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ABSTRACT 

This paper presents a nonlinear mathematical model for evolution of wrinkle patterns of an 

anisotropic crystal film on a viscoelastic substrate layer. The underlying mechanism of wrinkling 

has been generally understood as a stress-driven instability. Previously, theoretical studies on 

wrinkling have assumed isotropic elastic properties for the film. Motivated by recent 

experimental observations of ordered wrinkle patterns in single-crystal thin films, this paper 

develops a theoretical model coupling anisotropic elastic deformation of a crystal film with 

viscoelastic deformation of a thin substrate layer. A linear perturbation analysis is performed to 

predict onset of the wrinkling instability and the initial evolution kinetics; an energy 

minimization method is adopted to analyze wrinkle patterns at the equilibrium states. For a cubic 

crystal film under an equi-biaxial compression, orthogonally ordered wrinkle patterns are 

predicted at both the initial stage and the equilibrium state. This is confirmed by numerical 

simulations of evolving wrinkle patterns. By varying the residual stresses in the film, numerical 

simulations show that a variety of wrinkle patterns (e.g., orthogonal, parallel, zigzag, and 

checkerboard patterns) emerge as a result of the competition between the material anisotropy and 

the stress anisotropy.  
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1. Introduction 

Complex wrinkle patterns have been observed in various thin-film systems with 

integrated hard and soft materials (e.g., Tolpygo and Clarke, 1998; Bowden et al., 1998; Hobart 

et al., 2000; Volynskii et al., 2000; Yoo and Lee, 2003). For many applications of the integrated 

material structures, wrinkling is undesirable as it may lead to failure by delamination or fracture 

(e.g., Suo, 1995; Martin et al., 2000; Mumm et al., 2001; Yin et al., 2003; Peterson, 2006). On 

the other hand, wrinkling has also been exploited as an enabling mechanism for a variety of 

applications, such as stretchable electronics (Watanabe et al., 2002; Lacour et al., 2003; Choi et 

al., 2007), micro/nanoscale surface patterning (Huck et al., 2000; Serrano and Cahill, 2002; 

Ohzono and Shimomura, 2004; Chan and Crosby, 2006), optical phase grating (Harrison et al., 

2004), microfluidic sieves (Efimenko et al., 2005), smart adhesion (Chan et al., 2008), and 

metrology aid for measuring mechanical properties of thin films (Stafford et al, 2004). A 

collection of physical understanding and applications of the wrinkling phenomena was recently 

reviewed by Genzer and Groenewold (2006).  

Theoretical studies of surface wrinkling may be traced back to 1940s when wrinkling of 

face struts was analyzed as a form of local elastic instability in structural sandwich panels (e.g., 

Gough et al., 1940; Wan, 1947; Goodier and Neou, 1951); an account of the historical 

development was well documented by Allen (1969). Later, a series of works by Biot extended 

the wrinkling theory to viscoelastic layers (Biot, 1957) and rubber-like nonlinear elastic media 

under finite strain (Biot, 1963 and 1965). The early studies of wrinkling focused on the critical 

conditions for the onset of instability. Recent advances in micro/nanoscale fabrication and 

measurements have renewed the interest in mechanics of wrinkling beyond the initial instability. 

An energy-based approach has been widely adopted for post-instability analysis to determine the 
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equilibrium states of wrinkling for an elastic film on an elastic substrate (Groenewold, 2001; 

Chen and Hutchinson, 2004; Huang et al., 2005; Jiang et al., 2007; Song et al., 2008). Temporal 

evolution of wrinkles has also been analyzed for an elastic film on a viscous or viscoelastic 

substrates (Sridhar et al., 2001; Huang and Suo, 2002a and 2002b; Huang, 2005; Im and Huang, 

2005; Huang and Im, 2006).  

Most of the previous studies have assumed isotropic, linear elastic properties for the film, 

while the substrate may be linear elastic, hyperelastic, or linearly viscoelastic (including viscous 

Newtonian fluids). Under an equi-biaxial compressive stress, the wrinkle pattern of an isotropic 

elastic film characteristically exhibits the lack of ordering such as the labyrinth pattern 

commonly observed in experiments, although some ordered wrinkle patterns (e.g., parallel 

stripes, herringbone or zigzag, and checkerboard) have been theoretically predicted and 

occasionally observed under particular stress and boundary conditions. The rotational symmetry 

in the isotropic system is believed to be responsible for the disordered wrinkle patterns. The 

symmetry can be broken either by invoking an anisotropic biaxial stress or in a layered material 

system with anisotropic mechanical properties. For example, Hobart et al. (2000) observed 

wrinkling of single-crystal silicon-germanium (SiGe) alloy films on a glass layer annealed at an 

elevated temperature, where the SiGe is a cubic crystal with anisotropic elastic properties. More 

detailed experiments (Peterson, 2006; Peterson et al., 2006) showed that the SiGe film 

preferentially wrinkles in two orthogonal directions, aligned with the <100> axes of the cubic 

crystal. Similar orthogonal patterns were observed by Yu et al. (2005) for a SiGe/oxide film 

stack. Recently, Choi et al. (2007) observed zigzag wrinkle patterns of single-crystal Si films 

bonded to prestrained polydimethylsiloxane (PDMS) substrate, where the jog angle of the zigzag 

was close to 90°, although no alignment with the crystal axes was reported. Motivated by these 
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experimental observations, this paper develops a theoretical model for wrinkling of an 

anisotropic elastic film on a thin viscoelastic substrate layer. Such a model allows us to analyze 

the wrinkle patterns and their evolution under various stress states. In particular, the effects of 

anisotropic elastic property of a cubic crystal film on wrinkle patterns at both the initial stage and 

the equilibrium state are elucidated in the present study by analytical solutions and numerical 

simulations. 

The remainder of this paper is organized as follows. Section 2 presents the model 

formulation, coupling a nonlinear plate theory for the anisotropic elastic film with a thin-layer 

model for the viscoelastic substrate. Section 3 performs a linear perturbation analysis, from 

which the critical condition and initial evolution kinetics of wrinkling are predicted. Section 4 

develops analytical solutions for equilibrium wrinkle states by a nonlinear energy minimization 

approach. In Section 5, numerical simulations are conducted for both isotropic and anisotropic 

elastic films, showing the evolution and transition of wrinkle patterns under various stress 

conditions. Section 6 concludes with a summary of the results. 

 

2. Model Formulation 

Figure 1 illustrates the model structure considered in this study: an anisotropic elastic 

film of thickness  lying on a viscoelastic substrate layer of thickness H, which in turn lies on a 

rigid foundation. The material system has a reference state (Fig. 1a), when both layers are flat 

and the elastic film is subject to a uniformly distributed residual stress. The substrate layer is 

assumed to be stress free at the reference state. Figure 1b sketches a wrinkled state, where the 

elastic film undergoes a buckling deformation and the viscoelastic layer deforms concomitantly. 

The interface between the layers is assumed to remain bonded. 

h
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To be specific, we consider a cubic crystal film with the surface normal in the [001] 

crystal direction. For convenience, a Cartesian coordinate system is set up at the reference state 

such that the x-y plane parallels to the film surface and the in-plane axes align with the [100] and 

[010] directions of the crystal (see Fig. 1a). In general, the residual stress in the film has three in-

plane components,  , , and , as illustrated in Figure 2a. The stress state can also be 

represented by two principal stresses (

R
xxσ R

yyσ R
xyσ

1σ  and 2σ ) and the corresponding principal angle ( pθ ), as 

illustrated in Figure 2b. The tensor property of the stress gives the principal stresses and the 

principal angle in terms of the original stress components, namely, 
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As a necessary condition for the film to wrinkle, at least one of the two principal stresses must be 

negative (compressive). As will be shown later, the wrinkle pattern of the anisotropic film 

depends on the ratio between the two principal stresses and the principal angle. Typically, the 

residual stress is equi-biaxial ( 21 σσ = ) in an infinite blanket film and nearly uniaxial ( 02 =σ ) 

in a narrow strip. In a film of finite dimension, the residual stress state varies from equi-biaxial in 

the center region to uniaxial near the free edges. A non-uniformly distributed residual stress may 

lead to interesting wrinkle patterns (see an example in Huang et al., 2005); however, the present 

study considers only uniform residual stresses at the reference state.  
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2.1 Anisotropic elastic deformation of a crystal film 

Under the condition of small deformation, the stress and strain in a crystal are related by 

the generalized Hooke’s law of linear elasticity:   

klijklij C εσ = ,        (3) 

where  is the elastic constants and the subscripts, i, j, k, l, take values from 1 to 3 for the 

Cartesian coordinates. Equation (3) can be written in a matrix form using the abbreviated 

notation  for the elastic constants, with the subscripts p and q taking values from 1 to 6. In 

particular, for an orthotropic material, we have 
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For a cubic crystal, the stress-strain relation takes the same form as Eq. (4), but with 

, , and 332211 CCC == 665544 CCC == 132312 CCC == . Additional symmetry for an isotropic 

material leads to the relation, 661211 2CCC =− , reducing the number of independent elastic 

constants to two.  

In the present study, the crystal film is modeled as a thin elastic plate. Following the 

classical plate theory (Landau and Lifshitz, 1959; Timoshenko and Woinowsky-Krieger, 1987), 

we set 0=== zzzyzx σσσ  in Eq. (4) and obtain the in-plane stress-strain relation:  
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where 3333 / CCCCC βααβαβ −=  for =βα , 1 or 2. For a cubic crystal plate, 

11
2
12112211 / CCCCC −== , and 11

2
121212 / CCCC −= . For an isotropic elastic plate, the reduced 

elastic constants can be expressed in terms of Young’s modulus ( E ) and Poisson’s ratio (ν ), 

namely, ( )2
2211 1/ ν−== ECC , ( )2

12 1/ νν −= EC , and ( )[ ]ν+= 12/66 EC . 

Let  and  be the in-plane displacements and w  the lateral deflection of the film. 

Upon wrinkling, the membrane strain components are  
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A nonlinear term is included in each strain component to account for the geometrical 

nonlinearity due to moderately large deflection of the elastic film, same as the nonlinear von-

Karman equations for an isotropic elastic plate. It may be noted that the displacements are 

measured relative to the reference state with the residual stress , and thus the strain in Eq. (6) 

describes an incremental deformation from the stressed reference state. As long as the total 

deformation of the film is sufficiently small for the material to behave in the linearly elastic 

regime, the total stress in the film is approximately , where 

R
ijσ

ij
R
ij σσ + ijσ  is related to the 

incremental strain by Eq. (5) (Biot, 1965). 
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The interaction between the film and the substrate layer exerts normal and shear tractions 

onto the lower surface of the film. Similar to the isotropic plate theory, equilibrium of the 

anisotropic elastic film requires that 
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where p  is the pressure (negative normal traction),  and  are the shear tractions. Similar 

equations for orthotropic thin plates have been developed previously (Bloom and Coffin, 2000). 

xT yT

 

2.2 Viscoelastic evolution equations 

With the assumption of perfectly bonded interface between the film and the substrate, the 

same tractions (p,  and ) act on the upper surface of the substrate layer. In response, the 

viscoelastic layer deforms in a time-dependent manner. Based on the linear theory of 

viscoelasticity and the elasticity-viscoelasticity correspondence principle (Christensen, 1982), we 

previously derived a thin-layer approximation of the viscoelastic deformation (Im and Huang, 

2005). The time-dependent relaxation shear modulus of the viscoelastic layer is taken to be 

Kelvin type, with a rubbery modulus 

xT yT

Rμ  and a viscosity η , while the Poisson’s ratio ( 5.0≠ν ) is 

assumed to be independent of time. The displacement rates at the upper surface of the 

viscoelastic layer are then related to the tractions as follows:  
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We have assumed that both the displacements and the tractions are continuous across the 

interface between the film and the substrate layer. We have also assumed that the evolution 

process is sufficiently slow such that the inertia effect is negligible and the elastic film remains in 

equilibrium during evolution. Consequently, the equilibrium equations of the elastic film in Eqs. 

(7)-(9) are coupled with the viscoelastic evolution equations, forming a complete temporal-

spatial system. 

Despite the limitations in the viscoelastic property and the layer thickness, the present 

model captures essential features of the viscoelastic wrinkle evolution, such as the kinetics of 

wrinkle growth and the equilibrium states at the long-time limit (Huang and Im, 2006). 

Extension to more general cases is possible, but not pursued in the present study. Notably, Biot 

(1957) developed a general instability theory for a viscoelastic layer on a semi-infinite 

viscoelastic substrate or embedded in an infinite viscoelastic medium, which may be extended 

for three-dimensional post-instability analysis. Alternatively, a Fourier transform method similar 

to that by Huang et al. (2005) can be employed for an elastic film on an infinitely thick 

viscoelastic substrate. For viscoelastic substrates of finite thickness, only two-dimensional 

analysis is available (Huang, 2005) to the best of our knowledge. 
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3. Linear Perturbation Analysis 

An arbitrary wrinkle pattern can be considered as a superposition of many Fourier 

components, each of which is designated by a wave number k (or equivalently, wavelength 

k/2πλ = ), an angle of the wave vector θ , and an amplitude A. The amplitude is a function of 

time as the wrinkle evolves. For the linear analysis, we may consider evoltuion of each 

individual Fourier component as a small perurbation to the reference state. In particular, the 

lateral deflection of the film takes the form  

( ) ( ) ( )[ ]θθ sincoscos,, yxktAtyxw += .     (13) 

Here, the angle θ  is measured from the x-axis or the [100] axis for the cubic crystal film.  

Linearization of Eqs. (7-9) uncouples the in-plane displacements from the lateral 

deflection. Thus, only Eq. (10) needs to be solved at the linear regime. By inserting Eq. (13) into 

Eq. (7) and keeping only the linear terms, we obtain the pressure at the interface: 
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Substituting Eqs. (13) and (14) into Eq. (10), we obtain that 
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Solving Eq. (17) leads to  
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where  is a constant for the initial amplitude, 0A 11/ Cητ =  is a characteristic time scale, and 

( ) 11/ Cs Rμαθθ −=  is the dimensionless growth rate of the perturbation amplitude. 

The result from the linear analysis is identical to that for an isotropic elastic film (Im and 

Huang, 2005) except for the dependence of the growth rate on the angle θ  through θE  and θσ . 

As defined in Eq. (16), the stress θσ  is simply the normal component of the residual stress acting 

on a rotated section with the angle θ , as illustrated in Fig. 2c. When the residual stress at the 

reference state is equi-biaxial, i.e.,  and , we have 1σσσ == R
yy

R
xx 0=R

xyσ 1σσθ = , independent 

of the angle θ . Thus, an equi-bixial stress is isotropic. Otherwise, the stress state is anisotropic. 

In terms of the principal stresses, we rewrite θσ  in form of 
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Hence the ratio between the two principle stresses determines the angle dependence of θσ  and 

represents the stress anisotropy. 

The modulus θE  defined in Eq. (15) is essentially the plane-strain modulus in the 

direction of the wrinkle wave vector. For a cubic crystal film, θE  can be rewritten as 
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where )/(2 121166 CCC −=ξ  is the degree of elastic anisotropy. In the case of an isotropic 

material, ξ  = 1 and θE  reduces to ( )21/ ν−E , independent of the angle. Table 1 lists the elastic 

constants and the degrees of elastic anisotropy for single-crystal Si, Ge, and an alloy Si0.7Ge0.3. 
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The elastic properties of the Si1-xGex alloy ( 10 ≤≤ x ) are obtained by linear interpolation 

between those of Si and Ge with x being the Ge content (Fitzgerold, 1995). From Eq. (21) it is 

noted that, when 1>ξ , the plane-strain modulus of a cubic crystal maximizes at <110> 

directions ( °±= 45θ ) and minimizes at <100> directions ( 0=θ  and 90°). The trend is opposite 

when 1<ξ  (e.g., for single-crystal Cr, Mo, NaCl, and TiC).  

For any particular angle θ , the growth rate  has a peak at the wavelength θs

θ

θ
θ σ

πλ
3
2Ehm −= .      (22) 

The corresponding peak growth rate is zero at a critical stress 

θθ μ
ν
νσ E

H
h

Rc 21
1

3
2

−
−

−=  .     (23) 

When the residual stress cθθ σσ −<− , the peak growth rate is negative and the crystal film at the 

reference state is stable against perturbations with the angle θ . Otherwise, when cθθ σσ −>− , 

the peak growth rate is positive and the crystal film becomes unstable.  

Both the wavelength mθλ  and the critical stress cθσ  vary with respect to the direction of 

the wrinkle wave vector for an anisotropic elastic film. Figure 3a plots the magnitude of the 

critical stress as a function of the angle θ  for single-crystal Si, Ge, and Si0.7Ge0.3 films, with 

Rμ = 1.5 MPa, ν = 0.45, and H/h = 10 for the substrate layer. The material anisotropy dictates 

the dependence of the critical stress on the wrinkle orientation. For the SiGe film, the critical 

stress is the lowest for wrinkling in the <100> directions ( 0=θ  and 90°), and the highest for 

wrinkling in the <110> directions ( )°±= 45θ . The difference is roughly 10%. Under an equi-

biaxial stress, the stability of the film is controlled by the lowest critical stress ( ). Under a ><100
cσ
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uniaxial stress, however, the critical stress depends on the direction of the stress with respect to 

the crystal axes. The critical stress strongly depends on the rubbery modulus of the substrate. 

Figure 3b plots the minimum and maximum critical stresses for the Si0.7Ge0.3 film versus the 

rubbery modulus Rμ . The critical stresses increase dramatically as the rubbery modulus exceeds 

100 MPa. Plastic deformation of the crystal film by dislocation mechanisms (Matthews and 

Blakeslee, 1974) should be considered under high stress levels. 

According to Equation (19), the wrinkle amplitude grows exponentially with time at the 

initial stage. Thus, the wavelength with the peak growth rate, mθλ , dominates the initial wrinkle 

evolution. It is noted that mθλ  depends on the stress θσ , but independent of the rubbery modulus 

of the viscoelastic substrate. For a 30 nm Si0.7Ge0.3 film on a 235 nm BPSG substrate, Peterson et 

al. (2006) measured the wrinkle wavelengths to be 0.91 µm and 0.94 µm under equi-biaxial and 

uniaxial stress states, respectively. The corresponding wavelengths predicted by Eq. (22) are 0.62 

µm and 0.73 µm, with the stresses calculated from Eq. (5) with the mismatch strain -0.012. The 

difference between the predicted and measured wavelengths may come from two sources: (1) 

Both experiments and theory have shown that the wrinkle wavelength coarsens over time (Yoo 

and Lee, 2003; Huang and Im, 2006). While Eq. (22) predicts the dominant wavelength at the 

early stage of wrinkle evolution, the measured values may have already undergone coarsening 

beyond the linear regime; (2) Even for the linear analysis, the thin-layer approximation of the 

viscoelastic substrate tends to underestimate the wrinkle wavelength, as shown previously for 

wrinkling of isotropic elastic films (Huang and Suo, 2002b; Huang 2005). 

Figure 4 compares the spectra of the initial wrinkle growth rate for both isotropic and 

anisotropic elastic films under various residual stresses. Contours of the normalized growth rate 

 are plotted in the plane spanning the x and y components of the wave vector, θs θcoskkx =  and 
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θsinkk y = , both normalized by the film thickness h; only positive growth rates are plotted. In 

all the calculations, we set , 5
11 10/ −=CRμ 10/ =hH ,and 45.0=ν . The major principal stress is 

fixed to be 003.0/ 111 −=Cσ , while the ratio 12 /σσ  is varied from 1 for equi-biaxial to 0 for 

uniaxial stress state. For the isotropic film, the growth spectrum is solely controlled by the stress 

ratio. Under an equi-biaxial residual stress ( 1/ 12 =σσ ), the growth spectrum is isotropic as the 

wave vectors of all the growing modes reside in a circular ring region with no favored directions. 

When the two principal stresses differ, the rotational symmetry is broken and the growth rate 

peaks at a particular wave vector in the direction of the major principal stress. Therefore, the 

kinetically dominant wrinkle pattern at the initial stage changes from non-directional (e.g., the 

labyrinth pattern) to uni-directional (e.g., the parallel striped pattern). Similar symmetry breaking 

occurs in many other pattern evolution systems (e.g., Lu and Suo, 2002; Pang and Huang, 2007).  

For the cubic crystal film (Si0.7Ge0.3, to be specific), the growth spectrum not only 

depends on the ratio between the two principal stresses but also depends on the direction of the 

principal stress ( )pθ . Even under an equi-biaxial stress, an anisotropic growth spectrum emerges, 

with four peaks aligned in the two orthogonal crystal directions, [100] and [010]. In this case, 

while the stress state is isotropic, the anisotropic elastic property of the crystal film breaks the 

rotational symmetry. As a result, an orthogonally oriented bi-directional pattern is predicted to 

dominate the initial growth of the wrinkles. By varying the ratio 12 /σσ  from 1 to 0, the growth 

spectrum changes from orthogonal to uniaxial in the direction of the major principal stress. The 

transition however depends on the principal angle pθ , as shown in the second and third rows of 

Figure 4 for 0=pθ  and 45°, respectively. For 0=pθ , the growth spectrum remains orthogonal 

when the ratio 12 /σσ  slightly deviates from 1, but the peak growth rate becomes lower in one 
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direction compared to the other direction. The growth spectrum becomes uniaxial as the lower 

peak diminishes for 8.0/ 12 <σσ . For , the wave vectors corresponding to the peak 

growth rates rotate toward the direction of the major principal stress and eventually merge into a 

uniaxial pattern. At an intermediate stress ratio (e.g., 

o45=pθ

9.0/ 12 =σσ ), four peaks lie on two 

directions of an oblique angle. Hence, the kinetically dominant wrinkle pattern at the initial stage 

becomes obliquely oriented bi-directional (e.g, the zigzag pattern). The different transition in the 

initial wrinkle patterns can be understood as a result of the competition between the material 

anisotropy and the stress anisotropy through θE  and θσ , respectively. 

 

4. Nonlinear Analysis of Equilibrium States 

For a viscoelastic substrate layer with a rubbery modulus 0>Rμ  at the long-time limit, 

wrinkling of an elastic film atop evolves towards an equilibrium state, dictated by minimization 

of the elastic strain energy stored in the film and the substrate. It is noted that there may exist 

many mechanically equilibrium states, including the one at the reference state with no wrinkles 

at all. However, by the principle of thermodynamics these equilibrium states may be unstable, 

stable, or metastable. Searching for the thermodynamically equilibrium state with the minimum 

energy requires consideration of all possible wrinkle patterns. In practice, several simple wrinkle 

patterns (e.g., parallel stripes, checkerboard, and herringbone) have been considered for isotropic 

elastic films (Chen and Hutchinson, 2004; Huang et al., 2005; Song et al., 2008). However, 

experiments have observed more complex wrinkle patterns (e.g., labyrinth). In the present study, 

facilitated by the kinetics of viscoelastic deformation in the substrate layer, we simulate the 

evolution of wrinkle patterns from a randomly generated initial perturbation. As the viscoelastic 

deformation dissipates energy, the evolution process may be regarded as a searching algorithm 
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for the minimum energy state, but it is not guaranteed that the global minimum can be reached. 

Nevertheless, the viscoelastic evolution represents one physical process to form wrinkle patterns 

in experiments (e.g., Hobart et al., 2000; Yoo and Lee, 2003; Peterson et al., 2006), where the 

observed wrinkle patterns may also be trapped in a state of local energy minimum. It is suspected 

that there may exist many local minima in the energy landscape, and the observed wrinkle 

pattern may depend on the loading history (Biot, 1957). 

This section presents a nonlinear energy analysis for parallel-striped winkles of a cubic 

crystal film on a thin viscoelastic substrate layer. The result provides useful insight into ordering 

of wrinkle patterns under various stress states and will be compared to the numerical simulations 

in the next section. 

The elastic strain energy in the film consists of two parts, one associated with the in-plane 

deformation and the other with bending. Taking the strain energy at the reference state to be zero, 

the in-plane strain energy per unit area of the film is 

⎟
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By substituting Eqs. (5) and (6) into Eq. (24) and neglecting the in-plane displacements, we 

obtain that 
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The area density of the bending strain energy in a cubic crystal film is:  
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At the equilibrium state, by setting 0/ =∂∂ tw  in Eq. (10), the pressure acting on the 

substrate surface is: 

( ) w
H

p Rμ
ν
ν

21
12
−
−

−= .         (27) 

The reversible elastic strain energy stored in the substrate (per unit area of the surface) is then 

2

21
1

2
1 w

H
pwU R

S
μ

ν
ν

−
−

=−= .       (28) 

Now consider a parallel-striped wrinkle described by Eq. (13). By integrating the strain 

energy density, Eqs. (25), (26), and (28), over one wavelength of the wrinkle and dividing by the 

wavelength ( k/2πλ = ), the average strain energy per unit area of the film is obtained as 

follows: 

4422 ~
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where
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22
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Equation (32) defines another anisotropic parameter, , which is different from θE~ θE  in Eq. (15) 

for an orthotropic plate. In the case of a cubic crystal plate, θθ EE ≡~ . 

The total strain energy (per unit area of the reference state) at the equilibrium state is 

therefore 

( ) SBC UUUkAU ++=θ,, .       (33) 
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For an arbitrary wave vector, minimizing the total energy gives the equilibrium amplitude 

as a function of k and θ : 
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When cθθ σσ −<− , Eq. (34) yields real values of the wrinkle amplitude for certain wave vectors, 

and the total strain energy at the equilibrium state is negative, i.e., ( ) 0,,),( <= θθ kAUkU ee . 

The spectra of the energy, ),( θkUe , are plotted in Figure 5 for both isotropic and anisotropic 

elastic films under various residual stress states. Similar to Figure 4, contours of the normalized 

strain energy, )/( 11hCUe , are plotted in the plane spanning the x and y components of the 

normalized wave vector; only negative energy values are plotted. The major principal stress is 

fixed to be 003.0/ 111 −=Cσ , while the ratio 12 /σσ  is varied from 1 to 0.  

For an isotropic elastic film, the energy contours are concentric circles under an equi-

biaxial residual stress ( 1/ 12 =σσ ). The strain energy minimizes on a circle of a particular radius, 

with no favored direction due to rotational symmetry of the isotropic system. Once the ratio 

between the two principal stresses deviates from 1, the rotational symmetry is broken and the 

energy spectrum has two minima symmetrically located on the axis parallel to the direction of 

the major principal stress. Hence, an energetically favored wrinkle pattern emerges with ordered 

parallel stripes perpendicular to the direction of the major principal stress. However, it should be 

noted that, since only parallel striped wrinkle patterns are considered in the present analysis, the 

energy minima in the spectra are not necessarily global minima. For example, it has been shown 

that herringbone and checkerboard wrinkle patterns may have lower energy than the parallel 

striped pattern under equi-biaxial stress states (Chen and Hutchinson, 2004; Huang et al., 2005; 

Song et al., 2008). 
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For a cubic crystal film (Si0.7Ge0.3, to be specific), the energy spectrum depends on both 

the material anisotropy and the stress anisotropy. Under an equi-biaxial stress, there exist four 

energy minima aligned in the two orthogonal crystal directions, [100] and [010]. Thus, an 

energetically favored equilibrium wrinkle pattern may consist of parallel stripes in two 

orthogonal directions. When the two principal stresses are different, the energy spectrum 

depends on the principal direction pθ . When 0=pθ , two energy minima are symmetrically 

located on the axis parallel to the direction of the major principal stress, while the other two 

minima in the orthogonal direction first become shallower and then disappear. When 0≠pθ , as 

the stress ratio decreases from 1 to 0, the wave vectors of the energy minima first rotate toward 

the direction of the major principal stress and then merge to form two minima in the same 

direction. Therefore, different equilibrium wrinkle patterns may emerge between the orthogonal 

and the uniaxial patterns. 

By minimizing the strain energy, ( )θ,kUe , with respect to k for a fixed angle θ  , the 

equilibrium wavelength is obtained as a function of θ : 
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Substitution of the equilibrium wavelength into Eq. (34) gives the equilibrium amplitude for the 

parallel wrinkles with the angle θ . Further minimization of the strain energy, ( θ,ee kU ) , with 

respect to θ  gives the angle for the parallel wrinkles with the minimum energy. Both the 

equilibrium wavelength and the angle can be determined from the locations of the minima in the 

energy spectrum shown in Figure 5. It should be noted that, although the energy spectra in Figure 

5 appear similar to the initial growth spectra in Figure 4, the locations for the energy minima are 

different from those of the maximum growth rates. While the fastest growing wavelength (Eq. 
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22) depends on the residual stress in the film, the equilibrium wrinkle wavelength (Eq. 35) is 

independent of the stress. Under the condition cθθ σσ −<− , the equilibrium wavelength is 

always greater than the fastest growing wavelength at the initial stage. Consequently, the wrinkle 

wavelength coarsens as the wrinkle evolves. Coarsening of wrinkle patterns of isotropic elastic 

films has been observed in both experiments (Yoo and Lee, 2003) and numerical simulations 

(Huang and Im, 2006). 

Figure 6a shows that, for the SiGe crystal film, the equilibrium wavelength, ( )θλe , 

maximizes at the <110> directions ( ) and minimizes at the <100> directions (o45±=θ 0=θ  and 

90°). The difference between the equilibrium wavelengths is about 5%. In Figure 6b, the 

maximum and minimum equilibrium wavelengths are shown to decrease as the rubbery modulus 

increases. Figure 7a plots the equilibrium wrinkle amplitude versus the angle under an 

equibiaxial stress ( 465.021 −==σσ GPa), with a maximum at the <100> directions ( 0=θ  and 

90°) and minimum at the <110> directions ( ). The difference between the maximum 

and minimum amplitudes is about 12%. Figure 7b shows that the equilibrium wrinkle amplitude 

increases with the magnitude of the stress. For a given stress level, the wrinkle amplitude 

decreases as the rubbery modulus of the substrate increases and becomes zero beyond a critical 

value. As a reference, for a Si

o45±=θ

0.7Ge0.3 film epitaxially grown from a Si substrate, the lattice 

mismatch is 1.2% and the equi-biaxial mismatch stress is -2.02 GPa. 

 

5. Numerical Simulations 

A spectral method was developed to simulate evolution of wrinkle patterns by 

numerically integrating the nonlinear equations, Eqs. (10)-(12), similar to that in the previous 

study for wrinkling of isotropic films (Huang and Im, 2006). For the present study, a square 
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computational cell of size  is discretized into a 128 by 128 grid, with periodic 

boundary conditions. A random perturbation of amplitude 0.01h was introduced as the initial 

lateral deflection from the reference state. Figure 8 shows an evolution sequence of the simulated 

wrinkle pattern for a cubic crystal film (Si

hL 2000=

0.7Ge0.3, to be specific) under an equi-biaxial 

compression ( 1121 003.0 C−== σσ ). The lateral deflection, , is normalized by the film 

thickness h and plotted as contours in the x-y plane; the time is normalized by the scale 

),.( tyxw

11/ Cητ = . The insets in Figure 8 show Fourier transforms of the corresponding wrinkle patterns, 

as contours in the Fourier space. For each wrinkle pattern, the root-mean-square (RMS) of the 

lateral deflection and the average wrinkle wavelength (λ ) are calculated as follows: 

( )
2

2,,)(RMS
N

tnmwt ∑=  ,      (36) 
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∑==

22
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where  is the deflection of the grid point  at time t,  is the intensity of 

the Fourier transform,  is the wave number of the grid point  in the Fourier space, 

and N is the number of grid points along one side of the computational cell (i.e., N = 128 for the 

present study).  

),,( tnmw ),( nm ),,(ˆ tnmw

),( nmk ),( nm

The initial perturbation at t = 0 is featureless (Fig. 8a), with a small roughness (RMS = 

0.0057). At t = 105 (Fig. 8b), the perturbation amplitude (RMS) has grown significantly, and the 

Fourier transform takes a shape similar to the growth-rate spectrum shown in Figure 4 for the 

anisotropic film under an equi-biaxial stress. At this stage, many Fourier components are 

growing simultaneously in different directions, resulting in a rather disordered wrinkle pattern. 

The average wavelength ( 77.44=λ ) is close to the fastest growing wavelength ( 23.43=mθλ  for 
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0=θ ) as predicted by the linear analysis (Eq. 22). At t = 5 × 105 (Fig. 8c), the Fourier 

components with the fastest growth rate start to dominate, and the wrinkles become increasingly 

aligned in the two orthogonal directions, [100] and [010]. At t = 106 (Fig. 8d), the wrinkle pattern 

exhibits a bi-phase domain structure, with parallel stripes locally ordered in one of the two 

orthogonal directions in each domain. Further evolution of the wrinkle pattern shows two 

coarsening processes. First, the wavelength of each individual wrinkle stripe increases. As a 

result, the average wavelength of the wrinkle over the entire area increases. This is consistent 

with the analytical solutions as the equilibrium wavelength for the parallel striped wrinkles 

( 32.56=eλ ) is greater than the wavelength of the fastest growing mode ( 23.43=mλ ) at the 

early stage. Furthermore, the bi-phase domain structure of the wrinkle pattern evolves with 

coarsening of the domain size, as can be seen clearly from t = 106 (Fig. 8d) to t = 107 (Fig. 8e). 

Both the wrinkle wavelength and the domain size seem to saturate after a long time evolution 

(Fig. 8f). It is thus postulated that the viscoelastic evolution process seeks to minimize the total 

strain energy in the film and the substrate not only by selecting an equilibrium wavelength for 

individual wrinkle stripes but also by selecting a particular domain size. Similar coarsening 

processes have been observed for isotropic films (Yoo and Lee, 2003; Huang and Im, 2006). The 

present simulation of the wrinkle pattern evolution qualitatively agrees with the experiments by 

Peterson (2006) for a SiGe film on a glass layer at an elevated temperature, although quantitative 

comparisons are not possible due to uncertainties in the viscoelastic properties of the glass. The 

orthogonally ordered wrinkle pattern (Fig. 8f) is also comparable to the wavy structures observed 

in biaxially stressed silicon membranes on a PDMS substrate (Choi et al., 2007). 

Figure 9 compares the wrinkle patterns for isotropic and anisotropic elastic films under 

various stress states. All patterns were obtained by numerical simulations of long time evolution 
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up to . The major principal stress is fixed as 810=t 003.0/ 111 −=Cσ , while the stress ratio 

12 /σσ  varies from 1 to 0. For the isotropic film, the wrinkle pattern changes from a disordered 

labyrinth pattern under an equi-biaxial stress ( 1/ 12 =σσ ) to a parallel striped pattern under a 

uniaxial stress ( 0/ 12 =σσ ), as predicted by the energy spectra shown in Figure 5. The square-

shaped computational cell seems to have an effect on the wrinkle orientation under the equi-

biaxial stress, favoring the horizontal and vertical directions. Despite the numerical artifact, the 

wrinkle pattern is largely disordered as compared to the orthogonal pattern of the anisotropic 

film under the same stress. Under a slightly anisotropic stress ( 9.0/ 12 =σσ ), the wrinkle tends 

to order into parallel stripes, but not fully achieved. Although the energy spectrum shown in 

Figure 5 has two minima in the direction of the major principal stress, the energy landscape is 

rather spread out with a low driving force toward the minimum-energy state. As the degree of 

stress anisotropy increases, the driving force for ordering increases, and increasingly ordered 

wrinkle patterns form. Note the dislocation-type defects in the parallel striped wrinkle patterns 

for 7.0/ 12 =σσ  and 0.5; the density of the defects decreases during evolution. Similar defects 

were observed in experiments (Ohzono and Shimomura, 2004; Efimenko et al., 2005). 

For the anisotropic film (Si0.7Ge0.3, to be specific), wrinkle patterns are shown in Figure 9 

for two different orientations of the principal stresses, 0=pθ  and 45°. In both cases, the wrinkle 

pattern changes from orthogonal to uniaxial as the stress ratio varies, but the transitional patterns 

are different. When 0=pθ , the orthogonal pattern remains orthogonal as the stress ratio slightly 

deviates from 1, but the bi-phase domain structure changes. The wrinkle pattern under the equi-

biaxial stress ( 1/ 12 =σσ ) has parallel stripes in the two orthogonal directions, [100] and [010], 

each decorating about half of the area. For 9.0/ 12 =σσ , the area decorated with wrinkles in the 
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[100] direction is greater than the area decorated by wrinkles in the [010] direction. The wrinkles 

in the [010] direction correspond to the local minima of the energy spectrum shown in Figure 5. 

As the stress ratio 12 /σσ  decreases, the area percentage of the [100] wrinkles increases, and the 

entire area is covered with the [100] wrinkles for 8.0/ 12 <σσ . Again, dislocation-type defects 

form during the evolution of parallel wrinkle patterns for 7.0/ 12 =σσ  and 0.5. In the cases of 

=pθ  45°, the directions of the wrinkle stripes first rotate to form zigzag patterns ( 9.0/ 12 =σσ  

and 0.8) and then merge into the [110] direction for 8.0/ 12 <σσ . The zigzag pattern consists of 

wrinkle stripes in two directions of an oblique angle, as predicted by the energy minima in the 

energy spectra (Fig. 5). 

The effect of the stress magnitude on the wrinkle pattern is illustrated in Figure 10 for a 

crystal film under equi-biaxial stresses. As the stress magnitude increases, the wrinkle pattern 

becomes increasingly disordered. This is due to the fact that the stress state is isotropic and 

becomes dominant over the material anisotropy at the high stress levels. The contours of the 

initial growth rate show that the wavelength of the fastest growing mode decreases as the stress 

magnitude increases, while in the energy spectra the wavelengths of the energy minima remain 

constant. The average wavelengths of the wrinkle patterns ( ) are close to the predicted 

equilibrium value, 

810=t

32.56=eλ , while the RMS roughness increases with the stress level. It is 

noted that both the growth rate and energy spectra become increasingly spread out as the stress 

magnitude increases, which may be responsible for the increasingly disordered wrinkle patterns. 

At a stress level very close to the critical stress, the growth and energy spectra become highly 

localized, leading to a well-ordered checkerboard pattern, as show in Figure 11. The wrinkle 

crests and troughs of the checkerboard pattern are organized orthogonally along the [100] and 
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[010] directions of the cubic crystal. Experimentally, similar checkerboard patterns have been 

observed at the early stage of wrinkle evolution (Peterson, 2006), when the wrinkle amplitude is 

relatively small. Further growth of the wrinkle amplitude led to a transition to the orthogonal 

pattern with parallel stripes. Similar pattern transition is expected for the equilibrium state as the 

stress magnitude increases. Such a transition has its origin in a bifurcation of the local 

deformation of the elastic film, as the checkerboard pattern with largely spherical bending of the 

film gives way to a more energetically favorable stripe pattern with cylindrical bending of the 

film. Previously, Huang et al. (2005) showed that the checkerboard pattern may also form in 

isotropic elastic films, while the energy analysis (Chen and Hutchinson, 2004; Song et al., 2008) 

suggested that the checkerboard pattern is unfavorable compared to the zigzag pattern. No 

experimental observation of the checkerboard pattern has been reported for wrinkling of 

isotropic elastic films. 

 

6. Conclusions 

This paper presents a nonlinear model for wrinkling of an anisotropic crystal film on a 

viscoelastic substrate layer. A linear perturbation analysis is performed to predict onset of the 

wrinkling instability and the wrinkle evolution kinetics at the early stage, and an energy 

minimization approach is adopted to analyze the equilibrium wrinkle patterns. Numerical 

simulations are performed for a cubic crystal film under various stress states. A variety of 

wrinkle patterns (e.g., orthogonal, parallel, zigzag, and checkerboard patterns) emerge as a result 

of the competition between the material anisotropy and the stress anisotropy. Specifically, for 

wrinkling of cubic crystal SiGe films, the main conclusions are summarized as follows. 
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• The critical stress for the onset of wrinkling depends on the wrinkle orientation, with the 

lowest critical stress in the <100> directions and the highest in the <110> directions. 

• Under an equibiaxial residual stress, the wrinkle growth rate at the early stage maximizes 

in the <100> directions, and the strain energy of parallel striped wrinkles at equilibrium 

states minimizes also in the <100> directions; both suggest formation of orthogonally 

ordered wrinkle patterns. 

• The equilibrium wrinkle wavelength and amplitude depends on the wrinkle orientation, 

with the minimum wavelength and maximum amplitude in the <100> directions. 

• Under an anisotropic stress, transition of the wrinkle pattern from orthogonal to parallel 

stripes depends on the angle of the principal stress, and zigzag patterns form in between.  

• Formation of a checkerboard wrinkle pattern is shown by numerical simulations under an 

equi-biaxial stress close to the critical stress level. As the stress magnitude increases, the 

wrinkle pattern first changes to orthogonally ordered stripes and then becomes 

increasingly disordered. 
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Table 1. Elastic constants of single-crystal silicon (Si), germanium (Ge), and an alloy Si0.7Ge0.3. 

Also listed are the constants of an artificial isotropic material for comparison. 

Crystal 11C  (GPa) 12C  (GPa) 66C  (GPa) Degree of 
anisotropy, ξ 

Si 166.2 64.4 79.8 1.57 

Ge 128.4 48.2 66.7 1.66 

Si0.7Ge0.3 154.9 59.5 75.9 1.59 

Isotropic  161.7 69.3 46.2 1.00 
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List of Figures 

Figure 1. Schematic illustration of an elastic film on a viscoelastic substrate: (a) At the reference 

state, the film is flat and subject to a uniform residual stress; The coordinates for a cubic 

crystal film are shown. (b) At a wrinkled state, the film and the substrate deform 

concomitantly. 

Figure 2. Residual stress of the film represented by stress elements in different orientations: (a) 

in the x-y coordinates; (b) in the principal directions; (c) in an arbitrarily rotated direction. 

Figure 3. (a) Critical stress for wrinkling versus the angle of the wrinkle wave vector for Si, Ge, 

and SiGe films; (b) The maximum and minimum critical stresses for a SiGe film versus the 

rubbery modulus of the substrate layer. ( 10/ =hH 45.0, =ν ) 

Figure 4. Spectra of the wrinkle growth rate at the early stage for isotropic and anisotropic 

elastic films under various residual stress states ( 2.0,2.0 ≤− ≤hkhk yx ). The major principal 

stress is 003.0/ 111 −=Cσ ; 10/ =hH , 45.0=ν , and .  5−

2.0,2.0 ≤≤

11 10/ =CRμ

Figure 5. Energy spectra of parallel wrinkles at the equilibrium state for isotropic and 

anisotropic elastic films under various residual stress states ( − hkhk yx ). The 

major principal stress is 003.0/ 111 −=Cσ ; 10/ =hH , 45.0=ν , and . 5−

10/

11 10/ =CRμ

Figure 6. (a) Equilibrium wavelength of parallel wrinkles as a function of the angle of the 

wrinkle wave vector for Si, Ge, and SiGe films; (b) The maximum and minimum equilibrium 

wavelengths for a SiGe film versus the rubbery modulus of the substrate layer. ( =hH

45.0=

, 

ν ) 
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Figure 7. (a) Equilibrium amplitude of parallel wrinkles as a function of the angle of the wrinkle 

wave vector for Si, Ge, and SiGe films under an equi-biaxial stress; (b) The maximum and 

minimum equilibrium wavelengths for a SiGe film versus the rubbery modulus of the 

substrate layer. ( , 10/ =hH 45.0=ν ) 

Figure 8. A simulated evolution sequence of the wrinkle pattern for a Si0.7Ge0.3 film under an 

equi-biaxial stress ( 1121 003.0 C−==σσ , , 5−
11 10/ =CRμ 10/ =hH , 45.0=ν ): (a) t = 0, 

RMS = 0.0057, λ  = 38.83; (b) t = 105, RMS = 0.0165, λ  = 44.77; (c) t = 5 × 105, RMS = 

0.4185, λ  = 47.06; (d) t = 106, RMS = 0.4676, λ  = 50.75; (e) t = 107, RMS = 0.5876, λ  = 

56.43; (f) t = 108, RMS = 0.5918, λ =56.63. 

Figure 9. Simulated wrinkle patterns (t = 108) for isotropic and anisotropic films under various 

residual stresses. The major principal stress is 003.0/ 111 −=Cσ ; , 5−
11 10/ =CRμ 10/ =hH , 

45.0=ν . 

Figure 10. Contours of the initial growth rate and the energy at the equilibrium states 

( ), simulated wrinkle patterns (t = 108.0,8.0 ≤≤− hkhk

5−

10/ =hH 45.0=

yx
8) for a cubic crystal film 

(Si0.7Ge0.3) under equi-biaxial stresses with various stress magnitudes ( , 

, 

11 10/ =CRμ

ν ). 

Figure 11. (a) Energy spectrum of the equilibrium states and (b) the simulated wrinkle pattern (t 

= 108) for a cubic crystal film (Si0.7Ge0.3) under equi-biaxial stresses with the stress 

magnitude, 1121 00178.0 C−== σσ , close to the critical stress ( 1100177.0c C−=σ ). RMS = 

0.05286 and 56.55=λ . (c) shows a magnified 3D view of the surface wrinkle. 
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 (a) 
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Figure 1. Schematic illustration of an elastic film on a viscoelastic substrate: (a) At the reference 

state, the film is flat and subject to a uniform residual stress; The coordinates for a cubic crystal 

film are shown. (b) At a wrinkled state, the film and the substrate deform concomitantly. 
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(a)               (b)     (c) 

Figure 2. Residual stress of the film represented by stress elements in different orientations: (a) 

in the x-y coordinates; (b) in the principal directions; (c) in an arbitrarily rotated direction. 

36 
 



0 10 20 30 40 50 60 70 80 90
0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

 Wrinkle direction, θ (degree)

C
rit

ic
al

 s
tr

es
s,

 σ
θc

 (
G

P
a)

 

 

Ge

Si
0.7

Ge
0.3

Si

μ
R
 = 1.5 MPa

 

(a)  

10
0

10
1

10
2

10
3

0

1

2

3

4

5

 Rubbery modulus, μ
R
 (MPa)

C
rit

ic
al

 s
tr

es
s 

 (
G

P
a)

 

 

σ
c
<100>

σ
c
<110>

  

(b)  

Figure 3. (a) Critical stress for wrinkling versus the angle of the wrinkle wave vector for Si, Ge, 

and SiGe films; (b) The maximum and minimum critical stresses for a SiGe film versus the 

rubbery modulus of the substrate layer. ( 10/ =hH 45.0, =ν ) 
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Figure 4. Spectra of the wrinkle growth rate at the early stage for isotropic and anisotropic 

elastic films under various residual stress states ( 2.0,2.0− ≤ ≤hkhk yx ). The major principal 

stress is 003.0/ 111 −=Cσ ; , 10/ =hH 45.0=ν , and . 5−
11 10/ =CRμ
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Figure 5. Energy spectra of parallel wrinkles at the equilibrium state for isotropic and 

anisotropic elastic films under various residual stress states ( 2.0,2.0 ≤− ≤ hkhk yx ). The major 

principal stress is 003.0/ 111 −=Cσ ; 10/ =hH , 45.0=ν , and . 5−
11 10/ =CRμ

 

 

39 
 



0 10 20 30 40 50 60 70 80 90
54

55

56

57

58

59

60

61

62

Wrinkle direction, θ (degree)

E
qu

ili
br

iu
m

 w
av

el
en

gt
h,

 λ
e/h

Si
0.7

Ge
0.3

Ge

Si

μ
R
 = 1.5MPa

 

(a)  

10
0

10
1

10
2

10
3

10

20

30

40

50

60

70

Rubbery modulus, μ
R
 (MPa)

E
qu

ili
br

iu
m

 w
av

el
en

gt
h,

 λ
e/h

λ
e
<110>

λ
e
<100>

 

(b)  

Figure 6. (a) Equilibrium wavelength of parallel wrinkles as a function of the angle of the 

wrinkle wave vector for Si, Ge, and SiGe films; (b) The maximum and minimum equilibrium 

wavelengths for a SiGe film versus the rubbery modulus of the substrate layer. ( 10/ =hH

45.0=

, 

ν ) 
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(b)  

Figure 7. (a) Equilibrium amplitude of parallel wrinkles as a function of the angle of the wrinkle 

wave vector for Si, Ge, and SiGe films under an equi-biaxial stress; (b) The maximum and 

minimum equilibrium wavelengths for a SiGe film versus the rubbery modulus of the substrate 

layer. ( , 10/ =hH 45.0=ν ) 
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(d) (e) (f)

Figure 8. A simulated evolution sequence of the wrinkle pattern for a Si0.7Ge0.3 film under an 

equi-biaxial stress ( 1121 003.0 C−==σσ , , 5−
11 10/ =CRμ 10/ =hH , 45.0=ν ): (a) t = 0, RMS = 

0.0057, λ  = 38.83; (b) t = 105, RMS = 0.0165, λ  = 44.77; (c) t = 5 × 105, RMS = 0.4185, λ  = 

47.06; (d) t = 106, RMS = 0.4676, λ  = 50.75; (e) t = 107, RMS = 0.5876, λ  = 56.43; (f) t = 108, 

RMS = 0.5918, λ =56.63. 
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Figure 9. Simulated wrinkle patterns (t = 108) for isotropic and anisotropic films under various 

residual stresses. The major principal stress is 003.0/ 111 −=Cσ ; , 5−
11 10/ =CRμ 10/ =hH , 

45.0=ν . 
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Figure 10. Contours of the initial growth rate and the energy at the equilibrium states 

( ), simulated wrinkle patterns (t = 108.0,8.0 ≤≤− hkhk

5−

yx
8) for a cubic crystal film (Si0.7Ge0.3) 

under equi-biaxial stresses with various stress magnitudes ( , , 11 10/ =CRμ 10/ =hH 45.0=ν ). 

44 
 



      

 

   

(a) (b)

0

20

40

0

20

40

−1

0.5

0

0.5

1

 

(c)

Figure 11. (a) Energy spectrum of the equilibrium states and (b) the simulated wrinkle pattern (t 

= 108) for a cubic crystal film (Si0.7Ge0.3) under equi-biaxial stresses with the stress magnitude, 

1121 00178.0 C−== σσ , close to the critical stress ( 1100177.0 Cc −=σ ). RMS = 0.05286 and 

56.55=λ . (c) shows a magnified 3D view of the surface wrinkle. 
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