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Abstract

The characteristics of phonons, i.e. linearized normal modes of vibration, provide important in-
sights into many aspects of crystals, e.g. stability and thermodynamics. In this paper, we use the
Objective Structures framework to make concrete analogies between crystalline phonons and normal
modes of vibration in non-crystalline but highly symmetric nanostructures. Our strategy is to use
an intermediate linear transformation from real-space to an intermediate space in which the Hessian
matrix of second derivatives is block-circulant. The block-circulant nature of the Hessian enables
us to then follow the procedure to obtain phonons in crystals: namely, we use the Discrete Fourier
Transform from this intermediate space to obtain a block-diagonal matrix that is readily diagonaliz-
able. We formulate this for general Objective Structures and then apply it to study carbon nanotubes
of various chiralities that are subjected to axial elongation and torsional deformation. We compare the
phonon spectra computed in the Objective Framework with spectra computed for armchair and zigzag
nanotubes. We also demonstrate the approach by computing the Density of States. In addition to the
computational efficiency afforded by Objective Structures in providing the transformations to almost-
diagonalize the Hessian, the framework provides an important conceptual simplification to interpret
the phonon curves. Our findings include that, first, not all non-optic long-wavelength modes are zero
energy and conversely not all zero energy modes are long-wavelength; second, the phonon curves
accurately predict both the onset as well as the soft modes for instabilities such as torsional buckling;
and third, unlike crystals where phonon stability does not provide information on stability with respect
to non-rank-one deformation modes, phonon stability in nanotubes is sufficient to guarantee stability
with respect to all perturbations that do not involve structural modes. Our finding of characteristic
oscillations in the phonon curves motivates a simple one-dimensional geometric nonlocal model of
energy transport in generic Objective Structures. The model shows the interesting interplay between
energy transport along axial and helical directions.
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1 Introduction

Phonons, i.e. normal modes, are extremely important to understand the properties of crystals. For in-
stance, phonon analysis provides insight into thermodynamic properties and mechanical stability [Dov93,
BH98, ETS06, EST06]. In this paper, we use the framework of Objective Structures (OS) introduced by
James [Jam06] to extend the notion of phonon analysis to noncrystalline but symmetric nanostructures.

OS generalizes the notion of a crystal or periodicity by using ideas from frame-indifference. In brief,
[Jam06] and following works have shown that many highly symmetric but non-crystalline nanostruc-
tures have close analogies to crystals. These analogies have led to some important practical meth-
ods: e.g., a generalization of periodic boundary conditions for classical molecular dynamics and tight
binding to enable the analysis of chiral nanostructures as well as the ability to apply torsional loads
[ZAD11, ZJD09b, ZJD09a, ZDS10, DJ07, NZJD10, DJ10, DJ11, AD12, AD11]. All of these exploit
the fact that the symmetries of the nanostructure, together with frame-indifference, imply that the first
derivative of the potential energy has certain symmetries. This symmetry in the first derivative is a gen-
eralization of the fact that forces on image atoms are identical in a periodic crystal.

In this paper, we exploit in an essential way the symmetry in the second derivative of the potential energy,
i.e. the Hessian matrix has various submatrices that are related to each other. While this was noted
by James [Jam06], it has not been exploited in practical calculations. Here, we find that this property
implies that a preliminary linear transformation renders the Hessian matrix block-circulant as in periodic
crystals, thus enabling the use of standard Fourier techniques after the preliminary transformation. While
a significant part of our analysis is general and applies broadly to all structures that belong to the family
of OS, we also specialize the analysis to carbon nanotubes and other one-dimensional systems to do
numerical calculations. Except where stated as a model system, we use the well-characterized Tersoff
interatomic potential for carbon that provides a balance between bond-order accuracy and computational
efficiency [Ter88].

We emphasize that many researchers have studied phonons in carbon nanotubes for over a decade now.
For instance, an early example is [YKV95]; a more recent review is [JDD08]. An important feature of
all of these studies is that they directly use methods from periodic systems. This often requires the use
of very large unit cells that require expensive calculations to compute the phonon analysis, and more
importantly the computed information is extremely complex and difficult to analyze for new physics.
Recent papers that exploit the symmetry of nanotubes are [GLW08, PL06].

We go beyond these methods in some significant ways. First, our approach based on OS provides a
tight link to deformation of the nanotubes. This is critical to go beyond exclusively axial-load-free and
twisting-moment-free nanotubes; in fact, as recent work shows, the load- and moment- free structure of
chiral nanotubes likely does not correspond to the assumed highly-symmetric configuration [VBSF+10,
ZAD11, AD12]. Relaxing or applying such loads is readily accomplished using the OS framework
[Jam06, DJ07].

Second, our analysis exposes the close analogies to periodic crystals; additionally, it is general and ap-
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plicable to a wide variety of OS that go beyond carbon nanotubes. In addition to providing a conceptual
unity, this can potentially enable important practical advances such as integrating our method with other
techniques developed for periodic crystals. For instance, we provide a demonstration of phonon soft-
mode stability analysis to detect instabilities under torsion. Such analyses, in combination with OS
methods for bending and other deformations, can conceivably provide insight into complex phenomena
such as nanotube rippling [AA08]. Further, multiscale atomistic-to-continuum numerical methods have
recently been used to predict structural phase transformations in crystals using phonon stability as a crit-
ical component [DELT07, Ell07]; conceivably, similar methods for complex OS nanostructures can be
built on the phonon approach provided here. Another potentially important application of our phonon ap-
proach is, e.g., as a basis to construct effective Hamiltonian models that have been effective in predicting
structural phase transformations in crystals based on soft modes.

The paper is organized as follows:

• Section 2 describes the notation used in the paper.

• Section 3 outlines the relevant aspects of OS, and the properties of the Hessian matrix in an OS.
In crystals, each row of the Hessian is simply a shifted copy of the previous row, i.e. it is block-
circulant; in OS, each row of the Hessian is related to the previous row but in a more complex way
that involves the symmetry parameters of the structure.

• Section 4 sets up the linearized equations of motion, presents the transformation to the intermediate
Objective space as a similarity transform, presents the standard Discrete Fourier Transform as a
similarity transform, and uses a composition of these transforms to block-diagonalize the Hessian
matrix.

• Section 5 shows examples of phonon spectra computed by the OS framework and contrasts these
with standard phonon spectra. The OS framework provides important conceptual simplifications
in understanding these curves. We also demonstrate the computation of the density of states.

• Section 6 examines modes that are long-wavelength (in the Fourier space), and rigid-body and
uniform deformation modes in real space. Unlike crystals, rigid-body modes in nanotubes are not
always at long-wavelength, and long-wavelength non-optic modes do not always correspond to
zero energy even in the limit.

• Section 7 examines the stability information provided by phonons, in particular contrasting nan-
otubes with crystals in regards to analogies to “non-rank-one modes” in crystals that are not tested
by phonon stability. We also demonstrate a numerical example of torsional buckling and examine
the predictions of phonon soft-mode analysis.

• Section 8 studies energy transport in nanotubes. We find characteristic oscillations in the phonon
spectra that motivate a simple one-dimensional geometric nonlocal model of energy transport. The
model provides insight into the balance between energy transport along axial and helical directions.
The geometrically-motivated nature of the model gives it universal applicability to helical structures
of all kinds.
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2 Notation

Z denotes the set of all integers and Z3 the set of triples of all integers.

For a quantity A, the Fourier transform is denoted by Ã.

To avoid ambiguity, the summation convention is not used and sums are always indicated explicitly.

Throughout the paper, M and N are used for the number of atoms per unit cell and the number of unit
cells in the OS respectively. Note that M is always finite but N can be infinite. The unit cells are labeled
by multi-indices denoted by boldface, i.e. i = (i1, i2, i3), and atoms within a given unit cell are labeled
by regular non-bold indices. For example, the position of the k atom in the i unit cell is denoted xi,k.

Bold lower case and upper case letters represent vectors and matrices, respectively. The rectangular
Cartesian component and the exponent of a vector or matrix are shown respectively by Greek letters and
lower case Latin letters as superscripts.

The subscripts of vectors and matrices are used to convey information about the structure of the quantity
in addition to denoting components. We will often deal with matrices of size 3MN×3MN corresponding
to an OS with 3MN degrees of freedom (DoFs). Such a matrix A can be divided into N × N blocks,
with each block further sub-divided into M ×M sub-blocks of size 3×3. Then, A(i,k)(j,l) denotes a 3×3
sub-block, typically corresponding to the pair of atoms labeled by (i, k) and (j, l). Also, Aij denotes a
3M × 3M matrix, typically corresponding to atoms in the unit cells labeled i and j.

Similarly, for a vector b of size 3MN ×1, writing bi denotes the i-th block of b of size 3M ×1 typically
corresponding to the unit cell labeled by i. Further, bi,k denotes a sub-block of bi of size 3× 1, typically
corresponding to the atom k in the unit cell labeled by i.

For Fourier quantities, the correspondences for sub-blocks in vectors and matrices are not to unit cells
but rather to wave numbers.

3 Objective Structures

James [Jam06] defined an objective atomic structure as a finite or infinite set of atoms in which every
atom sees the same environment up to translation and rotation. Similarly, an objective molecular structure
is defined as a structure with a number of identical molecules, each molecule consisting of a number of
atoms, arranged such that corresponding atoms in every molecule see the same environment up to trans-
lation and rotation. We note that the molecules in an objective molecular structure need not correspond to
standard physical molecules as usually understood. Bravais (multi) lattices are special cases of objective
atomic (molecular) structures in which each atom (molecule) has the same environment up to translation
and the rotation is trivial.

Following recent works that build on James’ original formulation, e.g. [DEJ, DJ11, DJ10, AD11, AD12],
we can define OS equivalently in the language of group theory. The group theoretic approach enables
practical calculations. Let G = {g0, g1, · · · , gN} be a set of isometries indexed by a multi-index. Each
element of G has the form gj = (Qj|cj) where Qj ∈ O(3) is orthogonal and cj ∈ R3 is a vector.
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The action of an isometry on a point x ∈ R3 is

gj(x) = Qjx + cj (3.1)

Composition of mappings then provides:

gi(gj(x)) = Qi (Qjx + cj) + ci = QiQjx + Qicj + ci

This motivates a definition for multiplication of isometries:

gigj = (QiQj|Qicj + ci) (3.2)

From this definition, it follows that the identity element is g0 := (I|0) and the inverse of gi is defined by
g−1
i := (QT

i | −QT
i ci).

If the set G is additionally a group with respect to the multiplication operation above, then placing an
atom at each of the points given by the action of elements of G on a given point x0 gives an objective
atomic structure. In addition, placing an atom of species k at each of the points given by the action of
elements of G on a given set of points x0,k gives an objective molecular structure.

In this paper, we will consider OS described by groups of the form

G = {gi11 gi22 gi33 ; (i1, i2, i3) ∈ Z3} (3.3)

Here, g1 = (Q̄1|c̄1), g2 = (Q̄2|c̄2) and g3 = (Q̄3|c̄3) are the generators of the group. We assume that
they commute, i.e. g1g2 = g2g1 and so on. This immediately implies that G itself is Abelian. As shown
in [DEJ], G of this form does not describe all possible OS; however, as also shown there, those OS that
cannot directly be described can nevertheless be described by such a G by enlarging the unit cell and
neglecting certain intra-unit cell symmetries.

Denoting the atomic positions in the unit cell by x(0,0,0),k := x0,k, k = 1, . . . ,M , the OS is described by

xi,k := x(i1,i2,i3),k = gi11 g
i2
2 g

i3
3 (x0,k) = Qix0,k + ci ; i = (i1, i2, i3) ∈ Z3 (3.4)

Using (3.2), we have that

Qi = Q̄i1
1 Q̄i2

2 Q̄i3
3 , ci = Q̄i1

1 Q̄i2
2

(
p=i3−1∑
p=0

Q̄p
3c̄3

)
+ Q̄i1

1

(
p=i2−1∑
p=0

Q̄p
2c̄2

)
+

(
p=i1−1∑
p=0

Q̄p
1c̄1

)
(3.5)

for positive exponents i1, i2, i3. Negative exponents are defined through the inverse.

An important property of OS is that elements of G map images of the unit cell x0,k to each other. For
instance, consider the i and j images of the unit cell:

xi,k = gi11 g
i2
2 g

i3
3 (x0,k) =

(
gi1−j11 gi2−j22 gi3−j33

) (
gj11 g

j2
2 g

j3
3

)
(x0,k) =

(
gi1−j11 gi2−j22 gi3−j33

)
(xj,k) (3.6)

These relations follow directly from the closure and commuting properties of the Abelian group G.

Consider the orthogonal part of gi1−j11 gi2−j22 gi3−j33 :

(Qi−j|ci−j) = gi1−j11 gi2−j22 gi3−j33 =
(
gi11 g

i2
2 g

i3
3

) (
g−j11 g−j22 g−j33

)
= (Qi|ci)(Qj|cj)

−1 = (QiQ
T
j |−QiQ

T
j cj+ci)

This provides the important relation:
QiQ

T
j = Qi−j (3.7)
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3.1 Crystal Lattices and Carbon Nanotubes as Objective Structures

Two important examples of OS are crystal multilattices and carbon nanotubes. We describe them using
the general OS framework above.

To describe a crystal multilattice as an OS, we simply set Q̄1 = I, Q̄2 = I, Q̄3 = I. The vectors c̄1, c̄2, c̄3

are the lattice vectors.

Carbon nanotubes require only two generators. Therefore, we set g3 to the identity. For a nanotube with
axis e and centered at 0, we use:

g1 = (Rθ1|0),Rθ1e = e; g2 = (Rθ2|κ2e), Rθ2e = e (3.8)

following (A.1). Here Rθ is a rotation tensor with angle θ. The generator g1 is a rotation isometry, and
g2 is a screw isometry The parameters κ2, θ1, θ2 depend on the chiral indices (m,n) of the nanotube. In
this description, the unit cell has 2 atoms at positions x(0,0),0 and x(0,0),1. The relations between these
parameters and (m,n) are described in Appendix A.

We note the important special case that when the chiral indices m and n of the nanotube are relatively
prime, g1 reduces to the identity.

The 2-atom unit cell of (3.8) is sufficient to obtain the dispersion curves of carbon nanotubes. But, as in
standard periodic calculations, small unit cells can also greatly constrain the possible deformations. This
is of particular concern when using (zero temperature) atomistics to study instabilities that lead to defects.
For such problems, a unit cell with more atoms can be useful. To this end, we first define an enlarged
unit cell consisting of the atoms generated by gp1g

q
2(x(0,0),k), where k = 1, 2 and the indices p and q run

over integers p1 ≤ p ≤ p2 and q1 ≤ q ≤ q2. The unit cell now consists of 2(p2 − p1 + 1)(q2 − q1 + 1)
atoms. To generate the nanotube, we then define the group H = {hi1h

j
2; (i, j) ∈ Z2} with h1 = gp2−p1+1

1

and h1 = gp2−p1+1
1 . Note that H is a subgroup of G. The action of elements of H on the enlarged unit

cell define precisely the same nanotube as using G on the 2-atom unit cell. However, since the atoms in
the enlarged unit cell are not constrained to each other by symmetry, they can explore a larger space of
deformations.

3.2 Consequences of Frame Indifference on the Potential Energy and its Deriva-
tives

By frame-indifference, the potential energy of the OS, φ(x0,k, . . . ,xi,k, . . .) where k = 1, . . . ,M and
i = (i1, i2, i3) ∈ Z3, is invariant under rigid translations and rotations of the entire structure, assuming
that external fields are either absent or also similarly transform. We apply the specific rigid translation
and rotation associated to elements of G, i.e., consider the transformation g−i := g−i11 g−i22 g−i33 .

φ (x0,k, . . . ,xi,k, . . . ,xj,l, . . .) = φ (g−ix0,k, . . . , g−ixi,k, . . . , g−ixj,l, . . .) = φ (x−i,k, . . . ,x0,k, . . . ,xj−i,l, . . .)
(3.9)

The key observation that enabled Objective Molecular Dynamics [DJ07, DJ10] is as follows. The force
on atom (i, k) is fi,k = − ∂φ

∂xi,k
. Starting from the potential energy in (3.9), we perturb atom (i, k) along
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the coordinate direction eα and atom (j, l) along the coordinate direction eβ . Formally, we can write:

φ
(
x0,m, . . . ,xi,k + ε1e

α, . . . ,xj,l + ε2e
β, . . .

)
= φ

(
g−ix0,m, . . . , g−i(xi,k + ε1e

α), . . . , g−i(xj,l + ε2e
β), . . .

)
= φ

(
x−i,m, . . . ,x0,k + ε1Q

T
i eα, . . . ,xj−i,l + ε2Q

T
i eβ, . . .

)
= φ

(
x0,k + ε1Q

T
i eα, . . . ,xn,m, . . . ,xj−i,l + ε2Q

T
i eβ, . . .

)
(3.10)

The calculation is justified as follows: from the first to the third line, we follow precisely (3.9), and in the
last step we simply rearrange the arguments because the energy does not not depend on the labeling of
the atoms.

Setting ε2 = 0 identically and taking the limit of ε1 → 0:

∂φ

∂xαi,k
=

3∑
γ=1

Qαγ
i

∂φ

∂xγ0,k
⇔ fi,k = Qif0,k (3.11)

This transformation law for the force acting on an atom in the unit cell and its images enables the analog
of periodic molecular dynamics in general OS [DJ07, DJ10].

James [Jam06] also noted a similar transformation law for elements of the second derivative (Hessian)
matrix H. Taking the limit consecutively of ε1 → 0 and ε2 → 0:

∂2φ

∂xαi,k∂x
β
j,l

=
∑
γ,η

Qαγ
i

∂2φ

∂xγ0,k∂x
η
j−i,l

Qβη
i ⇔ H(i,k)(j,l) = QiH(0,k)(j−i,l)Q

T
i (3.12)

Note that for a periodic crystal Qi = I for all i, therefore providing the standard relation that H is block
circulant.

The key physical content of (3.12) is that interactions between any pair of atoms in the structure can be
mapped to the interactions between atoms in the unit cell and atoms in some other image cell.

4 Normal Mode Analysis in Objective Structures

We first derive the standard linearized equations of motion in an OS. We then use the properties of the
Hessian from the previous section to achieve a block-diagonalization of the Hessian such that each block
is of size 3M × 3M . Each block is related to the frequency in Fourier space, but the transformation is
not directly from real to Fourier space but goes through an intermediate linear transform.

4.1 Linearized Equation of Motion around an Equilibrium Configuration

Let x̊ = {x̊i,k ; k = 1, . . . ,M ; i ∈ Z3} be the equilibrium configuration. Consider a perturbation ui,k

about this configuration and use a Taylor expansion:

φ(̊x + u) = φ(̊x) +
∑
(i,k)

3∑
α=1

∂φ

∂xαi,k

∣∣∣∣
x̊

uαi,k +
1

2

∑
(i,k)

3∑
α=1

∑
(j,l)

3∑
β=1

∂2φ

∂xαi,k∂x
β
j,l

∣∣∣∣
x̊

uαi,ku
β
j,l + . . . (4.1)
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Since x̊ is an equilibrium configuration, the first derivative does not appear. Neglecting terms higher than
quadratic:

φ(̊x + u) = φ(̊x) +
1

2

∑
(i,k)

3∑
α=1

∑
(j,l)

3∑
β=1

∂2φ

∂xαi,k∂x
β
j,l

∣∣∣∣
x̊

uαi,ku
β
j,l (4.2)

Taking the limit of u→ 0, the force on the atom (i, k) is:

mkü
α
i,k = fαi,k := − ∂φ

∂xαi,k
= −

∑
(j,l)

3∑
β=1

∂2φ

∂xαi,k∂x
β
j,l

uβj,l = −
∑
(j,l)

3∑
β=1

Hαβ
(i,k)(j,l)u

β
j,l (4.3)

In compact matrix form,
Mü = −Hu (4.4)

M and H are the 3MN × 3MN mass and Hessian matrices respectively. Note that M is diagonal and
trivially inverted. So define Ĥ := M−1H.

The linear form of (4.4) implies that solutions are exponentials, i.e., u = û exp(−iωt) where ω is the
angular frequency. Therefore, we seek to solve the eigenvalue problem:

ω2
pû

p = Ĥûp (4.5)

ω2
p and ûp are the eigenvalues and eigenvectors of Ĥ, with p = 1, . . . , 3MN . In generic finite structures,

solving this eigenvalue problem can be computationally demanding. In infinite periodic crystals, Ĥ is
block-circulant as noted above. Consequently, it can be block-diagonalized using the Fourier transform,
thus converting the problem of solving a 3MN system into solving N systems of size 3M . Note that
this is only formally true, because N is infinite in this case; in addition, the Fourier transform enables
more than just computational saving as it provides important physical insights to organize the nominally
infinite number of solutions. Therefore, instead of finding the eigenvalues of a 3MN × 3MN matrix, we
can calculate the eigenvalues of 3M × 3M matrices N times (Appendix B). For an OS however, Ĥ is not
block-circulant. We deal with this in Section 4.2.

4.2 Block-diagonalization for an Objective Structure

As noted immediately above, the Hessian Ĥ in an OS is not block-circulant; however, there is a close
analogy in (3.12), i.e. Ĥ(p,k)(q,l) = QpĤ(0,k)(q−p,l)Q

T
p . As we show below, the linear transformation

defined by the 3MN × 3MN matrix

R(p,k)(q,l) = Qpδpqδkl (4.6)

takes us to the Objective Space in which Ĥ is block-circulant. It is then possible to block-diagonalize Ĥ
using the DFT.

In the one-dimensional case R has the form:

R =


[R00] [0] · · · [0]
[0] [R11] · · · [0]
...

... . . . ...
[0] [0] · · · [R(N−1)(N−1)]

 (4.7)
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We note that one-dimensional does not refer to real-space but rather to the number of slots in the multi-
index that indexes the unit cells.

Each submatrix Rpp is a 3M × 3M block-diagonal matrix

Rpp =


[Qp] [0] · · · [0]
[0] [Qp] · · · [0]
...

... . . . ...
[0] [0] · · · [Qp]

 (4.8)

and each Qj is a 3× 3 orthogonal tensor. R is obviously orthogonal.

Defining û = Rv̂ and substituting this in (4.5), we get

ω2Rv̂ = ĤRv̂⇒ ω2v̂ = RT ĤRv̂ = D̂v̂ (4.9)

where D̂ := RT ĤR is the transformed Hessian matrix. We now show that D̂ is block-circulant. Using
(4.6), we have that:

D̂(p,k)(q,l) = QT
pĤ(p,k)(q,l)Qq (4.10)

Now, substitute (3.12) into (4.10):

D̂(p,k)(q,l) = QT
pQpĤ(0,k)(q−p,l)Q

T
pQq

= QT
0 Ĥ(0,k)(q−p,l)Qq−p

= D̂(0,k)(q−p,l) (4.11)

where we have used (3.7) and Q0 = I.

Therefore, D̂ is block-circulant and can be block-diagonalized by the DFT as described in Appendix B.
Essentially, we use two successive linear transforms to solve

ω2ṽ = D̃ṽ (4.12)

where D̃ is block-diagonal and

ṽ =Fv̂ = FRT û (4.13a)

D̃ =FD̂F−1 = FRT ĤRF−1 = FRTM−1HRF−1 (4.13b)

Since D̃ is block-diagonal, we can simplify the dynamical equation (4.12) to read:(
ω2
)[p]

ṽp = D̃ppṽp (4.14)

where (ω2)
[p] is the eigenvalue corresponding to the eigenvector ṽp. From (B.7) and (4.11)

D̃pp =
∑

r

exp
[
− ikp · yr

]
D̂0r

=
∑

r

exp
[
− ikp · yr

]
Ĥ0rRrr (4.15)

10



Symmetry-Adapted Phonon Analysis of Nanotubes (to appear in J. Mech. Phys. Solids) A. Aghaei, K. Dayal, R. S. Elliott

For the wave vector associated with p, (4.14) gives 3M solutions analogous to the multiple branches in a
phonon spectrum. We index these by ν. The displacement of the atom (q, l) induced by the normal mode
labeled by the wave-vector p and the ν-th branch is obtained by solving for û in (4.13a) and using (B.4)
and (4.6):

û
[p,ν]
(q,l) =

1√
N

Qqṽ
[ν]
(p,l) exp

[
− ikp · yq

]
(4.16)

As can be seen from (4.13b), R acts first on the Hessian matrix Ĥ and “unwraps” the structure by
transforming it to Objective Space. Subsequently, F acts on the unwrapped periodic structure. Therefore
both position vector y and wave vector k are defined in Objective Space. The quantities kp · yq can be
obtained using the standard method for periodic systems outlined in Appendix B.

We summarize the key steps in our algorithm:

1. Calculate Ĥ0r, the Hessian matrix corresponding to interactions between any chosen unit cell,
labeled 0, and the neighboring cells. The size of Ĥ0r is 3M × 3MN .

2. Multiply each vertical block of Ĥ0r by the rotation matrix of that block, i.e. calculate Ĥ0rRrr.

3. Calculate D̃pp =
∑

r exp
[
− ikp · yr

]
Ĥ0rRrr, the dynamical matrix associated with wave

vector kp.

4. Find the eigenvalues, (ω2)
[p,ν], and eigenvectors, ṽ[ν]

p , of D̃pp.

5. The normalized displacement of the atoms are û
[p,ν]
(q,l) = 1√

N
Qqṽ

[ν]
(p,l) exp

[
−ikp ·yq

]
. The wave

vector and the branch number respectively are labeled by p and ν.

5 A Numerical Example: Dispersion Curves of (6, 6) Carbon Nan-
otubes

While the OS framework can be used for nanotubes with any chirality, in this section we focus on (6, 6)
carbon nanotubes to illustrate some typical features of the phonon curves. This particular chirality also
has a small translational unit cell that enables comparisons with standard periodic calculations.

We compare the effect of using four different unit cells.

Choice 1: We use a periodic unit cell with 24 atoms, the smallest number required for periodicity. In OS
terms, the group generators are g1 = identity and a translation g2 = (I|0.246nm e). The phonon
dispersion curves are plotted in Fig. 1a.

Choice 2: We use 24 atoms in the unit cell as in Choice 1, but in this case the images are related not
by periodicity but by both translation (along e) and rotation (around e). The generators are g1 =
identity and a screw g2 = (Rπ/3|0.246nm e). The phonon dispersion curves are plotted in Fig. 1b.

Choice 3: We use 12 atoms in the unit cell, with generators closely related to Choice 2: g1 = identity
and a screw g2 = (Rπ/6|0.123nm e) The phonon dispersion curves are plotted in Fig. 2.

11
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Choice 4: We make full use of the OS framework and use 2 atoms in the unit cell1. The generators
are g1 = (Rπ/3|0) and g2 = (Rπ/6|0.123nm e). In Choices 1, 2, 3, the wavevector was one-
dimensional because the structure was indexed by a single index (not a triple-valued multi-index).
In this case, the wavevector is two dimensional, but takes only 6 discrete values in the direction
corresponding to the rotation. This is because once we raise the rotation to the 6-th power, we start
over; conceptually, this is similar to a finite ring of atoms that has a finite set of normal modes. The
phonon dispersion curves are plotted in Fig. 3.

Comparing the plots in Fig. 1 shows, as expected, that there is a mapping between the plots obtained
from Choices 1 and 2. Any eigenvalue in one is also present in the other, though typically at a different
wavevector. Further, comparing Figs. 1b and 2, shows that if we unfold the curves of Fig 1b we will
recover Fig. 2. Similarly, Fig. 3 contains all the information, but in a much simpler description.

The OS description with 2 atoms per unit cell provides a useful perspective to examine the deformations.
First, consider the case when the component of the wavevector in the discrete direction is 0. Each unit
cell in the cross-section has the same displacement (in Objective Space) in the direction that corresponds
to the discrete component of the wavevectors. Roughly, this corresponds to “cross-sections” that retain
their “shape” and remain circular. The lowest three modes corresponding to k2 = 0 and k1 ≈ 0 are
plotted in Fig. 4.

Next, consider the case when k2, the component of the wavevector in the discrete direction, is non-zero.
In this case, the cross-sections no longer remain circular. Fig. 5 shows examples of these modes. Notice
the relation between k2 and the symmetry of the cross-section.

Fig. 6 shows an assortment of generic phonon modes at finite wavevectors.

5.1 Density of States (DoS) of a (6, 6) carbon nanotube

The density of states (DoS) of a system is an important thermodynamic quantity. It describes the num-
ber of modes or states available per unit energy (or frequency) at each energy level. The DoS can be
calculated by making a histogram of the phonons frequencies of the system. Fig. 7 shows the DoS of a
(6, 6) carbon nanotube constructed using Choices 1 and 4 for the unit cell. As expected, these curves are
identical but the OS approach requires much less computational effort.

1OS constructed by non-commuting groups can describe carbon nanotubes with 1 atom per unit cell, but the complexity
introduced by the non-commuting elements is formidable.
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Figure 1: Dispersion curves of a (6, 6) carbon nanotube for (a) Choice 1 and (b) Choice 2. The wavevector
is normalized by the length of the translation vector 0.246nm in g2. The large number of phonon curves
that have equal and opposite slopes at the right edge of the plots (i.e. “folded over”) are a signature of the
large unit cell.
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Figure 2: Dispersion curves of a (6, 6) carbon nanotubes using Choice 3. The wavevector is normalized
by the length of the translation vector 0.123nm in g2. The band-folding shows that our unit cell still has
unused symmetries.
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Figure 3: Dispersion curves of a (6, 6) carbon nanotube using Choice 4 with 2 atoms in the unit cell. k1

is the component of the wavevector in the continuous direction and normalized by 0.123nm, and k2 is the
component in the discrete direction and normalized by the approximate perimeter P .
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Figure 4: Phonon modes at k1 ≈ 0 and k2 = 0 using Choice 4. (a) The undeformed reference nanotube.
The colors of the atoms are only to enable visualization of the deformation. (b) The lowest branch
corresponding to twisting. (c) The next-to-lowest branch corresponding to axial elongation. (d) The
third-from-lowest branch corresponding to a change in radius. In each of these deformations, the cross-
section remains circular.
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Figure 7: Density of states of a (6, 6) nanotube.

6 Long Wavelength and Rigid Body Modes for Carbon Nanotubes

In a 3D periodic crystal lattice, the lowest three eigenvalue branches tend linearly to 0 as k → 0. These
acoustic modes correspond to uniform deformations with rigid body translation modes as the limit de-
formation. We find unusual contrasts with the crystal case when we apply this to carbon nanotubes. We
find rigid body (zero energy) motions at both zero and finite wave vectors; in addition, we find that the
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(a)
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(c)
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Figure 5: Some long-wavelength modes at finite k1 and k2 using Choice 4 (Fig. 3). The symmetry of
the cross-section corresponds to the value of the discrete component of the wavevector. (a) Mode from
second branch at k1L0/π = 1/6 and k2P/π = 1/3, similar to warping, (b) Mode from first branch at
L0k1/π = 1/3 and Pk2/π = 2/3, (c) Mode from first branch at k1L0/π = 1/2 and Pk2/π = 1, (d)
Mode from first branch at L0k1/π = 2/3 and Pk2/π = 4/3, (e) Mode from first branch at L0k1/π = 5/6
and Pk2/π = 5/3.

Figure 6: An assortment of phonon modes at finite wavevectors. First figure is the reference state. The colors of
the atoms have no significance and are only to enable easy visualization.
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long-wavelength deformation corresponding to uniform radial expansion costs finite energy in real-space
even in the limit of k → 0, thereby giving only two eigenvalue branches that tend to 0. The essential
explanation for these observations is that long-wavelength is now defined with respect to objective space
and not real space, whereas rigid-body modes are posed in real space for physical reasons.

We first outline this issue using as an example the choices of unit cell from Section 5.

In Choice 1, four branches start from the origin, Fig. 1a. These correspond to (i) axial stretch / translation
with uniform motion along e, (ii) twist / rotation with uniformly tangential motion, and (iii) bending /
translation in the plane normal to e. The bending mode is characterized by two degenerate branches
with zero slope. The degeneracy is due the subspace of translations in the plane being two-dimensional
[ADE].

In Choice 2, Fig. 1b, only two branches start from the origin. One corresponds to axial stretch / elon-
gation, and the other one corresponds to twist / rotation. There is a branch that has zero frequency at
kL0/π = 1/3. This corresponds to the rigid translation modes in the plane normal to e, as we examine
below.

Choice 3, Fig. 2, is very similar to Choice 3, except that the branch with zero frequency at finite wavevec-
tor now goes to zero at kL0/π = 1/6. We recall that that L0 differs in Choices 2 and 3 precisely by a
factor of 2, therefore this shift is simply because of unfolding the band diagram.

Choice 4, Fig. 3, shows the rigid translation modes at k2P/π = 1/3. In addition, for k2P/π = 0, we see
only two branches that go to 0 as the wavevector tends to zero; the lowest non-zero branch corresponds
to uniform radial motion of the atoms. Because every unit cell has precisely the same deformation (in
Objective space), this appears at k→ 0. In addition, because the atoms within the unit cell do not move
relative to each other, this corresponds to the acoustic modes that are zero energy at zero wavevector in
crystals. The three higher branches at zero wavevector have the atoms in the unit cell moving with respect
to each other, i.e. optic modes, and these are expected to have finite energy at zero wavevector.

6.1 Long Wavelength Modes in Objective Space

A long wavelength mode in Objective Space corresponds to k → 0. However, uniform deformations or
their limiting rigid body translation / rotation modes, do not have as close a correspondence with long
wavelengths as in crystal, because of the intermediate transformation to Objective space. Consider a
deformation induced by a normal mode, with the displacement in real space of atom (i, j) denoted by
u(i,j). Denote the corresponding displacement in Objective space by v(i,j). For a normal mode with
wavevector k0, if we set that the displacements in Objective space of corresponding atoms in every unit
cell are the same, i.e. v̂(p,m) = v̂(q,m) for every (p,m) and (q,m), then the DFT from Appendix B gives:

ṽ(j,m) exp
[
− ikj ·yp

]
= ṽ(j,m) exp

[
− ikj ·yq

]
⇒ ṽ(j,m) = exp

[
ikj · (yp−yq)

]
ṽ(j,m) ⇒ k0 = 0 (6.1)

We consider two illustrative modes. Fig. 8 shows schematically the position and displacements move-
ment of atoms in real and Objective space for a rigid rotation mode. Assume that all atoms within the
unit cell translate uniformly, i.e., this is an acoustic-like mode. It is long-wavelength in Objective space,
and rigid body rotation in real space with zero energy in the limit.

Fig. 9 shows schematically the position and displacements movement of atoms in real and Objective
space for a uniform expansion mode. Assume that all atoms within the unit cell translate uniformly,
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Figure 8: A long-wavelength mode that corresponds to rigid rotation and therefore zero energy: (a) A
schematic projection, viewed along the axis, of atomic positions and displacements in real space. All
displacements are tangential. (b) In Objective space, all atoms displace uniformly, i.e., long wavelength.

i.e., this is an acoustic-like mode. In Objective space, this is long wavelength, but in real space this
deformation costs finite energy (proportional to the square of the amplitude) even in the long-wavelength
limit.

Figure 9: A long-wavelength mode that corresponds to uniform expansion rotation and therefore finite
energy: (a) A schematic projection, viewed along the axis, of atomic positions and displacements in
real space. All displacements are radial. (b) In Objective space, all atoms displace uniformly, i.e., long
wavelength.

6.2 Uniform Deformations and Rigid Body Translation in Real Space

We now consider setting up a uniform deformation, or rather the rigid body limiting translation, in real
space and then analyze the wavevector at which it appears.

As above, denote the real-space displacement of atom (p,m) by u(p,m) induced by a normal mode, and
denote the corresponding displacement in Objective space by v(p,m). Consider a rigid body translation
mode in real space, i.e., for any two atoms (p,m) and (q, n), we have û(p,m) = û(q,n). We now find the
wave vector kj that corresponds to this deformation.

Using (4.16):

Qpṽ(j,m) exp
[
− ikj ·yp

]
= Qqṽ(j,n) exp

[
− ikj ·yq

]
⇒ Qp−qṽ(j,m) = exp

[
ikj ·(yp−yq)

]
ṽ(j,n) (6.2)

If p = q, then Q0 = I implying that ṽ(j,m) = ṽ(j,n).
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Now assume r := p− q 6= 0, implying yr = yp − yq, giving the complex eigenvalue problem:

Qrṽ(j,m) = exp
[
ikj · yr

]
ṽ(j,m) (6.3)

Recall that in nanotubes (Appendix A), the orthogonal part of the generators are coaxial and the axis
further coincides with the nanotube axis e. Therefore,

Qr≡(r1,r2) = Rr1
θ1
Rr2
θ2

= Rr1θ1+r2θ2 (6.4)

The eigenvalues of Qr are therefore 1 and e±i(r1θ1+r2θ2), where θ1 and θ2 are the group parameters for the
nanotube (Appendix A).

There are therefore three modes corresponding to rigid body translation:

• λ1 = eikj·yr = 1. Since this holds for all yr, the wavevector kj is zero. The eigenvector ṽ(j,m) will
coincide with e, and from (4.16) it follows that all the atoms will move axially. This mode is rigid
translation in the axial direction.

• λ2 = eikj·yr = ei(r1θ1+r2θ2). From (B.1,B.2), we have that 2π
N1
r1j1 + 2π

N2
r2j2 = r1θ1 + r2θ2 for all

r1 and r2. Therefore, 2πj1
N1

= θ1 and 2πj2
N2

= θ2. That is, the wavevector at which this rigid body
translation occurs is k1 = θ1, k2 = θ2. The eigenvector ṽ(j,m) is orthogonal to the first eigenvector
e. In addition, using Qrṽ(j,m) = eiθṽ(j,m) into (4.16), we find that the nanotube will rigidly translate
in the plane with normal e.

• λ3 = eikj·yr = e−i(r1θ1+r2θ2). As with λ2, the wavevector at which this rigid body translation occurs
is k1 = −θ1, k2 = −θ2. Since the wavevector is meaningful only up to sign, this is essentially the
same. The eigenvector is also orthogonal to e and can be chosen normal to the second eigenvector.

The latter two modes above can alternately be considered as the limiting behavior of rigid rotations
around axes that are perpendicular to e.

The phonon frequency of all of these modes is zero because rigid motions in real-space do not cost energy.
Fig. 10 demonstrates a schematic of a rigid body translation in real space that has finite wavelength in
Objective space. Heuristically, the Objective transformation goes to a space that “unwraps” the structure.

Figure 10: A rigid body translation with zero energy that corresponds to finite-wavelength: (a) A
schematic projection, viewed along the axis, of atomic positions and displacements in real space. (b)
In Objective space, it is not long wavelength.
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7 Phonons and Stability

Phonon analysis provides important insights into the stability of crystals through identifying soft modes,
i.e., non-rigid deformations that cost no energy [Dov93]. In addition, the phonon framework provides
important insights and enables systematic identification of the appropriate larger unit cells at instabilities
[ETS06, EST06]. As discussed in [ETS06], phonon analysis does not provide information about stability
with respect to certain deformation modes; in particular, phonon stability does not test against non-rank-
one modes. The analogy in linear continuum elasticity is that strong ellipticity tests only that waves
speeds are real in all directions and all polarizations. In terms of the stiffness tensor, this does not test
positive-definiteness of the stiffness against all tensors in the 6-dimensional strain space; rather it tests
only against the subspace of strains that are symmetrized rank-one tensors. While phonons do test if
solids are stable to uniform uniaxial extensions in every direction, they do not test if they are stable to
superpositions of these, such as biaxial and triaxial stretch. Because the Fourier transform does not exist
for the limit deformation, superposing modes and taking the limit is not equivalent to taking the limit and
then superposing.

We also note that phonons test only the material stability but not against structural instabilities such as
buckling [GMT93]. Structural instabilities are typically very sensitive to boundary conditions, e.g. the
elementary Euler buckling loads. Testing the linear stability of an atomic structure against structural
modes requires, in general, the brute-force solution of the full eigenproblem with a very large number of
degrees of freedom.

In this section, we discuss two findings relevant to the role of phonons and stability. First, we discuss
why there do not exist the analog of non-rank one modes in carbon nanotubes. That is, assuming that
all phonon branches are positive, and in addition those branches that tend to 0 at long wavelength have
positive slope (in the case of twisting and axial extension) or have positive second derivative (in the
case of bending), then the nanotube is stable under any combination of these. In other words, a positive
torsional modulus, extensional modulus, and bending modulus, do imply, unlike crystals, that they are
stable under any combination of torsion-extension-bending. The second finding that we discuss is a
numerical study of torsional buckling using two unit cells, one with 456 atoms and another with 24
atoms. As the former choice has much more freedom in deforming, we see torsional instabilities. With
the latter choice, we find a signature of this instability in terms of zero phonon frequencies; in addition the
eigenmode corresponding to the zero frequency predicts the nature of the instability. This also displays an
important calculation that is enabled by the OS framework: torsion is simply not possible with periodic
boundary conditions.

7.1 Stability Under a Combination of Long-wavelength Modes

The fact that there do not exist analogs of non-rank one modes in carbon nanotubes is made clear by
the use of the OS framework. The OS description shows that nanotubes are one-dimensional in an
essential way, in particular, the wavevector has only one continuous component. This enables a simple
calculation to show that any superposition of twisting, extension and bending must be stable, if they are
each individually stable.

First, we make a note about bending of nanotubes. As shown in [DEJ], a nanotube that bends does not
remain an OS if the the group description has no generators that are translations. The difficulty with this
situation is that atomic environments are no longer related, and in particular a theorem by James [Jam06]
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that equilibrium of single unit cell implies equilibrium of the OS is not valid. Therefore, in such a group
description, it is not possible to define a bending modulus since this requires microscopic equilibrium to
be meaningful. Alternately, any nanotube, even if chiral, can be described by a translational unit cell,
though this cell may be very large. In this description that includes a translational generator, bending
is well-defined. Essentially, it corresponds to the non-identical environments of atoms being replaced
by a large unit cell in which atoms relax in possibly non-uniform ways. However, an important feature
of this OS description is that bending now occurs at k → 0. The net result is that either the bending
modulus cannot be defined, or if it can be defined then bending occurs at k → 0. This is important for
our calculation below.

In a 2D Bravais lattice, phonon stability tests deformations of the form

lim
k1→0,k2=const.

A1(k)eik1x1 , and lim
k2→0,k1=const.

A2(k)eik2x2

Here A1 and A2 are arbitrary vectors; because of linearity, we can decompose them to correspond to
polarizations of the appropriate normal modes that propagate in the same direction. Therefore, e.g., we
are assured of the stability of any superposition of homogeneous shear and extension only when they
are the limit of phonons that propagate in the same direction, if the component phonons are themselves
stable. However, phonon stability cannot say anything about modes that involve deformations that are
superpositions of phonons that propagate in different directions, i.e., a deformation of the form

lim
k1→0,k2→0,k1/k2=const.

A1(k)eik1x1 + A2(k)eik2x2

For example, uniaxial stretch in each coordinate direction can be tested by the individual limits, while
biaxial deformation requires the composite limit that cannot be achieved by superposing the individual
limits.

In nanotubes, we only have a single continuous component of the wavevector. Therefore, all lim-
its are with respect to only that component. If deformations of the form lim

k→0
Aj(k)eiky are stable,

where Aj corresponds to axial stretch, twist, or bending, then it follows that deformations of the form
lim
k→0

∑
j

Aj(k)eiky are also stable simply by superposition. Physically, if we have positive bending stiff-

ness, positive torsional stiffness, and positive extensional stiffness, the nanotube is stable to any combi-
nation of bending, torsion, and elongation.

7.2 Torsional Instabilities of Nanotubes

Soft-mode techniques to detect instabilities at the crystal-level have a long history in mechanics, as far
back as [HM77]. Recently, they have been combined with bifurcation techniques to understand structural
transformations in shape-memory alloys [ETS06]. They have also proved useful in understanding defect
nucleation and propagation at the atomic scale, e.g. [MR08, LD11, DB06].

We numerically study the torsional instability of a (6, 6) carbon nanotube using both phonons and (zero
temperature) atomistics. Phonons in principle test the stability of a large system efficiently, while atom-
istics requires us to use large unit cells if we are to capture complex instabilities. We find that phonon
stability provides an accurate indicator of the onset of the instability as well as the initial post-instability
deformation.
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We use two different unit cells, one with 24 atoms and the other with 456 atoms. The smaller unit cell
requires OS group generators given by g1 = (R2π/3|0) and g2 = (Rπ|0.75nm e) and is shown in Fig. 12.
The larger unit cell requires a single translational generator, g1 = (I|4.8nm e).

For both choices, we apply a small increment of twisting moment, equilibrate, and repeat the process.
For the smaller unit cell, we additionally test the phonon stability by computing the phonon frequencies
at each load step. The twisting moment vs. twist angle and lowest eigenvalue vs. twist angle are plotted
in Fig. 11. In the atomistic simulations, the larger unit cell buckles at much lower twist angle (about
5◦/nm) compared to 12◦/nm for the smaller unit cell. However, the phonon analysis of the smaller unit
cell indicates that an eigenvalue becomes negative at about 5◦/nm. This is consistent with the onset of
buckling for the larger unit cell. Additionally, the eigenmode corresponding to the negative eigenvalue
matches with buckling mode of the long tube computed directly from atomistics. The atomic deformation
corresponding to the eigenmode is plotted in Fig. 12, along with phonon spectra before and at the point
of instability.

This calculation also provides a method to test for one possible route to failure for the OS analog of the
Cauchy-Born rule. Specifically, loss of phonon stability is an indicator that the unit cell must be enlarged,
i.e. affinely applied far-field boundary conditions do not give affine deformations of each unit cell [FT02].

Figure 11: Left: Twisting moment vs. twist angle using atomistics. Right: Lowest eigenvalue vs. twist
angle for the smaller unit cell.

8 Energy Transport in Helical Objective Structures

Motivated by the features of the computed phonon curves in nanotubes, in this section we present a sim-
plified geometric model that aims to capture the key physics of energy transport. The model is based on
a balance between energy transport along a helical path and energy transport along an axial path. In an
“unwrapped” helix, the former corresponds to transport through short-range interactions, i.e. the interac-
tions are between neighbors that are nearby in terms of the labeling index, and the latter corresponds to
long-range interactions, i.e. the interactions are between distant atoms in terms of the labeling index. Of
course, in physical space, both these types of neighbors are at comparable distances, and interactions are
therefore of comparable strength.

We begin by examining the phonon curves of nanotubes (m,n) where m and n are relatively prime. As
noted in Appendix A, this implies that a single screw generator is sufficient to describe the nanotube
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Figure 12: Phonon stability analysis. Top left: ten lowest modes for the untwisted nanotube. Top right:
ten lowest modes just after the lowest eigenvalues becomes negative. The value of the discrete wavevector
is 2/3π. The twist angle at this state is about 5◦/nm. The mode going to 0 in both plots corresponds to
long-wavelength bending. Bottom: the eigenmode corresponding to the zero eigenvalue. This shows the
deformation predicted by phonon analysis to have zero energy. Light blue atoms denote a single unit cell.
The colors are only to aid visualization.

with 2 atoms per unit cell. Figs. 13 and 14a show the dispersion curves of unloaded (11,9) and (7,6)
nanotubes respectively. The rotation angles of the screw generator are θ1 = 271π

301
≈ 0.9003π and θ1 =

39π
127
≈ 0.307π, respectively. As discussed in previous sections, two branches corresponding to torsion

and axial elongation start from the origin, and one branch touches the k axis at precisely θ1. We mention
that if we had used the periodic description for these nanotubes, we would require at least 1204 and 508
atoms in the unit cell for the (11, 9) and (7, 6) nanotubes respectively. Besides the significantly larger
computational expense, it would imply that Figs. 13 and 14a contain 3612 and 1524 curves respectively!
Physical interpretation would be impossible.

The key features of interest here are the “wiggles” in the phonon curves in Figs. 13 and 14a. There
exist certain distinguished wavevectors at which the group velocity (i.e. slope of the dispersion curve)
becomes zero in all branches. These wavevectors are primarily selected by geometry: Fig. 14 compares
the curves for a (7, 6) nanotube both with no load as well as with compressive axial force and nonzero
twisting moment. In addition, the phonon curves depend on the specific interatomic potential, but we
have found that the distinguished wavevectors have a very weak dependence. Similar wiggles, though
not as prominent are also visible in Fig. 3 for a (6, 6) nanotube. Since the group velocity gives the
speed of energy transport, there is no energy transport at these distinguished wavevectors. These obser-
vations motivate a geometric model for the energy transport that neglects much of the complexity of the
interatomic potential.

24



Symmetry-Adapted Phonon Analysis of Nanotubes (to appear in J. Mech. Phys. Solids) A. Aghaei, K. Dayal, R. S. Elliott

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

kL0/π
0

50

100

150

200

250

300

350

400

450

500

ω
 (

1/
p

s)

Figure 13: Dispersion curves of a (11, 9) carbon nanotube. FD contains 2 atoms.

8.1 A Simplified One-Dimensional Nonlocal Model for Helical Objective Struc-
tures

The key idea is that when a helix is plotted in a space that uses the path length along the helix as the
coordinate, there are short-range interactions that are due to neighbors along the helix in real space, and
there are long-range interactions due to interactions between neighbors that lie above on the next loop in
real space. Fig. 15 shows a schematic of this geometric picture using a specific example. The goal is
to write down the expression for energy transfer to the atoms with positive labels from the atoms with
non-positive labels. Roughly, we want the energy flux crossing the surface represented by the dashed
line. In real space, the roughly equal-strength bonds that cross the dividing surface are between atom
pairs (0, 1), (0, 6), (−1, 5), (−2, 4), (−3, 3), (−4, 2), (−5, 1). In objective space, only the first of these
bonds is “local” while the others are all “non-local”.

The picture above for a generic nanotube with 2 generators is not essentially different. The Objective
space picture is a set of parallel atomic chains, with infinite length in the direction corresponding to
the powers of the screw generator, but a finite number of parallel chains with the number of of chains
corresponding to the powers of the rotation generator. This can be considered as simply a single linear
chain with an expanded unit cell.

For an OS Ω, we write down the total energy flux ψ from a subbody Ω+ to Ω− := Ω \ Ω+ over a time
interval T :

ψ =

∫ t+T

t

∑
(p,m)∈Ω+

∑
(q,n)∈Ω−

u̇(p,m) · f(p,m)(q,n)dt (8.1)

The superposed �̇ represents the time derivative. The term f(p,m)(q,n) is the force between the atoms
(p,m) and (q, n); while this is not always a uniquely-defined quantity in multibody potentials, in a
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Figure 14: Dispersion curves of a (7, 6) carbon nanotube. FD contains 2 atoms. (a) relaxed nanotube (b)
compressed and twisted nanotube.
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Figure 15: A schematic of the of the geometric model for energy transport (a) In real space (b) In
Objective space. The energy flow to be analyzed takes place across the bold dashed line, i.e., how much
energy do subunits 0,−1,−2, . . . transfer to the subunits 1, 2, 3, . . .. The subunits can correspond to
individual atoms or sets of atoms.

linearized system this is simply f(p,m)(q,n) := H(p,m)(q,n)

(
u(p,m) − u(q,n)

)
.

We now compute the energy flux for a single phonon mode u(p,m) = Qpûm cos(k · yp − ωt+ ϑ) where
ϑ is a phase that eventually gets integrated out and disappears. We set the averaging interval to a single
cycle, i.e., T = 2π/ω. The energy flux is therefore

ψ = ω

∫ t+T

t

∑
(p,m)∈Ω+

∑
(q,n)∈Ω−

[
Qpûm sin(k · yp − ωt+ ϑ) ·H(p,m)(q,n)·

(Qpûm cos(k · yp − ωt+ ϑ)−Qqûn cos(k · yq − ωt+ ϑ))

]
dt

(8.2)
Using (3.12), we have that

ψ =
ω

2

∫ t+T

t

∑
(p,m)∈Ω+

∑
(q,n)∈Ω−

ûm ·H(0,m)(q−p,n)ûm sin
(
2k · yp − 2ωt+ 2ϑ

)
dt

− ω

2

∫ t+T

t

∑
(p,m)∈Ω+

∑
(q,n)∈Ω−

ûm ·H(0,m)(q−p,n)Qq−pûn

[
sin
(
k · (yp + yq)− 2ωt+ 2ϑ

)
− sin

(
k · (yp − yq)

)]
dt (8.3)

Since the integrals are over a complete period T = 2π/ω, all terms of the form sin(. . .− 2ωt . . .) vanish.
Using (4.10), this simplifies to:

ψ = π
∑

(p,m)∈Ω+

ûm ·
∑

(q,n)∈Ω−
D̂(0,m)(q−p,n) sin

(
k · (yp − yq)

)
ûn (8.4)

Now consider a nanotube with two generators, i.e. a pure rotation generator with rotation angle θ2 =
2π/N2, and a screw generator with the rotation component associated to an angle−π < θ1 ≤ π. Consider
the flow of energy across a surface that divides the OS into Ω− = {q : q1 ≤ 0} and Ω+ = {q : q1 > 0},
where the first slot in the multi-index corresponds to the screw and the second slot corresponds to the
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rotation. Then we can write:

ψ = −π
∑
m,n

ûm ·

[
N2−1∑
q2=0

∑
q1≥1

q1D̂(0,m)(q,n) sin(k1q1 + k2q2)

]
ûn (8.5)

Note that the factor of q1 appears in the sum because, in an OS, various atomic bonds are symmetry-
related and therefore the sum need not run over these bonds.

The component k2 of the wave vector corresponds to the pure rotation generator. Therefore, it takes only
the discrete values k2 = 2πj/N2, j = 0, · · · , N2 − 1.

At this point, the model is nominally exact. Our interest however is in a minimal model that captures the
important features. In terms of energy transport, the wiggles in the phonon spectrum are of primary inter-
est. We now make extremely harsh simplifying approximations on the nature of interactions, but retain
the feature that interactions are non-local in Objective space. We see that this single feature is sufficient
to understand the wiggles. We assume that (i) interactions are only nearest neighbor in real-space, and
(ii) the magnitude of the interactions is the same for all near-neighbors. Under these assumptions, we
search for the values of the wavevector at which ψ = 0.

Consider a (6, 6) nanotube (N2 = 6 in this case). The bonds that connect Ω+ and Ω− under the assump-
tions above are (0, j)–(1, j) and (0, j)–(1, (j + 5) mod 6) for j = 0 . . . 5. These are all near-neighbors
both in real and Objective space. Equation (8.5) specializes to:

6 (sin(k1) + sin(5k2 + k1)) = 0⇒ 2 sin(k1 + 2.5k2) cos(2.5k2) = 0 (8.6)

Hence, for k2 = 2πj/6, j = 0, . . . , 5, the solution is k1 = π
(
r − 5j

6

)
, r ∈ Z. These values match exactly

with with the zero-slope points in Fig. 3. In addition, there are no wiggles because all interactions are
local in Objective space.

Now consider a (7, 6) nanotube. Here N2 = 1 so there is only a single index. The nearest neighbors of
the 0 unit cell are 6, 7, 13 and all of these are non-local in Objective space. Equation (8.5) specializes to:

6 sin(6k1) + 7 sin(7k1) + 13 sin(13k1) = 0 (8.7)

Numerically solving this gives the wavevectors
π×{0.000, 0.102, 0.154, 0.206, 0.307, 0.404, 0.463, 0.520, 0.614, 0.703, 0.771, 0.839, 0.921, 1.000}. This
matches extremely well with Fig. 14, with relative error of the order 10−7.

We next consider a (11, 9), also with N2 = 1. The nearest neighbors of the 0 unit cell are 9, 11, 20 and
all of these are non-local in Objective space. Therefore,

9 sin(9k1) + 11 sin(11k1) + 20 sin(20k1) = 0 (8.8)

Numerically solving for the wavevectors of the wiggles, we find
π × {0.0, 0.066, 0.101, 0.134, 0.199, 0.260, 0.301, 0.342, 0.398, 0.452,
0.501, 0.552, 0.598, 0.643, 0.70, 0.762, 0.798, 0.836, 0.900, 0.967, 1.0}. This again matches extremely well
with the full calculation in Fig. 13, with relative error on the order of 10−8.

Finally, we compute the phonon spectra for two nanotubes with different aspect ratios using model inter-
atomic potentials, Fig. 16. For the stubby helix, we find prominent wiggles as expected from our model
that nonlocal interactions are important. For the slender helix, it behaves almost like a near-neighbor
chain with no long-range interactions as we expect.
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Figure 16: Energy transport in helices with different aspect ratios using model interatomic potentials.
The red atoms are the near-neighbors of the blue atom in real-space. In the slender helix, there is no
long-range interaction and it behaves like a 1D chain. The stubby helix has long-range interaction and
has prominent wiggles in the phonon spectrum.

9 Discussion

We have formulated a method to compute and understand phonon spectra in Objective Structures; this
includes a broad class of complex nanostructures. The use of the OS formulation enables important
advantages. For instance, it is easy to apply complex loads such as torsion. The framework also enabled
us to draw the important conclusion that there is no analog of “non-rank-one” instability in nanotubes,
i.e., a nanotube that is linearly stable to bending, twisting and elongation individually applied is linearly
stable to any superposition of these.

The OS framework also provided a physical interpretation of the computed phonon spectra, thus enabling
the construction of the simplified geometric nonlocal model for energy transport. The primarily geometric
nature of the model enables it to be potentially applicable broadly to rod-like helical OS, e.g. biological
systems such as DNA. The simplified model shows an interesting equivalence between curvature and
non-locality; a similar equivalence also appears in understanding the kinetics of phase transformations at
the atomic level [LD]. In addition, the model predicts well the interplay between axial and helical energy
transport mechanisms, in particular the critical points at which these mechanisms destructively interfere
have no transport.
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discussions.

A Relation between Objective group generators and carbon nan-
otube geometry

Consider a carbon nanotube with chiral indices (m,n) and axis e centered at the origin. Following [DEJ],
we have the following relation between the group generators and the geometry of the carbon nanotube
when we use a 2-atom unit cell:

g1 = (Rθ1|0), Rθ1e = e, 0 < θ1 =
2πmin (|p|, |q|)

GCD(n,m)
≤ 2π

g2 = (Rθ2|κ2e), Rθ2e = e, θ2 = π
p(2n+m) + q(n+ 2m)

n2 +m2 + nm
, κ2 =

3l0 GCD(m,n)

2
√
n2 +m2 + nm

(A.1)

Rθ is a rotation matrix with axis coinciding with e and rotation angle θ. The quantity l0 = 0.142nm is the
bond length of the graphene sheet before rolling. The integers p and q satisfy pm − qn = GCD(m,n),
where GCD(m,n) is the greatest common divisor of m and n.

The radius of the nanotube is r = l0
2π

√
3(n2 +m2 + nm) and the positions of the atoms in the unit cell

are:

x(0,0),1 =re1

x(0,0),2 =r cos

[
π(n+m)

n2 +m2 + nm

]
e1 + r sin

[
π(n+m)

n2 +m2 + nm

]
e2 +

l0(m− n)

2
√
n2 +m2 + nm

e (A.2)

where (e, e1, e2) are orthonormal.

Note that if m and n are relatively prime, i.e. GCD(m,n) = 1, then θ1 = 0 and g1 reduces to the identity.

B The Discrete Fourier Transform and Block-Diagonalization of
Hessians of Periodic Crystals

In this appendix, we rewrite the standard Discrete Fourier Transform (DFT) in the notation of matrices
and apply this to block-diagonalize the Hessian of a periodic crystal. This enables a conceptual under-
standing of the relation between block-diagonalization in crystals and OS.

B.1 Discrete Fourier Transform and its Properties

Consider a space with coordinate y. Define the points yp:

yp =y(p1,p2,p3) = p1a1 + p2a2 + p3a3 (B.1)

where a1, a2, a3 is a basis for the space.
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Consider a family of periodic functions ûp,l that are defined at yp, with the family indexed by l. Phys-
ically, these correspond to the displacement of the atom l in the unit cell at yp. From the periodicity, it
follows that ûp+N,l = ûp,l, where N := (N1, N2, N3) defines the periodicity.

Define the reciprocal basis through aα · bβ = δαβ and the wave vectors as

kq =k(q1,q2,q3) =
2πq1

N1

b1 +
2πq2

N2

b2 +
2πq3

N3

b3 (B.2)

It follows that kq · yp = 2π
N1
p1q1 + 2π

N2
p2q2 + 2π

N3
p3q3, or in one-dimension kq · yp = 2π

N
pq.

These imply that kq · yp = kp · yq. It also follows that exp[ikq · y0] = exp[ikq · yN] = 1 and that∑N−1
j=0 exp[ikp · yj] exp[−ikq · yj] = Nδpq. As we see below, exp[ikp · yq] are the components of

the basis vectors of the eigenspace of a circulant matrix, and are closely related to the eigenspace for a
block-circulant matrix.

The DFT is defined as
ũαp,l =

1√
N

∑
q

exp[ikp · yq]ûαq,l ⇔ ũ = Fû

where N = N1N2N3 and F is the DFT matrix which is independent of l and α. The inverse DFT is

ûαp,l =
1√
N

∑
q

exp[−ikq · yp]ũαq,l ⇔ û = F−1ũ (B.3)

This enables us to now represent the standard DFT in terms of matrix notation. For simplicity, consider a
one-dimensional problem, i.e. p = (p, 0, 0) and q = (q, 0, 0), and p and q run over the integers between
0 and N − 1. The matrix F can be expressed as

F =


[F00] [F01] · · · [F0(N−1)]
[F10] [F11] · · · [F1(N−1)]

...
... . . . ...

[F(N−1)0] [F(N−1)1] · · · [F(N−1)(N−1)]

 (B.4)

and each sub-matrix of F is a 3M × 3M matrix and defined as [Fpq]mn = 1√
N

exp[ikp · yq]δmn.

The inverse of the Fourier transform matrix F−1 is defined as

F−1 =


[F−1

00 ] [F−1
01 ] · · · [F−1

0(N−1)]

[F−1
10 ] [F−1

11 ] · · · [F−1
1(N−1)]

...
... . . . ...

[F−1
(N−1)0] [F−1

(N−1)1] · · · [F−1
(N−1)(N−1)]

 (B.5)

where [F−1
pq ]mn = 1√

N
exp[−ikq · yp]δmn.

With these definitions, F−1 = F†, where † represents the adjoint, and therefore F is unitary.
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B.2 Block-Diagonalization of a Block-Circulant Matrix using the Discrete Fourier
Transform

Consider a block-circulant matrix, i.e. Apq = A0(q−p), as arises in periodic crystals. The DFT provides
the block-diagonal matrix Ã = FAF−1.

Ãpq =
∑
m

∑
n

FpmAmnF
−1
nq

=
∑
m

∑
n

( 1√
N

exp[ikp · ym]I
)
Amn

( 1√
N

exp[−ikq · yn]I
)

=
1

N

∑
m

∑
n

exp
[
iym ·

(
kp − kq

)]
exp

[
− ikq ·

(
yn − ym

)]
Amn

=
1

N

∑
m

∑
n

exp
[
iym ·

(
kp − kq

)]
exp

[
− ikq ·

(
yn − ym

)]
A0(n−m) (B.6)

Relabeling r = n−m, we can write yr = yn − ym.

Ãpq =
1

N

∑
m

∑
r

exp
[
iym ·

(
kp − kq

)]
exp

[
− ikq · yr

]
A0r

=
∑

r

exp
[
− ikq · yr

]
A0rδpq (B.7)

using that
∑N−1

j=0 exp[ikp · yj] exp[−ikq · yj] = Nδpq. Therefore, Ã is block-diagonal. Further, since
FF† = I, we have

Aw = λw⇒ FAF†Fw = λFw⇒ Ãw̃ = λw̃ (B.8)

Consider the specific case of the eigenvalue problem (4.5) in a periodic crystal where Ĥ is a block-
circulant matrix. From (B.7), H̃ is block-diagonal and consequently the eigenvalue problem can be
expressed as (ω2)

[p]
ũp = H̃ppũp, where H̃pp =

∑
r exp

[
− ikp · yr

]
Ĥ0r.

For each p, corresponding to a specific wave-vector k in (B.1,B.2), we obtain 3M eigenvalues and
eigenvectors corresponding to the different phonon branches. Denote each branch by ν = 1, · · · , 3M ,
so we can write (ω2)

[p,ν]
ũ

[ν]
p = H̃ppũ

[ν]
p . In real-space, the atomic displacements corresponding to the

normal mode with wave vector kp and ν-th branch is û
[p,ν]
q,l = 1√

N
exp[−ikp · yq]ũ

[ν]
p,l.
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