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Abstract: In this paper, we discuss two problems concerning scattering and localisation of flexural
waves in structured elastic plates. Firstly, we compare the scattering amplitudes of waves in a thin
plate, generated by a point source, due to a single mass and to a large number of smaller masses,
having the same equivalent mass and located around a circle. We show that in the second case,
the scattering can be reduced, in particular in the medium- and high-frequency regimes. Secondly,
we develop a homogenised model for a double-ring cluster of spring-mass resonators, connected to an
elastic thin plate. We determine the conditions for which the plate exhibits vibration modes trapped
between the two rings. Further, we show that the frequencies of the localised modes can be tuned by
varying the geometry of the two rings and the characteristics of the resonators. The analytical results
are corroborated by numerical simulations performed with independent finite element models.

Keywords: microstructured system; elastic plate; flexural waves; scattering; localisation; vibration
control; asymptotics; homogenisation

1. Introduction

In recent years, mathematical and physical problems related to wave localisation and
scattering by discrete clusters have attracted increasing interest in the scientific community.
In fact, the study of localised waveforms in structured media and dynamic Green’s kernels
in lattices is essential in the analysis of defects in crystalline solids, transmission resonances
for grating stacks, and novel designs of wave shields or “cloaks”.

The notion of a Faraday cage, representing a device capable of protecting a bounded
domain from an external electric field [1], is well established in electromagnetism. This no-
tion has been extended to acoustic waves, governed by the Helmholtz equation, in [2]. In
elasticity, the localisation of elastic waves in solids with clusters of defects, such as small
inertial inclusions or rigid pins, exhibits new features in the mathematical description
and physical interpretation of the phenomena; in particular, it is known that structured
flexural plates incorporate evanescent and propagating waveforms, which couple through
the boundary conditions. The dynamics of imperfect crystals with point defects has been
extensively analysed in [3,4]. Propagation of waves in square lattices, generated by oscillat-
ing a lattice point in the out-of-plane direction, has been investigated in [5], while localised
vibrations in band-gaps of continuous and discrete structures, obtained from the Green’s
function approach, have been examined in [6].

In elastic plates, localisation and transmission of flexural waves due to a periodic
arrangement of rigid pins or point masses have been analysed in [7-9]. Unidirectional
trapped modes, associated with Dirac points in the dispersion diagrams, have been shown
to exist in thin plates with a finite cluster of pins [10]. Cloaking of a rigid inclusion in
a Kirchhoff plate by means of active sources has been proposed in [11]. Localisation
in semi-infinite grating stacks of rigid pins or resonators has been investigated in [12,13].
A platonic structure with spiral resonators has been presented in [14], with special emphasis
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on applications such as low-frequency filtering, transmission amplification and generation
of edge waves. In [15], resonating beams arranged in concentric circles were connected to a
plate to create a directional cloak. Time-harmonic waves produced by an external force in a
thin plate with attached masses were studied in [16]. The band structures of thin and thick
plates incorporating periodic arrays of spring-mass resonators were discussed in [17,18].
The existence of band gaps in plates with different types of cavities has been numerically
and experimentally demonstrated in [19,20]. The low-frequency vibrations and radiation
performance of homogeneous and sandwich plates containing periodically distributed
resonators have been investigated in [21,22]. Effective band-gaps and wave conversion in
plates have been obtained in [23] by inserting a periodic array of perpendicular rod-like
resonators. Gyroscopic resonators attached to plates have been employed in [24,25] to
create flexural waveforms propagating in one direction. Topologically protected edge and
interfacial modes in microstructured plates have also been discovered in [26-29].

An asymptotic analysis has been developed in [30,31] to describe Bloch modes lo-
calised around a circular array of inclusions, showing similarities with whispering gallery
modes. The analysis has been carried out for the planar Helmholtz equation and assuming
Neumann boundary conditions at the boundaries of the inclusions. Recently, an asymptotic
homogenised model for the bi-harmonic operator was presented in [32] to predict the exis-
tence of flexural vibrations confined along a ring of spring-mass resonators, which yield
“negative inertia” in the dynamic regime. In that model, the frequency of the localised
flexural modes along the ring could not be chosen ad libitum. Graded rings of point
masses on a thin plate have been considered in [33] to describe new applications of rainbow
trapping and wave hybridisation effects.

A classical approach [34] can be used to study the scattering of a time-harmonic wave
by a cluster of small defects. We go further, and in this paper, we build upon the results
developed in [32], constructing a novel asymptotic model, which describes the trapping of
flexural waves in an elastic plate by a two-ring cluster of point resonators. Each individual
resonator may have positive or negative inertia, as in [12,32], respectively, and the frequency
of a trapped waveform can be controlled by tuning the inertia of the resonators and through
the dynamic coupling between the vibrations of two circular clusters. Since, in this case,
the frequency of the localised vibrations can be chosen a priori, this model offers more
versatility than that described in [32]. Furthermore, in Section 3.1, we demonstrate that the
scattering by a point mass M can be reduced if the latter is replaced by a ring of smaller
masses with total mass M.

An illustrative example of the capabilities of the asymptotic model presented in this
paper to predict the occurrence of localised vibrations is shown in Figure 1. The radian
frequency w of the localised mode in the plate is chosen arbitrarily, and the geometry of
the rings and the properties of the resonators are determined accordingly, as discussed
in Section 3.2. In part (a) and (b), the mode number is ¢ = 4 and g = 10, respectively.
From the figure, it is apparent that vibrations are highly localised between the two rings of
spring-mass resonators.
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Figure 1. Localised modes in an elastic plate, containing two concentric rings of spring-mass resonators,
obtained for w = 10 rad/s and for (a) § = 4 and (b) g4 = 10. In the calculations, the plate is assumed to be made of
aluminium (Young’s modulus E = 70 GPa, Poisson’s coefficient v = 0.33 and mass density p = 2700 kg/m?) and
to have a thickness h = 0.005 m. The radii of the two rings are Ry = 5.5 m and R, = 4.5 m, and the total masses
of the resonators are (a) M; = —2503.0 kg and M, = 802.7 kg and (b) M; = —7005.7 kg and M, = 10,609.7 kg.

2. Analytical Methods
2.1. Scattering Reduction of Flexural Waves in a Thin Plate by a Finite Cluster of Masses

We begin with an elementary example, where a point scatterer, represented by a single
mass M and incorporated in a thin plate, is replaced by a finite cluster of smaller masses
mj (j = 1,...,N) such that E]'Ii1 m; = M. Here, the masses m; are placed at points A;
(j =1,...,N) along a circle of radius R centred at the origin (see Figure 2).
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Figure 2. Finite cluster of N masses 1, attached to an elastic plate and located along a circle of radius
R. The total mass is given by M.

2.1.1. The Incident Field

Assuming that the incident field is induced by a remote point source, we demonstrate
that the overall scattering produced by the cluster of equivalent mass M can be significantly
smaller compared to the scattering associated with the single point mass M.

Let G(B, |x|) be the Green’s function representing a flexural wave in an infinite
isotropic Kirchhoff plate produced by a time-harmonic point source at the origin:

AG(B, |x]) = B*G(B, |x]) +6(x) =0, 1)
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where
_ phw2

4
Br="—F
with p, h and w being the mass density, the plate thickness and the radian frequency,
respectively. The quantity D = Eh®/(12(1 — v?)) is the flexural rigidity of the plate, with E
being the Young’s modulus and v being the Poisson’s ratio.
The Green’s function G has the form [35-37]

G(B, |x]) = C(Hy" (Blx]) — Hy (1plx])), C = ~i/ (86%). @
We note that the above Green'’s function is bounded at the origin, and
G(B,0) =C.
Given (2), we consider the incident field of the form
ttinc(x) = 8IUBG(B, [x — X)), ®)

which implies that the wave is generated by the time-harmonic motion of a point at
x = X9 with displacement amplitude U and radian frequency

w :ﬁz\/th'

2.1.2. Scattering by an Inertial Cluster

The total flexural displacement field has the form
N
u(x) = ttine(x) + ) vG(B, |x — Aj]), )
j=1

where the coefficients v; (j = 1,..., N) are connected to the inertia of the point masses
as follows:
v = —Dflmjwzu(A]-). (5)

In particular, when the scattering is produced by the single point mass M positioned
at the origin, we have

u(x) = 8UB*G(B, |x = X'V|) - D~'Mwu(0)G(B, |x]), (6)

and hence the amplitude of the time-harmonic vibrations at the origin is

_ pBUBGE X)) 64pPphUG(B, X))

u0) = D5 Ma?Gp,0) ~ 8ioh + MpB2

@)
We also note that when M — oo while the frequency of the incident wave is fixed, we
obtain the case of a scattering by a rigid pin positioned at the origin.
On the other hand, for the ring-shaped finite cluster of N point masses, shown
in Figure 2, with the flexural displacement u(x) defined by (4), the amplitudes u(A;)
(j = 1,...,N) of time-harmonic flexural displacements satisfy the system of 2N linear
algebraic equations

N
u(Ag) = tinc(Ag) = D~ 'w? Y mju(A)G(B,|Ag — Aj]), (8)
j=1

which is consistent with the classical Foldy approach for scattering problems in domains
with finite clusters of point defects [34].
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2.2. Trapped Vibrations in a Double-Ring Cluster of Point Resonators

The previous example, constructed for a finite cluster, leads to a conjecture suggesting
a localisation of the elastic field around the cluster. We consider a double ring of point
resonators in a thin plate and assume that their number is large so that the homogenisation
approximation, similar to [32], can be applied for selected frequency regimes.

The main feature of the new model with respect to the study in [32] is the wave-
coupling between the two rings of point resonators. Although we use the term “mass”, the
inertia of each individual resonator can be either positive or negative. As discussed in [32],
negative inertia in the dynamic regime can be attained by connecting a mass to the flexural
plate through an elastic spring.

2.2.1. Homogenised Problem for a Double-Ring Cluster

Formally, we look for a localised waveform (no incident field) of radian frequency w,
with the flexural displacement field u(x) satisfying the equation

DA?u(x) — phw?u(x) — w?my i u(Aj)o(x—Aj) — w?my % u(Bp)d(x —By) =0, (9)
j=1 k=1

where D, p and h represent the flexural stiffness, the mass density and the thickness of the
elastic isotropic plate, respectively, as in Section 2.1. Here, the notations I'; and I'; are used
for the concentric circles of radii R; and R, namely

AjeTly, Byely, jk=1,..N,

and
T]:{x|x|:R]}, ]:1,2

The quantity m4 (my) in (9) denotes the mass of the point resonator in the ring defined
by I'1 (I'2) (see Figure 3). It is assumed that the number of point resonators is large, i.e.,
N > 1, but the combined masses of inertial clusters placed along the circles I'y and I'p
are finite:
Ml = mlN, M2 = TH2N.

For the displacement u(x) we use the representation (4), with the uj,. term being
replaced by zero. At the nodal points A; and By (j, k = 1,..., N), Equation (8) is replaced by

N
u(4,) = -D 'maw? Y u(A)G(B, 1A, — Aj])
j=1
N
—D 'myw?® Y u(By)G(B, |Ag—Bi|), 9=1,...,N, (10)
k=1
u(B,) = —D’lmlwzZu(Aj)G(,B,|Br—Aj|)
j=1
—D 'myw® Y u(By)G(B, |Br — By|), r=1,...,N. (11)
k=1

Similar to [32], in the limit when N — oo, the sums in the right-hand sides of (10)
and (11) are approximated by the integrals. Using the notations X %) for two points on the
circles TK) (k = 1,2), we write the system of boundary integral equations in the form

D M
wzu(X )+ iR, /rlu(Y )G(B, |X y))ds, .
M, 2 k) v(2) _ B

27TR2 /1"2 M(Y )G(ﬁ’ |X Y |)dSY(2) = 0/ k — 1/2/
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where the position vectors of the points on I'y can be represented in the complex form
X®) = Reexp(i6yw), YO = Ryexp(iyw), Ry >0 (k= 1,2).
The flexural displacement u(X %)) is sought in the form
u(x®y =y exp(igb w), g€ Z.

We also take into account the identity

R;
|Ryexp(ifx) — Rjexp(ify)| = Rk‘l - = exp( (Oy — GX))‘

Thus, Equation (12) yields the following system of linear algebraic equations with
respect to U1 and U?):

u® anh My / 9(6y—0x) 5 /3 Rl‘l—e i(6y— 9X)Dd6y> (13)
U(Z)Mz/o el1(0y—0%) 5 (IB R1’1 el(By—0x) )dgy =0,
uW / 2 ainloy—6x) G(ﬁ, Rz‘l - %ei<9v*9X>])dey (14)

u®( 2”Ph + M, / 100G (B, Ry |1 — &) Ydoy ) = 0.

Here, the integer number 4 determines the order of the trapped flexural vibra-
tion mode.

Using the notation A(p, q) for the matrix of the above linear system, the equation for
the spectral parameter is

det(A(B,q)) = 0. (15)
The components of the matrix 4 are
Ay = 2th + M /0 2” ™G (B, Ry[1 - | )da, (16)
Ay = 27;2)11 M, /m e G(p, R2)1 —ei)|)de, (17)
Ap = M, /2 e"G(p, Rl‘l R i )da, (18)
An = M, /2 emG(p, Rz‘l Ry i )doc (19)

We note that the off-diagonal terms A1, and Aj; tend to zero when Ry/R; — 0,
or Ry /Ry — 1, and hence the analysis of these limit configurations is reduced to the case
of trapped modes in a single ring of resonators, as studied in [32].
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masses or spring—mass resonators

M;: total mass of external ring
Ms: total mass of internal ring

Figure 3. Plate incorporating a double-ring of masses or spring-mass resonators.

2.2.2. Evaluation of the Integrals in the Secular Equation

The integrals in (13) and (14) and in the secular Equation (15) can be evaluated in the
closed analytical form.

We have two rings with radii R; and R, and assume R; > Rjp. Let 8; and 6, denote
polar angles on the two rings. The integral we will evaluate analytically is:

2w . . .
T1(q,B8) = /0 el1®=0)G(|R e — Ryel®2()do;. (20)

Here, the Green’s function G for the biharmonic problem is

G(r,B) = > [H" (Br) — Ko(pr)]. (21)

8,82

The tool we use in the evaluation is Graf’s addition theorem (see Section 10.23 of [38]
and [39]). This can be written for (length, angle) pairs (u,0,), (v,6y), w = ucos(6,) —
vcos(0y) + i[usin(8,) — vsin(6y)]:

HD (Juol)e 5@ 0] = 3 B ()], (o) explik(6u — 6,)] (22)
k=—o0
and
Ky (|| e Z Ky k(1) Ji(v) explik(0u — 6o)]- (23)
k=—o0
Here, v is an integer, and u# > v is assumed.
In applying this to G, we need only the case v = 0:
Dl = Y A v) explik(6y — 6)] (24)
k=—0c0
and
Ko(lw]) = Z Ki(u)Ji(v) explik(6, — 65)]. (25)

k=—o0
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Using (24) and (25) in (20), we obtain

—i 2T B
Tr1(9,B) = @/0 e9(62-01) 4o,

i e[ik(91*92)] [ngl) (,BRI)]I{(,BRZ) + Z;Kk(ﬁRl)Ik(lBRz)} .

k=—o0

(26)

Carrying out the integral over 6, the result is:

o1 (k B) = [ 1fk</sR1>fk</st>+Yk<ﬁR1>fk<ﬁRz>+2kaRl)Ik(ﬁRz)} @)

4p2
This obeys the symmetry relation 7, 1 (k, B) = Z, 1 (—k, B). We have derived (27) for B
real, but it can be extended to B complex by analytic continuation.
We can also consider

21, . .

Tiag.8) = [ €0 WG(|Rie™ — Roe®|)doy. 8)
0

Then it follows from the symmetry rule just given that Z; 5(q, 8) = Z»1(q, B).

The remaining integrals to calculate are

Tua (6 B) = iz | TP+ Yi(BROR(BRY) + 2 Ke(BRO(BRD)|  @9)

4ﬁ2
and

Dok, B) = [_i]k(ﬁR2)2 + Yk (BR2)Jk(BR2) + iKk(ﬁRz)Ik(ﬁRz)} : (30)

4p?
These agree with the results quoted in [32].

2.2.3. Frequency of Localised Waveforms

The secular equation has the form:
47°D? + 21D (Ty1 My + T pMy) + MiMaw* (T11To2 — T75) =0, (31)

where the parameter dependence of the integrals has been abbreviated for brevity. We
get simple results if we fix all other parameters and regard M; and M; as the variables to
be found.

We take the imaginary and real parts of (31), appending superscripts I and R to denote
the imaginary and real parts of the integrals. We can solve the imaginary part of (31) to
obtain M in terms of Mj:

—Mlz{ 1

M, = )
[Ié,z + (leZ/(an) (Il 1222 - I] 2)]

(32)

We then substitute (32) into (31) and express the result in rational form. The equation
for M; then comes from requiring the numerator to be zero:

47°D*I;, + 2nDMw* (D' + I 15, — 711 13,) + Miw* (D'Z, — DRZ{;) =0, (33)

where D = (7117255 — 112,2) and its superscripts I and R denote imaginary and real parts,
respectively.
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3. Results and Discussion
3.1. Scattering Problem

In the numerical examples, we assume that m; = ... = my = m, so that all point
masses placed along the circle are equal, and we also assume that they split the circle into
N arcs of equal length. It is also apparent that the force produced by an individual source
associated with one point mass is determined by the inertia of this point mass.

It would not be surprising if splitting the mass M into several small masses and
aligning them along the symmetry axis of the incident wave reduces scattering in certain
frequency regimes. However, this can also be achieved if the total mass M is split into
smaller masses distributed along a circle, as demonstrated in Figure 4.

For the single scatterer, we measure

s = |D"'Mw?u(0)),
whereas for the cluster of smaller scatterers of the same total mass, we measure
(2) 1,2 N
Sy’ =|D" wm| Z |u(Aj)|.
j=1

It is shown in Figure 4 that, in the chosen frequency regime, the total force generated
by the cluster of point scatterers of total mass M is significantly smaller than the reaction
force produced by a single point mass of the same mass M.

Sr A
0.05 &

0.03

0.01

—
=1
—
S
N}
o
N
ot
w
o
w
ot
N
o

B8
Figure 4. Comparison of the reaction forces produced by a single mass scatterer and by a circular cluster of
12 point mass scatterers of the same combined mass. The incident field is produced by a point source. The data,
referred to SI units, used in the computation are i = 0.005, p = 2700, D = 818.277, R = 0.05. The graph compares
S}l) for a point scatterer of mass 600 (red) with SI(EZ) for a cluster of 12 points, each of mass 50, on the ring of
radius R (blue). The point scatterer appears to scatter more strongly at higher frequencies, as illustrated by the
computation.

3.2. Trapped Modes

Here, we show how to obtain localised modes in the plate, confined between the two
concentric rings of point resonators.

The procedure is the following. We choose the radian frequency w of the localised
mode and the mode number g. We fix the geometry of the rings, in particular the radii R;
and R, and the number N of resonators. In particular, in the calculations, we take N = 64,
which is sufficiently large to apply the homogenisation approach described in Section 2.2.
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Then, we calculate the total mass M; from Equation (33) and, successively, the total mass
M, from Equation (32).

An example has been illustrated in Figure 1 of the Introduction. The values of the
geometrical and constitutive parameters are detailed in the caption of the figure. The lo-
calised modes corresponding to two values of the mode number g have been presented,
namely g = 4 in part (a) and 4 = 10 in part (b). The total masses of the rings, M; and M,
are obviously different in the two cases examined.

In order to check the accuracy of the analytical formulation and the validity of the
homogenisation approximation, we have also performed numerical simulations in Com-
sol Multiphysics 5.5 [40]. Since the numerical model needs to have a finite domain,
we have considered a square plate with side length L = 50 m. The localised modes
for w = 10 rad/s and for g = 4 (part (a)) and g = 10 (part (b)) are presented in Figure 5.
Comparing Figures 1 and 5, we notice a very good agreement between analytical and
numerical results.

The displacement fields evaluated along the two perpendicular directions X and ,
shown in Figure 5, are given in Figure 6 for 4 = 4 and in Figure 7 for g = 10. The solid lines
represent the analytical results derived from the homogenisation approximation described
in the previous sections, while the dots indicate the data obtained numerically from Comsol
Multiphysics. The comparison shows once again that the analytical and numerical models
produce very similar results.

U
1.0 1.0

0.8 08

0.6 0.6

0.4 0.4

0.2 0.2

0 0
~0.2 —0.2
—04 —0.4
—0.6 —0.6
—0.8 —0.8
10 ~1.0

(a) (b)

Figure 5. Same as in Figure 1, but obtained numerically with a finite element code built in Comsol
Multiphysics. The mode number is (a) § = 4 and (b) g = 10. In the simulations, the side length of the
plateis L = 50 m.

u u

1.0+ 1.0+
0.8F 0.8F
0.6 ).6
AF 4

J \ |

-25 -20 -15 -10 -5 70 5 10 15 20 25 -25 -20 —-15 -10 -5 70 5 10 15 20 25

z (m) y (m)
(a) (b)

Figure 6. Displacements in the plate for 4 = 4, determined along the direction ¥ cutting two maxima
(a) and along the perpendicular direction i (b). The solid lines represent the analytical results, while
the dots are the numerical outcomes provided by Comsol Multiphysics.
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u 7 (m)

LOF ~25 -20 ~15 -10 -5 0 510 15 20 25

0.8F
0.2

0.6
>0'4>

0.4f
Lo.6}

02}
J 0.3}
S5TT50 S15 10 -5 0 5 10 15 90 2 ol
Z (m) I
(a) (b)

Figure 7. Same as in Figure 6, but determined for g = 10. The displacements are evaluated (a) in the
direction ¥ and (b) along the perpendicular direction 7.

In Figure 8, we show how to extrapolate the total masses of the two rings, M; and
My, for different values of the radius R; of the external ring. In the plots, the radius of the
internal ring is fixed (R; = 4.5 m) and the mode number is ¢ = 4 (part (a)) and g = 10
(part (b)). The total masses M; and M, considered in Figures 1 and 5, corresponding to
Rj = 5.5m, are indicated by dots.

M, (kg) M (kg)
—2000

4000
—2500F
2000

—3000}

0

—2000} ; —3500}
—4000p ‘ . ‘ . ‘ . ‘ —4000 ‘ ‘ ‘ ‘ ‘ ‘ ‘
45 50 55 6.0 65 7.0 75 80 85 9.0 45 50 55 60 65 7.0 75 80 85 9.0
Rl (m) Rl (m)
(a) g =4
M; (kg) M, (kg)

16000

14000f —6000r

12000f —10000F

10000 —14000F

] i A i ! ; ] : —18000 ; 5 | 3 | : : ;
45 50 55 60 65 7.0 75 80 85 90 45 50 55 60 65 70 75 80 85 0.0
Ry (m) Ry (m)

(b) ¢=10

Figure 8. Total mass M, in the internal ring (left) and total mass M; in the external ring (right)
calculated for different values of the radius R; of the external ring and for (a) g = 4 and (b) g4 = 10.
The radius of the internal ring is Ry = 4.5 m and the frequency of the localised mode is w = 10 rad/s,
as in Figures 1 and 5. The dots represent the values of the total masses determined in Figures 1 and 5.

In the left diagrams of Figure 9, we present the first four frequencies of the localised
modes as functions of the ratio R;/R; between the radii of the two concentric circles,
for g = 4 (part (a)) and g = 10 (part (b)). In the right diagrams, the corresponding values
of the ratio M; /M, between the total masses of the rings are included. The possibility to
change the frequency at which a localised mode occurs demonstrates the versatility of the
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approach developed in this paper. We also note that when R; /R, = 1, the diagrams give
the frequencies of a single ring, with total mass My + M, discussed in [32].
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Figure 9. Frequencies w of localised modes (left) and ratios of total masses M7 / M; (right) as functions
of the ratio Ry /Ry between the radii of the two rings, calculated for (a) g = 4 and (b) 4 = 10. For any
ratio Ry /Ry, the first four solutions (labelled as a, b, c and d) are shown and indicated by dots. In the
computations, Ry = 4.5 m and (a) M, = 802.686 kg and (b) M, =10,609.7 kg, as in Figures 1 and 5.
The crosses represent the values of the frequencies and the mass ratios obtained in Figures 1 and 5.

4. Conclusions

In this paper, we have studied the effect of rings of point resonators on the dynamic
behaviour of a thin elastic plate, modelled as a Kirchhoff plate.

First, we have demonstrated that the scattering produced by a single point mass M
can be decreased significantly if that mass is split into a large number of smaller masses,
arranged along a circle. This is especially true for medium and high frequencies.

Second, we have constructed an asymptotic model for two rings of spring-mass
resonators attached to an elastic plate. This model allows determining the frequencies at
which localised modes, confined between the two rings, can occur in the structure. We have
also outlined the systematic procedure to vary the frequency of the trapped modes and
to accordingly determine the geometrical and constitutive parameters of the two rings of
resonators. In addition, we have verified the analytical results with an independent finite
element code.

It is noted that for high frequencies, the discrete nature of the structure plays a
significant role, and the relative rotation of the rings of point masses may be of interest.
In particular, when the distance between the rings becomes small, the system involves a
structure of dipoles of different orientations. In problems of wave scattering, such systems
can also be viewed as inertial interfaces.

We envisage that the results of this work will be useful in the design of scattering
systems and energy absorbers in structures supporting the propagation of flexural waves.
We also note that the inertial double ring of point masses (or resonators) is a structured
inertial interface system, and the homogenisation procedure can also address the disconti-
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nuity of tractions across such an interface for certain regimes of scattering of time-harmonic
flexural waves.
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