ur] at the interface is

then given by

rint ¼ kr½ur� ½ur�< rmax=kr stage-I;

rint ¼ ð1þ ~kr=krÞrmax � ~kr½ur� rmax=kr < ½ur�< rmaxð1=kr þ 1=~krÞ stage-II;

rint ¼ 0 ½ur�> rmaxð1=kr þ 1=~krÞ stage-III:

ð2Þ
The interface cohesive energy cint is related to cohesive strength and linear and soft-

ening moduli by cint ¼ r2max

2
ð 1
kr
þ 1

~kr
Þ.
3. A micromechanics model accounting for particle/matrix interface debonding:

Mori–Tanaka method

3.1. General approach accounting for interface debonding

Tan et al. (submitted for publication) established a theoretical framework to ac-

count for the effect of nonlinear interface debonding on the constitutive behavior of

composite materials. They also obtained the dilute solution for composite materials
with low particle volume fraction. In this section, we use the Mori–Tanaka method

to study the nonlinear constitutive behavior of composite materials with high particle

volume fraction (e.g., solid propellants, high explosives) based on the cohesive law

shown in Fig. 3 for the particle/matrix interfaces.

We consider a representative volume element (RVE) of the composite material

consisting of particles and matrix. The volume X of the RVE is the sum of the matrix
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volume Xm and particle volume Xp. The particle volume fraction f is given by Xp/X.
The average stresses in the matrix Xm and in the particles Xp are denoted by rm and

rp, respectively. The average stress in the composite �r is related to rm and rp by (e.g.,

Taya and Chou, 1981; Weng, 1984, 1990; Benveniste, 1987)

�r ¼ ð1� f Þrm þ frp: ð3Þ
Similarly, the average strains in the matrix and in the particles are denoted by em and

ep, respectively. The average strain in the composite is given by (Tan et al., submitted

for publication)

�e ¼ ð1� f Þem þ f ep þ f eint; ð4Þ
where the additional term feint represents the contribution from particle/matrix inter-

face debonding (Tan et al., submitted for publication), eint is related to the displace-

ment discontinuity [u] = um � up across the particle/matrix interface Sint by

eint ¼ 1

2Xp

Z
Sint

½u� � nþ n� ½u�ð ÞdA; ð5Þ

um and up are the displacements on the interface from the matrix side and particle

side, respectively, and n is the unit normal vector on the interface pointing into

the matrix.
The particles and matrix are assumed to be linear elastic with the elastic compli-

ance tensors Mp and Mm, respectively. Eqs. (3) and (4), together with em = Mm:rm

and ep = Mp:rp, give the composite strain �e in terms of the composite stress �r as

�e ¼ Mm : �rþ f Mp �Mmð Þ : rp þ eint
� �

: ð6Þ

For a composite with multi-phase particles, including particles with different sizes,

we denote the volume of type-N particles as Xp
N . Its volume fraction is

fN ¼ Xp
N=X. Eqs. (3) and (6) then become

�r ¼ ð1� f Þrm þ
X
N

fNr
p
N ; ð7Þ

�e ¼ Mm : �rþ
X
N

fN Mp
N �Mmð Þ : rp

N þ eintN

� �
; ð8Þ

where f ¼
P

NfN is the total particle volume fraction, Mp
N is the elastic compliance

tensor of type-N particles, r
p
N is the average stress in type-N particles,

eintN ¼ 1
2Xp

N

R
SintN

½u� � nþ n� ½u�ð ÞdA, and Sint
N is the interface between matrix and

type-N particles. It is important to note that Eqs. (7) and (8) are exact. Approxima-

tions are made only to evaluate rm, r
p
N , and eintN in terms of the macroscopic stress �r

(or strain �e), as discussed in the following.
For perfectly bonded interfaces, i.e., without any debonding, eintN ¼ 0 such that only

the average stress rp
N in particles is to be determined in terms of �r (or �e). This is usually

accomplished via micromechanics models, such as the Mori–Tanaka method (e.g.,

Taya and Chou, 1981; Weng, 1984, 1990; Benveniste, 1987). For interfaces with



H. Tan et al. / International Journal of Plasticity 21 (2005) 1890–1918 1899
debonding, both eintN and r
p
N need to be determined via micromechanics models and the

cohesive law for the particle/matrix interface.

3.2. Hydrostatic tension

To illustrate the present approach accounting for the effect of nonlinear inter-

face debonding, we consider an example of an isotropic matrix containing parti-

cles subjected to hydrostatic tension �rI , where I is the second-order identity

tensor. The particles are also isotropic, and have the same elastic moduli but dif-

ferent sizes denoted by a1, a2, . . . The corresponding volume fraction of particles

with size aN is denoted as fN. The tensorial equations (7) and (8) then become the

following scalar equations

�r ¼ ð1� f Þrm þ
X
N

fNr
p
N ; ð9Þ

�ekk ¼
1

Km �rþ
X
N

fN
1

Kp �
1

Km

� �
rp
N þ eintkk

� �
N

� �
; ð10Þ

where Km and Kp are the elastic bulk moduli of the matrix and particles, rm ¼ rmkk
3
and

rp
N ¼ rpkkð ÞN

3
are the average mean stresses in the matrix and particles, respectively.

From Eq. (5), heintkk iN can be written as

eintkk

� �
N
¼ 1

Xp
N

Z
SintN

½un�dA ð11Þ

regardless of the particle shapes, where [un] is the displacement discontinuity in the

normal direction of the particle/matrix interface. It is important to note that Eqs.

(10) and (11) hold for a composite with particles of arbitrary shapes and size
distribution.
3.3. Spherical particles of different sizes

For spherical particles with particle radius aN, Eq. (11) becomes

eintkk

� �
N
¼ 1

Xp
N

Z
SintN

½ur�dA ¼ 3½ur�N
aN

; ð12Þ

where [ur]N is the average displacement discontinuity in the radial direction on the

interfaces between type-N particles and matrix. Therefore, for a composite material

with spherical particles, Eq. (10) becomes

�ekk ¼
1

Km �rþ
X

fN
1

Kp �
1

Km

� �
rp
N þ 3½ur�N

a

� �
: ð13Þ
N N
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For a given cohesive law of the particle/matrix interface, the average displacement

discontinuity [ur]N can be related to the normal traction rint
N on the interface, and rint

N

equals the normal stress in the radial direction. We adopt the Mori–Tanaka method

to relate rp
N and rint

N to the macroscopic stress �r (or strain �ekk). Eq. (13) then gives the

constitutive relation for a composite under hydrostatic tension.

3.4. Mori–Tanaka method

We use the Mori–Tanaka method, which is suitable for composite materials with

high particle volume fraction, to determine the average stresses rp
N in particles and

the displacement discontinuities [ur]N on the particle/matrix interface in terms of

the macroscopic stress �r. The basic idea in the standard Mori–Tanaka method is

to relate the average stress r
p
N in particles to the average stress rm in the matrix (in-

stead of the macroscopic stress �r). This relation, together with Eq. (7), determines rp
N

and rm in term of �r. For the composite material with particle/matrix interface deb-

onding, the Mori–Tanaka method is modified in the following to incorporate the

interface cohesive law in Eq. (2).

Following the standardMori–Tanaka method, we consider a single spherical parti-

cle of radius aN in an infinite matrix subject to remote hydrostatic stress rm, where
rm ¼ rm

kk=3 is the average mean stress in the matrix, and it is related to the macroscopic

stress �r and average stressrp
N in the particles viaEq. (9). The stress state in the particle is

uniform and hydrostatic, and is denoted by rp
NI , where r

p
N equals to the normal stress

rint
N at the particle/matrix interface. The displacement is discontinuous across the par-

ticle/matrix interface due to interface debonding. The radial displacement at the parti-

cle boundary is
rintN
3Kp aN . The displacement field in thematrix can be found inTimoshenko

andGoodier (1970), and the radial displacement at the inner boundary of the matrix is

given in terms of rm and rint
N by aN

2Em 3ð1� mmÞrm � ð1þ mmÞrint
N

	 

, where Em and mm are

theYoung�smodulus andPoisson�s ratio of thematrix, respectively. Therefore, the dis-

placement discontinuity in the radial direction is

½ur�N ¼ 3ð1� mmÞrm � ð1þ mmÞrint
N

2Em � rint
N

3Kp

� �
aN : ð14Þ

This equation, in conjunction with the interface cohesive law described in Eq. (2),

provides the following relation between rint
N and rm,

rint
N ¼ aNrm stage� I;

rint
N ¼ 1þ a0N

aN

� �
rmax � a0Nr

m stage� II;

rint
N ¼ 0 stage� III;

ð15Þ

where

aN ¼ 3ð1� mmÞ
2Em 1

kraN
þ 1

3Kp þ 1
4lm

� � ð16Þ

and
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a0N ¼ � 3ð1� mmÞ
2Em � 1

~kraN
þ 1

3Kp þ 1
4lm

� � ð17Þ

are non-dimensional parameters that depend on not only the properties of particle,

matrix, and interface, but also the particle radius aN. Here a0N can be written as

a0N ¼ 3~krð1� mmÞ
2Em 1

aN
� 1

a0

� � ; ð18Þ

which is positive for aN < a 0 and negative for aN > a 0, and

a0 ¼ 1

~kr 1
4lm þ 1

3Kp

� � ð19Þ

is a characteristic particle radius. For the high explosive PBX 9501, the bulk

modulus of HMX particles Kp = 12.5 GPa (Zaug, 1998), Young�s modulus of

the polymeric matrix Em = 1 MPa (Cady et al., 2000; Mas et al., 2001), Poisson�s
ratio mm = 0.499 (Cady et al., 2000; Mas et al., 2001; Banerjee and Adams, 2003),

lm = Em/[2(1 + mm)] = 0.33 MPa, and linear modulus kr = 1.55 GPa/lm and soft-
ening modulus ~kr ¼ 15 MPa=mm of the interface (based on the slope �0.015

mm�1 for the softening portion in Fig. 2 and Young�s modulus E = 1 GPa for

the high explosive PBX 9501). These give the characteristic particle radius in

Eq. (19) as a 0 = 87 lm for PBX 9501. It is recalled that the particle size in

PBX 9501 follows a bimodal distribution. The average radius of coarse particles

is around 125 lm, and is larger than a 0. The fine particles have an average radius

of 4 lm, and is much less than a 0.

Contrary to a0N , the coefficient aN in Eq. (16) is always positive. For coarse and
fine particles in the high explosive PBX 9501, aN is 1.0026 and 1.0024, respectively,

and is very close to 1. Eq. (15) then give the normal stress at the particle/matrix inter-

face in stage I as rint
N ¼ aN

1þ
P

N
fN ðaN�1Þ

�r � �r for the PBX 9501, i.e., the normal stress at

the particle matrix interface is essentially the same as the macroscopic stress. Fur-

thermore, the tensile crack tip fields in Liu�s (2003a) and Tan et al.�s (submitted

for publication) modified compact tension experiments have large stress triaxialities
close to state of hydrostatic tension such that the analysis in this section is applicable,

and the above relation rint
N � �r holds. This is the reason that the microscopic cohe-

sive law in Eq. (2) can be obtained from the macroscopic law in Fig. 2 in Section 2.

Since for spherical particles rp
N ¼ rint

N , Eq. (9) becomes

�r ¼ ð1� f Þrm þ
X
N

fNrint
N : ð20Þ

Eqs. (15) and (20) are the governing equations to determine the average stresses rm in

the matrix and rint
N at the particle/matrix interface in term of �r.

The macroscopic strain of the composite is obtained in terms of rm and rint
N by

substituting [ur]N in Eq. (14) into Eq. (13),
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�e ¼ 1

4lm

2ð1� 2mmÞ
1þ mm

þ f
� �

rm �
X
N

fNrint
N

" #
; ð21Þ

where �e ¼ �ekk=3, and Eq. (20) have been used. Since rm and rint
N are solved in term of

�r via Eqs. (15) and (20), the above equation gives the macroscopic strain �e in terms of

the macroscopic stress �r, i.e., the constitutive relation of the composite material. It is

interesting to note that rint
N and �r have a linear relation in each stage (see Eq. (15)).

Therefore, the stress–strain relation of the composite is piecewise linear.
Once all particles are completely debonded (stage III), i.e., rint

N ¼ 0 for all N, Eq.

(21) becomes

�e ¼ 1

4lmð1� f Þ
2ð1� 2mmÞ
1þ mm

þ f
� �

�r;

which corresponds to a straight line in the stress–strain curve. The slope of this

straight line corresponds to three times of the elastic bulk modulus

2ð1� 2mmÞð1� f Þ
2ð1� 2mmÞ þ ð1þ mmÞf Km

of a matrix containing microvoids of volume fraction f predicted by the Mori–

Tanaka method. Furthermore, the straight line passes through the origin, ð�r;�eÞ ¼
ð0; 0Þ, which means that the stress–strain relation becomes identical to that for a

matrix containing microvoids, i.e., the gradual debonding process of the particle/

matrix interface has no influence once all particles have completely debonded.

For spherical particles embedded in a more compliant matrix, as the case for high

explosive PBX 9501, the Mori–Tanaka approach yields Hashin and Shtrikman�s
(1963) lower bound (Weng, 1984). Recently, Clements and Mas (2001, 2004) and
Mas and Clements (2001) developed a constitutive model for plastic bonded explo-

sives based on the theoretical model of Weng and co-workers (Tandon and Weng,

1984; Weng, 1990; Qui and Weng, 1990; Wang and Weng, 1992, 1993; Li and Weng,

1994, 1996a,b, 1997) which has been established from Eshelby�s solution of the stress

and strain fields in an elastic composite and Mori–Tanaka�s effective medium theory.

The higher concentration of particles can be modeled by introducing a phenomeno-

logical correlation parameter for particle–particle interactions. Such an approach is

not adopted in the present study because it is rather difficult to determine this phe-
nomenological correlation parameter in the experiments. Therefore, the particle-par-

ticle interaction is only approximately accounted for in the present study via the

average stress in the matrix.
4. Particles of the same size

We investigate in this section the composite material with spherical particles of the
same radius a. Since the relation between the macroscopic stress �r and strain �e is

piecewise linear (as discussed in the previous section), the stress–strain curve for



Table 1

The macroscopic stress and strain at transition points from stage I to stage II and from stage II to stage III

Transition point Stages I! II Stages II! III

Macroscopic stress �r ½1þ f ða� 1Þ� rmax

a ð1� f Þ 2Em

3ð1�mmÞ ð 1kr þ
1
~kr
Þ rmax

a

¼ ð1� f Þ 4Emcint

3ð1�mmÞrmaxa

Macroscopic strain �e rmax

2Ema ½2ð1� 2mmÞ � f ð1þ mmÞða� 1Þ� 2�4mmþf ð1þmmÞ
3ð1�mmÞ ð 1kr þ

1
~kr
Þ rmax

a

¼ 2�4mmþf ð1þmmÞ
3ð1�mmÞ

2cint

rmaxa
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the composite material with particles of the same size has three linear segments

which correspond to the three stages (I, II, III) of the interface cohesive law (Fig.

3). Therefore, the piecewise linear stress–strain curve is completely determined by

the two transition points from stage I to stage II and from stage II to stage III. Table

1 gives the macroscopic stress �r and strain �e of the composite material at these tran-

sition points, which are characterized by the attainment of the cohesive strength

rint = rmax between stages I and II, and rint = 0 between stages II and III. The

parameter a in Table 1 is aN in Eq. (16) with the particle radius aN replaced by a.
The incremental bulk moduli for these three stages are given by

�KJ ¼ 2Em

3

1� f þ f aJ

2ð1� 2mmÞ þ f ð1� aJÞð1þ mmÞ ; J ¼ I; II; III; ð22Þ

where

aI ¼ 3ð1� mmÞ
2Em

kra
þ 2Em

3Kp þ 1þ mm

is aN with aN replaced by a;

aII ¼ 3~krð1� mmÞ
2Em 1

a0 � 1
a

� �
is �a0N with aN replaced by a; and aIII = 0. After all particles debond from the matrix

(stage III), �r and �e are linear and proportional, and are related by

6ð1� 2mmÞð1� f Þ
2ð1� 2mmÞ þ ð1þ mmÞf Km;

which is three times the bulk modulus of the composite material containing microv-

oids of volume fraction f.

The stress–strain relation predicted by the Mori–Tanaka method is shown in Fig.

4 for the polymeric matrix with 69.5% coarse HMX particles. The matrix is identical

to that in the high explosive PBX 9501, and so are the coarse particles which have the

same volume fraction and radius (125 lm) as coarse HMX crystals in PBX 9501.
However, the effect of fine particles in PBX 9501 is not considered in Fig. 4 since this

section is limited to particles of the same size. For comparison, the dilute solution

(Tan et al., submitted for publication) for the same composite material is also shown

in Fig. 4. It is observed that the two solutions give almost identical stress–strain
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curves in stage I. The bulk moduli are very large (as compared to the incremental

moduli in stages II and III) because the particles are much harder than the matrix
(Kp � Em) and the matrix is nearly incompressible (mm � 1/2). In addition, the high

linear modulus of the interface (kra � Em), together with Kp � Em and mm � 1/2,

gives the coefficient a very close to 1 such that the transition points from stage I

to stage II given by the Mori–Tanaka method and dilute solution are (almost) iden-

tical. If we define the composite strength as the macroscopic stress at the transition

point from stage I to stage II (after which the composite material displays softening

behavior, Fig. 4), then the dilute solution (Tan et al., submitted for publication) gives

rather accurate prediction of the composite strength and linear elastic bulk modulus
(at least for the properties of the high explosive PBX 9501). However, once the com-

posite strength is reached, both solutions display softening, and the stress–strain

curves become widely separated. The curve for the Mori–Tanaka method decays

much faster than that for the dilute solution in stage II. After all particles reach com-

plete debonding, both curves start to increase again (stage III) and their slopes cor-

respond to the bulk moduli given by the Mori–Tanaka method and dilute solution,

respectively, for the polymeric matrix with 69.5 vol% microvoids. It is interesting to

note that, at the transition points from stage II to stage III the two solutions also
give (almost) identical macroscopic strains (at least for the properties of PBX

9501), but Mori–Tanaka method gives a much lower macroscopic stress �rII!III. In

fact, �rII!III by the Mori–Tanaka method is exactly (1 � f) times its counterpart in

the dilute solution, where f is the particle volume fraction. This reduction (by the fac-

tor of 1 � f) is significant for high particle volume fraction.

Fig. 5 shows the stress–strain curve for the polymeric matrix with 23.2 vol% fine

HMX particles. The matrix is identical to that in the high explosive PBX 9501, and

the particles are also the same as the fine crystals in PBX 9501with radius 4 lm. But
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the effect of coarse particles is not considered here. The stress–strain curve given by

the dilute solution (Tan et al., submitted for publication) is also shown in Fig. 5 for

comparison. Both solutions show the same features as in Fig. 4 except that curves in

stage II changes from softening for coarse particles to hardening for fine particles.

This suggest that interface debonding can lead to strong particle size effect in the
composite material. The Mori–Tanaka method and dilute solution still give (almost)

the same transition point between stages I to II, (almost) the same macroscopic

strain �eII!III, and the macroscopic stresses �rII!III are still related by the factor

1 � f. The transition point II! III in Fig. 5 is at a unreasonably large strain, which

means that small (fine) particles never debond completely (stage III) in reality, but

large (coarse) particles do.

The critical particle radius acr that separates the softening and hardening behavior

in stage II of the composite material can be obtained from the incremental bulk mod-
ulus �KII

in Eq. (22), i.e., from �KII ¼ 0, as

acr ¼ 1

~kr

1

4lm
þ 1

3Kp þ
f

1� f
3ð1� mmÞ

2Em


 ��1

: ð23Þ

For particle radius a < acr, the composite material displays hardening in stage II,

while the opposite holds for a > acr. For the polymeric matrix (Em = 1 MPa,

mm = 0.499) and HMX particles (Kp = 12.5 GPa), the critical particle radius becomes

very simple as acr � (1 � f)a 0, where a 0 is the characteristic radius given in Eq. (19).

With 69.5 vol% coarse particles (a = 125 lm) in the polymeric matrix, acr becomes 27

lm, which is much less than the average radius (125 lm) of coarse particles,

but more than that of fine particles (a = 4 lm) in the high explosive PBX 9501.
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Therefore, the fine particles lead to hardening of the PBX 9501 while coarse particles

do the opposite, i.e., softening. It is noted that the characteristic radius a 0 in Eq. (19)
is acr for f ! 0 (i.e., dilute solution).

Fig. 6 shows the stress–strain curve for the polymeric matrix with only coarse

HMX particles and several particle volume fractions ranging from 69.5% (as for

the coarse particles in PBX 9501) to 10%. The properties of particles, matrix and

interfaces are the same as those in PBX 9501. While all curves coincide in stage I,

they are widely separated in stages II and III, indicating a strong dependence on

the particle volume fraction. The slope of stage III, in fact, decreases with increasing

particle volume fraction f because all particles are completely debonded in stage III
and become microvoids.

It is interesting to note the three stages of deformation shown in this section have

recently been observed in the tensile tests of biopolymer gel composites (Plucknett

et al., 2000a,b; Plucknett and Normand, 2000; Normand et al., 2001) and S-glass/

polyurethane composite (Vratsanos and Farris, 1993), as well as in the damage-

model simulations of Dvorak and Zhang (2001) and Matous (2003). In particular,

these experimental and numerical studies have repeatedly shown that the first and

third stages indeed give straight lines that pass through the origin in the stress–strain
curve, which is consistent with the present cohesive model prediction.
5. Catastrophic debonding

It has been shown in the previous section that the stress–strain curve may display

softening behavior in stage II for large particles. For a composite material with
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particle radius a > acr subject to force-controlled loading, the debonding process will

become dynamic once the cohesive strength is reached. As shown in Fig. 7 for the

polymeric matrix with 69.5 vol% coarse HMX particles (a = 125 lm) under force-

controlled loading, the stress–strain curve may bypass the ‘‘softening’’ stage II to

reach stage III via the horizontal line marked by II 0. Needleman (1987) also observed
the dynamic debonding of large particles from the matrix subject to a static load in

his cohesive finite element simulations. Such a phenomenon has also been observed

in other cohesive finite element simulations (Walter et al., 1997; Zhong and Knauss,

1997; Chaboche et al., 2001). For a polymeric binder matrix that displays strong vis-

cosity as in high explosives and solid propellants (Ho and Fong, 1987; Bandgar et al.,

2002; de la Fuente et al., 2003), the inertia effect decays fast such that the composite

reaches the equilibrium in stage III rather quickly. The result of dynamic debonding

is then represented by the catastrophic jump from stage I to stage III, leading to a
sudden (or rapid) increase in the strain (under force-controlled loading). This is

called catastrophic debonding in this paper.

The strain increase during the catastrophic jump from stage I to stage III is given

by

D�e ¼ �rI!II

3

1

�KIII
� 1

�KI

� �
¼ f

1� f
3ð1� mmÞ

2Em rmax; ð24Þ

which is independent of the particle size and properties, and is also independent of

the interface cohesive law except the cohesive strength rmax. As compared to the di-

lute solution (Tan et al., submitted for publication) which gives D�e ¼ f 3ð1�mmÞ
2Em rmax,
Fig. 7. Catastrophic debonding of the particle/matrix interface under force-controlled loading for the

polymeric matrix with 69.5 vol% coarse HMX particles. Here I, II, and III correspond to stages I, II and

III, and II 0 corresponds to catastrophic debonding.
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the strain increase during catastrophic debonding is amplified by a factor 1/(1 � f),

which can be large for high particle volume fraction.

The energy release per unit volume of the composite during catastrophic debond-

ing is represented by the shaded area in Fig. 7, and is given by

DU ¼ D�e
2

�rI!II � �rII!III
� �

¼ 1

2~kr

1

acr
� 1

a

� �
fr2

max for a > acr; ð25Þ

which vanishes at a = acr, and increases with the particle radius a. The above expres-

sion for the sudden energy release DU is exactly the same as that for dilute solution

(Tan et al., submitted for publication), except that acr is now given in Eq. (23) and is

much smaller than a 0 in Eq. (19) for the dilute solution. Therefore, the Mori–Tanaka

method gives a larger energy release during catastrophic debonding than the dilute
solution (Tan et al., submitted for publication).

In order to illustrate the magnitude of this energy release DU during catastrophic

debonding, we compare DU to the energy release during the free drop of the high

explosive from a height of h. From DU = qgh, we find

h ¼ DU
qg

¼ fr2
max

2qg~kr

1

acr
� 1

a

� �
; ð26Þ

where q is the mass density, and g = 9.8 m/s2 is the gravity acceleration. For the

properties of HMX particles (Kp = 12.5 GPa), polymeric matrix (Em = 1 MPa,

mm = 0.499), and interfaces (rmax = 1.66 MPa, ~kr ¼ 15 MPa=mm), Fig. 8 shows the

equivalent drop height h as a function of particle size a for several values of particle

volume fraction f. The mass density is given by q = fqp + (1 � f)qm, where the
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densities of the polymeric matrix and HMX particles are qm = 1.29 · 103 kg/m3 and

qp = 1.90 · 103 kg/m3 (Baer et al., 1998), respectively. For the polymeric matrix with

69.5 vol% coarse HMX particles, h is 110 m, which is very large and corresponds to

huge energy release due to catastrophic debonding. This sudden energy release may

result in the formation of hot spots, which can lead to the reaction or detonation of
the high explosive.
6. Particles with two different sizes

We investigate in this section a composite material with spherical particles of two

radii, a1 > a2. The corresponding particle volume fractions are denoted by f1 and f2,

respectively. The high explosive PBX 9501 represents one such example with
a1 = 125 lm, a2 = 4 lm, and f1 = 3f2 = 69.7% (Skidmore et al., 1997; Berghout

et al., 2002). The interface cohesive law in Eq. (2) is adopted for the particle/matrix

interface. The average stresses rm in the matrix, rint
1 in coarse particles and rint

2 in fine

particles are governed by Eqs. (15) and (20), and the macroscopic strain �e is related
to rm, rint

1 and rint
2 by Eq. (21). However, large particles (a1) and small ones (a2) may

be on different stages during the deformation. We use a pair of numbers to denote

the status of interfaces of large and small particles, and the first number is for large

ones. For example, (II,I) stands for large particles in stage II while small particles in
stage I.

The stress–strain curve is still piecewise linear, and the incremental bulk modulus

of the composite material in each stage is obtained from Eq. (21) by

�Kðn;gÞ ¼ 1

Km þ 9ð1� mmÞ
2Em

f � f1a
ðnÞ
1 � f2a

ðgÞ
2

1� f þ f1a
ðnÞ
1 þ f2a

ðgÞ
2

" #�1

; ð27Þ

where n,g = I, II and III, aðnÞ1 ¼ a1;�a01 and 0 for n = I, II and III, and aðgÞ2 ¼ a2;�a02
and 0 for g = I, II and III, respectively, and aN and a0N are given in Eqs. (16) and (17).

After all particles debond from the matrix [i.e., stage (III,III)], the stress–strain curve
becomes a straight line that passes through the origin and has the slope correspond-

ing to three times of the elastic bulk modulus of a matrix containing microvoids with

the void volume fraction f = f1 + f2.

It can be verified from Eq. (15) that large particles reach the cohesive strength

first, which is consistent with the experimental observation that large particles de-

bond prior to small ones (e.g., Rae et al., 2002a). Therefore, there exist two patterns

of interface debonding,

ð28Þ

which are named as path 1 and path 2, respectively. Table 2 gives the macroscopic

stress �r for all transition points between any two stages in the flow chart in Eq.

(28). The macroscopic strain �e at these transition points can be obtained from Eq.

(21), and is not given in Table 2. If small particles reach the cohesive strength



Table 2

The macroscopic stress of the composite material at the transition points between different stages

Transition Point Macroscopic stress �r

(I,I) ! (II,I) rmax

a1
ð1� f þ f2a2 þ f1a1Þ

(II,I)! (II,II) rmaxf1�f
a2

þ f þ f1a01ð 1a1 �
1
a2
Þg

(II,II)! (III,II) rmaxfð1� f Þð 1a1 þ
1
a0
1

Þ þ f2ð1�
a0
2

a1
� a0

2

a0
1

þ a0
2

a2
Þg

(III,II)! (III,III) rmaxð1� f Þð 1a2 þ
1
a0
2

Þ
(II,I)! (III,I) rmaxð 1a1 þ

1
a0
1

Þð1� f þ f2a2Þ
(III,I)! (III,II) rmaxð1�f

a2
þ f2Þ

1910 H. Tan et al. / International Journal of Plasticity 21 (2005) 1890–1918
(rint
2 ¼ rmax) before large particles reach complete debonding ðrint

1 ¼ 0Þ, then inter-

face debonding takes path 1. On the contrary, path 2 takes place if the complete deb-

onding of large particles ðrint
1 ¼ 0Þ occurs prior to the attainment of cohesive

strength for small particles ðrint
2 ¼ rmaxÞ.

For the linear modulus to be much larger than the softening modulus of the inter-

face, kr � ~kr, as for the high explosive PBX 9501, it can be shown that the critical

condition to separate paths 1 and 2 is simply

a1 < a0 ) path 1;

a1 > a0 ) path 2;
ð29Þ

i.e., the interface debonding sequence is completely controlled by the size of large

particles, and is independent of small ones. The large particles (a1 > a 0) reach com-

plete debonding (stage III) while small particles are still in stage I. This is consistent

with the experimental observations in composite materials with multi-sized particles,
such as in biopolymer gels (Plucknett and Normand, 2000), high explosives (Rae

et al., 2002a), and solid propellants (Balzer et al., 2004). These experimental studies

have clearly shown that the small particles remain intact when large particles are

completely debonded. This has also been observed in the cohesive finite element sim-

ulation of particle-filled elastomers (Zhong and Knauss, 2000).

Fig. 9 shows the macroscopic stress–strain relation for the polymeric matrix with

69.5 vol% coarse HMX particles (a1 = 125 lm) and 23.2 vol% fine HMX particles

(a2 = 4 lm). This composite material is essentially the same as the high explosive
PBX 9501, except that the particles have two distinct sizes (125 and 4 lm) instead

of the continuous distribution in Fig. 1(b). The stress–strain curve is very steep in

stage (I,I), but becomes softening in stage (II,I) after the debonding of coarse parti-

cles. Since the radius of coarse particles (a1 = 125 lm) is larger than a 0, the coarse

particles reach complete debonding while the fine particles are still in stage I [i.e.,

stage (III,I)] according to Eq. (29). The next stage (III,II), during which fine particles

are in the softening stage, gives hardening of the composite material because the ra-

dius of fine particles is rather small (4 lm). For comparison, we also show in Fig. 9
the stress–strain curve for the same matrix with coarse particles only (69.5 vol%,

a = 125 lm), i.e., to neglect the effect of fine particles. It is interesting to observe that

before fine particles reach the softening stage (II), the curves with both coarse and

fine particles and with coarse particles only are (almost) identical. This suggests that
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the fine particles do not contribute to the constitutive behavior of the composite

material while they are still in the linear stage I. This is somewhat puzzling, but it

has a very simple reason. It is recalled that the particles and interfaces during stage
I are much harder than the matrix (Kp � Em, kra � Em), and the matrix is nearly

incompressible (mm � 1/2) such that the composite material is hardly deformed under

hydrostatic tension when all particle/matrix interfaces are in stage I, as evidenced by

the very steep line for stage (I,I) in Fig. 9. Significant macroscopic strain of the com-

posite material only appears after the interfaces reach the softening stage (II) or com-

plete debonding stage (III). Therefore, the macroscopic strain is dominated by the

contribution from interface debonding. When fine particles are in stage I, they hardly

contribute to the macroscopic stress–strain curve of the composite material. This is
further seen from Fig. 9 which shows that the stage (III,I) curve for the matrix with

both coarse and fine particles coincides with the stage III (dashed line) curve for the

matrix with coarse particles only. Only when fine particles reach the softening stage,

[i.e., (III,II)] the solid line and dashed line start to separate, because fine particles

start to make significant contributions to the macroscopic strain.

Fig. 9 also shows that softening behavior of the composite material due to inter-

face debonding of coarse particles. This suggests again the catastrophic debonding

under force-controlled load. The energy release during catastrophic debonding be-
comes much larger than that with coarse particles only because the debonding of fine

particles further lowers the stress–strain curve, i.e., from the dashed line to stage

(III,II) in Fig. 9. The equivalent free drop height now becomes h = 455 m, and is

much larger than h = 110 m given in the previous section that does not account

for the fine particles.
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7. Particles with many sizes

The particles in the composite material may have many sizes, as shown in the size

distribution in Fig. 1(b) for the high explosive PBX 9501. The state of interfaces for

all these particles is very complex. In this section we focus on the linear elastic bulk
modulus, i.e., when all particle/matrix interfaces are on the linear stage (I). As dis-

cussed in Section 1, the Mori–Tanaka method without accounting for the particle/

matrix interface debonding overestimates the bulk modulus by over 40% (see Eq.

(1)).

The macroscopic strain �e in Eq. (21) now becomes linearly proportional to the

macroscopic stress �r when all particle/matrix interfaces are on stage I. The elastic

modulus �K of the composite material is then obtained from Eqs. (15), (20) and

(21) as

�K ¼ 1

Km þ 9ð1� mmÞ
2Em

f �
P
N
fNaN

1� f þ
P
N
fNaN

2
4

3
5

�1

; ð30Þ
where aN is given in Eq. (16) and it depends on the particle radius aN. For the

particle size distribution in Fig. 1(b) and the properties of particles (Kp = 12.5

GPa), matrix (Em = 1 MPa, mm = 0.499) and particle/matrix interfaces (kr = 1.55

GPa/lm), Eq. (30) gives the bulk modulus of the composite material as 1.11

GPa. This value predicted by the present method accounting for interface deb-
onding falls into the range of experimentally determined bulk modulus from

1.07 to 1.27 GPa. Here this range is determined from the experimentally mea-

sured Poisson�s ratio 0.35 (e.g., Olinger and Hopson, 1978; Gray et al., 1998;

Wetzel, 1999; Banerjee and Adams, 2003) and Young�s modulus that varies from

E = 0.96 GPa for quasi-static loading (Gray et al., 1998; Bennett et al., 1998;

Banerjee and Adams, 2003) to 1.15 GPa for low-strain rate _e ¼ 0:44 s�1 (Gray

et al., 1998). Therefore, the Mori–Tanaka method accounting for the particle/ma-

trix interface debonding gives reasonable estimate of the bulk modulus of the
high explosive PBX 9501.

Eq. (30) gives the bulk modulus �K of the particulate composite as a function of the

elastic constants of the constituents, the properties of the interface between different

phases, and the size distribution of the embedding particles. The size of each type of

particles appears through the parameter aN, which has been defined in Eq. (16). Note

that the size of the type-N particle, aN, always appears as the product with the

parameter kr, which is the linear modulus of the interfacial cohesive law. If the inter-

face between the particle and the matrix is perfectly bonded, i.e., [u] = 0, which is
equivalent to that kr ! 1, then the parameter aN becomes independent of the

type-N particle size aN, and as a matter of fact,

3ð1� mmÞ
2Em 1

3Kp þ 1
4lm

� � ; for N ¼ 1; 2; . . . :



H. Tan et al. / International Journal of Plasticity 21 (2005) 1890–1918 1913
One can then show that Eq. (30) degenerates to Eq. (1), and the bulk modulus of the

particulate composite �K depends on the elastic constants of the constituents and the

volume fraction of the particle phase only. The conclusion from this observation is

that by only including the particle-size distribution in the analysis or simulation

without accounting for the contribution from the interface, one cannot address
the observed size-effect of the response of composite materials in general, and of high

explosives and solid propellants in particular.
8. Discussion and concluding remarks

We have studied the effect of nonlinear interface debonding on the macroscopic

behavior of the composite material with high particle volume fraction. Together with

a nonlinear cohesive law obtained for the high explosive PBX 9501, the Mori–

Tanaka method is used to study the constitutive behavior of the composite material.

Using the example of the composite material with spherical particles subject to

hydrostatic tension, we show that the particle size has an important effect on the
behavior of the composite material, namely hardening for small particles and soften-

ing for large particles. The critical particle size that separates the hardening and soft-

ening behavior is determined.

For the composite material with large particles, the particle/matrix interfaces may

undergo catastrophic debonding, i.e., sudden, dynamic debonding even under static

load. The energy release during catastrophic debonding can be very large, thus may

trigger the reaction or detonation of high explosives. For the high explosive PBX

9501, the energy release due to catastrophic debonding of coarse (large) particles is
equivalent to the free drop of the high explosive from a height of 110 m. This value be-

come much higher, 455 m, once the debonding of fine (small) particle is accounted for.

The above conclusion that the mix of coarse and fine energetic particles gives very

high energy release during catastrophic debonding may have important implications

on the explosiveness of high explosives (Fleming et al., 1985). A wide range of tests

have shown that particle size is an important factor governing the behavior of high

explosives (e.g., Balzer et al., 2004). Fleming et al. (1985) studied thoroughly the effects

of volume fraction and bimodal size distribution of energetic HMX particles in labo-
ratory-scale explosiveness tests. Here the explosiveness is a measure of the explosive

response to a given stimulus. It is measured by the force impressed on the loading cell

after explosion. They investigated the explosiveness of the material with fine particles

only, and with both fine and coarse particles. Fine particles had a distribution in size,

with the maximum radius around 20 lm and average radius around 3.5 lm. Coarse

particles ranged from 25 to 500 lm in radius, and the average radius was around

200 lm. Two important observations were made from their experimental studies.

(1) For the high explosive with only fine particles, the explosiveness was not
strongly influenced by the particle volume fraction f. Even at a very high f of

96%, the explosiveness was still relatively low.
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(2) At the same particle volume fraction f, the use of both coarse and fine particles

gave a higher explosiveness than the use of fine particles only. The increase of

coarse particle volume fraction (at a fixed total f) led to the increase in the

explosiveness.

Similar observations of the particle size effect were also made by Kimura and

Oyumi (1998) in the study on shock sensitivity of solid propellants. These observa-

tions are consistent with the present study which shows that fine particles, whose ra-

dii are less than the critical particle radius acr, do not have catastrophic debonding to

trigger reaction or denotation. The coarse particles do lead to catastrophic debond-

ing, and the energy release is equivalent to the free drop from the height of 110 m.

The mix of coarse and fine particles gives even larger energy release during cata-

strophic debonding that is equivalent to the free drop from a much larger height
of 455 m.
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