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Abstract

The Peach-Koehler expression for the stress generated by a single (non-planar)
curvilinear dislocation is evaluated to calculate the dislocation self stress. This is
combined with a law of motion to give the self-induced motion of a general dislocation
curve. A stability analysis of a rectilinear, uniformly translating dislocation is then
performed. The dislocation is found to be susceptible to a helical instability, with
the maximum growth rate occurring when the dislocation is almost, but not exactly,
pure screw. The non-linear evolution of the instability is determined numerically, and
implications for slip band formation and non-Schmid behaviour in yielding discussed.
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1 Introduction

A fundamental, unsolved, and old question of plasticity theory is, as stated by Mott [25],
“why the deformation of a crystalline substance is not uniformly distributed through it . . .,
but is localized in slip bands.” The first observations revealing the details of slip band mi-
crostructures are those of Heidenreich and Shockley [17] and Brown [7] in pure Aluminium
(which has high stacking fault energy and therefore no dislocation dissociation into partials).
The basic observation is the occurrence of parallel slip planes 200-800Å apart on which slip
takes place. Brown [7] defines the traces of these planes on observation surfaces as elementary
slip lines, the regions they separate as lamellae, and separated clusters of elementary slip
lines as slip zones. Across each slip plane, the amount of slip (displacement discontinuity)
is ∼ 2000Å. In the early parts of deformation, these elementary slip lines cluster together
in well-separated zones, which merge with the progress of deformation. To our knowledge,
there does not exist a theoretical explanation of the phenomenon described above. In this
paper we suggest one, with quantitative estimates of the thickness of the lamellae. In our
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picture, the phenomenon is linked to a generic, but crucially 3-d, instability of a single dislo-
cation line which can cross-slip onto the primary slip plane when close to screw orientation.
Interestingly, the criterion for instability involves more than the resolved shear stress on
the primary plane in which slip progresses, analogous to the macroscopic phenomenon of
non-Schmid behavior in yielding. In a sense to be made precise, the dynamics also selects
the primary planes on which slip occurs to be the ones on which the resolved shear stress
is maximised: this information is not put into the model a priori. Curiously, our prediction
of slip band microstructure is truly dynamical in nature and independent of considerations
of non-convex incremental energy minimisation as proposed by Ortiz and Repetto [26] and
the large body of work engendered by it. The physical mechanism behind the Ortiz-Repetto
model is strong latent hardening; ours is complementary to this picture, being based in
cross-slip. We note here the earlier work on macroscopic strain localisation in single crystals
via cross slip by Asaro and Rice [4], albeit for a different stage of deformation. Asaro and
Rice [4] suggest, based on earlier work of Rice [28], that “there is strong theoretical basis
for a wider exploration of cross-slip and similar processes as a basis for localization, via
the destabilizing effect of non-normality.” Based on our analysis of a particular dislocation
instability, we contribute to this exploration by motivating a possible microscopic basis for
such non-associated flow.

Chapman and Richardson [14, 13, 15, 29] present and discuss a vortex-density model of
superconductivity with a conservation law for the vortex density which has strong similari-
ties with the evolution equation for Nye tensor density in the Field Dislocation Mechanics
(FDM) model of Acharya [1]. It is shown in these works of Chapman and Richardson that
superconducting vortices are susceptible to a helical instability if a component of the driving
force lies along the vortex line. Such a component produces no motion while the vortex
is straight, but will cause any deviation to grow in time. Given the similarities between
the vortex density model and FDM as far as the evolution of the vortex/dislocation density
fields are concerned, it is natural to probe the existence of a similar instability in FDM.
Despite appearances, it has long been clear that the equations of FDM, under appropriate
assumptions, can reproduce the equations of motion of discrete dislocations; in the context
of the vortex density model, Richardson [29] explicitly shows how to transform the evolution
of a vortex within the density model as the evolution of a single curve. We utilise exactly
the same idea in this paper, and our analysis, while motivated from the similarities between
the vortex density model and FDM, can just as well be interpreted as an analysis of the 3-d
Discrete Dislocation Method [23, 2]. Our initial thoughts were that dislocations may not be
susceptible to the same helical instability except when climb is allowed (high temperature),
since, unlike superconducting vortices, they are more or less required to move in a slip plane.
However, we will see that the helical instability does manifest itself in the dislocation case,
with the evolution proceeding via cross slip onto many slip planes.

The remainder of the paper is organised as follows. In Section 2 we review the Peach-Koehler
expression for the force produced by a general curvilinear dislocation. We asymptotically
expand this expression as the dislocation line is approached to find the local self force. We
then introduce a law of motion which allows for but severely impedes climb. This device
allows us to describe cross slip and the preferred active slip planes arise naturally as those
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with maximum resolved shear stress.

For analytical tractability, we do not include crystallographic constraints and require only
that a point along the dislocation curve which is of edge character has a velocity vector in
the plane spanned by its Burgers vector and the tangent direction to the curve. When it is
close to screw orientation the velocity vector is allowed to be in any direction, i.e. during
cross slip there is no preferred direction built into the model for the orientation of the cross
slip plane and dislocation dynamics decides the plane to pick as well as the spacing between
such planes. As mentioned earlier, the planes that are dynamically selected are ones on
which the resolved shear stress is maximised, and it is perhaps natural to expect that this
result will be preserved when the mobility law further constrains the available slip planes for
cross-slip to be the set of crystallographically favoured ones. Of course, a bigger question
is whether the instability is completely suppressed under the imposition of such a mobility
law, and the inability to answer this question with definiteness is a current shortcoming
of our work. Additionally, our model is effectively a line tension model; during non-linear
evolution expanding loops on different slip planes are not spaced very far apart and it will be
important to account for the full stress interaction between such portions of the dislocation
line on different planes. It may be conjectured that this feature will add to the richness of
the problem, perhaps allowing us to predict the spacing between slip zones (cf. Brown [7])
and on to the meso-macro phenomenon of coarse slip bands (Asaro [3], Bassani [5]).

In Section 3 we perform a linear stability analysis to determine the most unstable con-
figurations and the maximal growth rate. In Section 4 we follow the instability into the
non-linear regime numerically. Finally, in Section 5, we present physical interpretations of
our mathematical results vis-à-vis dislocation slip band microstructure formation.

2 Self-induced dislocation motion

We limit ourselves to isotropic materials. The stress field of an arbitrary curved dislocation
was first derived by Peach and Koehler in 1950 [27] by differentiating the components of
displacement as given by Burgers in 1939 [8, 9]. Later Kröner [22], derived the same result
by means of stress functions. The self-induced stress at a point x due to an an arbitrary
curved dislocation is given by

σ = σ1 + (σ1)T + σ2, (1)

where

σ1 =
µ

4π

∫

C

(b ∧∇)
1

Z
⊗ dq, (2)

σ2 =
µ

4π(1− ν)

∫

C

(dq · (b ∧∇)) (∇⊗∇− I∇2)Z, (3)

where b is the Burgers vector, µ is the shear modulus, ν is Poisson’s ratio, I is the identity
tensor, q is a the point on dislocation curve C, z = q− x, |z| = Z, the products ∧ and · are

3



the cross (vector) and dot (scalar) products, ⊗ is the dyadic (tensor) product, and ∇ is the
gradient with respect to q.

Since a dislocation has no mass, it cannot experience a Newtonian force. However, dislo-
cations will move in the presence of an appropriate component of stress. If the total stress
acting on the dislocation is σ, then the work done by it can be thought of arising from a
force per unit length along the dislocation line. With this interpretation Peach and Koehler
[27] find the force per unit length to be given by

f = (σ · b) ∧ l, (4)

where l is the unit tangential vector to the dislocation line.

The motion of a dislocation in response to this force is governed by the mobility law. For
high speed dislocation motion this law will include inertial terms as well as dissipative or
drag terms [18]1. However, we consider here dislocations moving much more slowly than the
elastic wave speed, for which the inertial term is negligible. In this case the law takes the
general form

v = G(f),

for some mobility function G; typically G will be zero for forces f below the Peierls barrier,
and may grow linearly or nonlinearly above it. Here we suppose that the Peierls barrier is
small enough to be neglected, and that the velocity law may be linearised for small applied
forces. This assumption simplifies our discussion, though since our analysis is a perturbation
analysis, the general conclusions should hold also for nonlinear force laws.

For an edge dislocation, slip is much easier than climb, so that the motion is effectively
confined to the glide plane spanned by the tangent and Burgers vector, with a velocity
approximately proportional to the force per unit length. However, for a screw dislocation
the tangent vector and Burgers vector are parallel, so that it may have several glide planes
depending on the crystal structure of the material. In the isotropic continuum model, the
number of glide planes for a screw dislocation can be regarded as infinite; in effect any plane
containing the tangent vector is a potential glide plane.

A common approximation takes the velocity of a dislocation to be proportional to the pro-
jection of the force per unit length onto its glide plane. Since a screw dislocation can have
any glide plane, for a pure screw no projection is necessary. For an edge dislocation the
projection tensor (operator) is I− β ⊗ β where

β =
l ∧ b

|l ∧ b| , (5)

is the unit normal to the glide plane (see Figure 1). Thus, if we write

v = M · f , (6)

1In fact, at very high speeds atomistic simulations show that dislocation motion becomes very rough and
may result in spontaneous self-pinning and the production of large quantities of debris [24]
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where M is the mobility tensor, then

M =

{

mg(I− β ⊗ β) edge,

mgI screw,
(7)

where mg is the (constant) glide mobility, and is generally found to be of the order of
30m MPa−1 s−1 [19]. The actual value of mg is important only in so far as it sets the
timescale for the dislocation motion; it does not affect the qualitative stability properties of
dislocations.

An alternative law in which climb is allowed but difficult was given by [31], who wrote

M =

{

mg(I− β ⊗ β) +mcβ ⊗ β edge

mgI screw
(8)

where mc is the mobility constant for climb, with mc ≪ mg. This definition resolves the
force for an edge dislocation to its glide plane, but keeps the freedom of the motion of a
screw dislocation. However, there are still difficulties with such a law, due to its singular
nature: a pure screw has an isotropic mobility, yet if we add an infinitesimal edge component
we change the mobility drastically. Thus for a curved dislocation on which there is a single
point of pure screw with the remainder mixed, the mobility will have a discontinuity at that
point. The behaviour of the law then crucially depends on the numerical discretisation used:
if the neighbourhood of that point is treated as a small pure screw segment then cross slip
will be allowed, but if there is a small edge component then cross slip will not occur. This
problem is typically solved in discrete dislocation dynamics codes by allowing segments that
are within 10-15 degrees of the screw orientation to cross slip.

To avoid this situation in which the numerical discretisation is used to regularise a singular
law, we instead regularise the law mathematically. Effectively we are saying that cross slip is
possible providing the dislocation is sufficiently close to a pure screw, rather than requiring
the dislocation to be exactly pure screw. Specifically we introduce a weighting function ϕ,
such that

ϕ(0) = 1; 0 ≤ ϕ(x) ≤ 1; ϕ′(x) < 0; lim
x→∞

ϕ = 0,

and write

M = mgI+mg

(

ϕ

(

b2 − b2l
b2ǫ2

)

− 1

)

β ⊗ β, (9)

= mgI+mg

(

ϕ

(

sin2 α

ǫ2

)

− 1

)

β ⊗ β,

where bl is the screw component of the dislocation Burgers vector and α is the tilt angle (the
angle between the Burgers vector and the tangent). Here ǫ ≪ 1 can be thought as an angle
measuring how close to screw a dislocation needs to be in order to cross slip. The simple
practical numerical regularisation of allowing cross slip for tilt angles less than 10 degrees
corresponds to choosing

φ(x) =

{

1 if x < 1,
0 if x ≥ 1,
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and ǫ = sin 10◦ ≈ 0.17. For our mathematical analysis (and it makes more sense physically)
we prefer to use a smooth function φ. For the analysis of the instability we will keep ϕ
unspecified, so that we can see how the results depend on ϕ. We will find that qualitatively
our results are independent of the particular choice of ϕ, though there is a small quantitative
dependence (see, for example, equation (36)). For the numerical results and plots we will
choose the simple representative function ϕ(x) = e−x. Note that we have taken mc = 0 for
simplicity, but that ϕ can easily be modified to allow for the climb of edge dislocations.

2.1 Nondimensionalisation

To calculate the self-induced law of motion for a dislocation curve we need to calculate the
self-induced force. In the following section we find the local self-induced stress in the vicinity
of an arbitrary curved dislocation through an asymptotic expansion of the Peach-Koehler
expression (1). To facilitate the analysis we first nondimensionalise. Although the Burgers
vector would seem to be the natural lengthscale, in fact for a curved dislocation the relevant
lengthscale is the scale over which this curvature takes place (the inverse of a typical radius
of curvature, or the wavelength of small amplitude oscillations). Thus we scale length with
a reference length L, leaving the definition of L unspecified at this stage. We scale σ with
µb/4πL, and write b = bb̂ with b̂ of unit modulus. With reference to (4) we scale the
force per unit length f with µb2/4πL, and then with reference to (6) we scale time with
4πL2/mgµb

2.

2.2 The local stress field of a curvilinear dislocation

From the fact that
∇Z =

z

Z
,

the Peach-Koehler stress tensor (1)-(3) can be rewritten in nondimensional form as

σ1 = −
∫

C

b̂ ∧ z

Z3
⊗ dq, σ2 =

1

1− ν

∫

C

(

dq · (b̂ ∧∇)
)

(

(∇⊗∇)Z − 2

Z
I

)

. (10)

In order to calculate the self-induced motion of a curved dislocation we need to be able to
evaluate the self stress. It is well known that the stress field diverges as 1/|x − q| as the
point x approaches a point q on the dislocation line. Cai et al. regularise the integrals (10)
by “smearing out” the Burgers vector over the core region, turning the line integrals into
volume integrals [11]. The distribution function of the smeared Burgers vector can even be
related to atomistic simulations. They can then evaluate analytically the regularised stress
for rectilinear dislocations.

However, we are interested here in curved dislocations, for which such explicit formulae are
not available2. We are also interested in the limit in which the core region is small by

2During revision of this work we became aware of the related work by Zhao et al. [32].

6



l
b

β

at x = q(s0)
the dislocation
local plane of

nm

l
ρ slip plane

Figure 1: Schematic diagram showing the local orthogonal vectors l, n and m, the normal
to the slip plane β, and the normal to the dislocation in the slip plane ρ

comparison to the radius of curvature of the dislocation line. In such a limit we can proceed
via the method of matched asymptotic expansions. Outside the core region equations (10)
hold, and these must be matched with an inner core region in which some regularised model
holds, which may be the smeared Burgers vector model of Cai et al., or may be full atomistic
simulations.

The integrand in (10) is sufficiently singular that as the point x approaches the dislocation
the dominant contribution to the stress arises from the integral over nearby points on the
dislocation curve. We introduce a local curvilinear coordinate system (s, r, θ) by writing

x = q(s) + n(s)r cos θ +m(s)r sin θ,

where q(s) is the nearest point to x on the dislocation curve (parameterised by the arc length
s), r is the distance from x to the dislocation, n is the unit normal to the dislocation curve,
and m is the unit binormal. The vectors (l,n,m) form an orthogonal triad, and r and θ are
local polar coordinates in the n-m plane (see Figure 1).

We wish to evaluate the stress σ as x approaches a point on the dislocation curve q(s0),
that is, as s → s0 and r → 0. To this end we rescale r = εR and consider the limit ε → 0.
We split the dislocation curve into a local part and non-local part by writing

∫

C

=

∫ s0+S

s0−S

+

∫

C1

,

where S is such that 1/| log ε| ≪ S ≪ 1. In the local integral the dislocation curve q can be
expanded in the vicinity of s0 as

q(s) ∼ q0 + εl l0 +
ε2κ0l

2

2
n0 + · · · ,

where εl = s− s0 is the arc length, κ0 is the curvature at s0, and q0 = q(s0), etc. The terms
in the integrand can be similarly expanded, such as

z = q(s0 + εl)− x ∼ −ε(n0R cos θ +m0R sin θ − l0l) + ε2n0
κ0

2
+ · · · , (11)

7



and
dq(s0 + εl) ∼

(

εl0 + ε2n0κ0l +O(ε3)
)

dl. (12)

We also write the unit Burgers vector in terms of the local coordinate system at s0 as

b̂ = b̂nn0 + b̂mm0 + b̂ll0. (13)

Henceforth, for ease of notation and without chance of confusion, we drop the subscript 0
from q, l, n, m, and κ. Now we can incorporate (11), (12), and (13) into (10), and express
the result in terms of the local coordinate system (n,m, l).

The resulting expansion of σ1 and σ2 is derived in Appendix 6.1. Combining (37) and (42)
we obtain the local expansion for the Peach-Koehler stress tensor in the local coordinate
system (n,m, l) as

σ ∼ 2

r









−b̂n sin θ(1+2 cos2 θ)+b̂m cos θ cos 2θ
1−ν

b̂n cos θ cos 2θ+b̂m sin θ cos 2θ
1−ν

−b̂l sin θ

b̂n cos θ cos 2θ+b̂m sin θ cos 2θ
1−ν

b̂n sin θ cos 2θ+b̂m cos θ(1+2 sin2 θ)
1−ν

b̂l cos θ

−b̂l sin θ b̂l cos θ −2ν(b̂n sin θ−b̂m cos θ)
1−ν









+ log

(

1

r

)

· κ









− b̂m(1−4ν)
1−ν

b̂n(1−2ν)
1−ν

0
b̂n(1−2ν)

1−ν
b̂m
1−ν

b̂l(1+ν)
1−ν

0 b̂l(1+ν)
1−ν

2b̂m(5−ν)
1−ν









+ · · · (14)

as r → 0. The first term in (14) corresponds to the stress field induced by a rectilinear
dislocation. The effect of the curvature of the dislocation is felt in the second term, which
is proportional to κ.

2.3 Motion of a curvilinear dislocation

To determine the self-induced motion of a curvilinear dislocation we need to evaluate the
local force given by (the nondimensional version of) (4) on the dislocation curve, that is, at
r = 0. We see that the singular nature of the stress causes a problem: the force evaluates to
infinity. This singularity is regularised by the finite size of the dislocation core: over length
of a few Burgers vectors the Volterra model of a dislocation breaks down, and an alternative
(non-singular) model must be used. This could be an atomistic model, or a “smeared”
Burgers vector model such as that used by [11].

When the local model is matched to the core model a self-induced law of motion can be
determined, as happens in similar scenarios in the field of fluid or superconducting vortex
dynamics. Following the systematic procedure of matched inner and outer asymptotic ex-
pansions for an atomistic core is very difficult, due to the discrete nature of the inner core
model. The “smeared” Burgers vector model of the core region is easier. In this case we will
find the first term in the expansion (14) does not generate any self-induced force: rectilinear
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dislocations in an unbounded material have no self-induced motion. The second term will
produce a self-induced force

floc = (b̂ · σ) ∧ l = log

(

1

a

)

κ

1− ν





b̂2n(1− 2ν) + b̂2m + b̂2l (1 + ν)

−2b̂nb̂mν
0



+ · · · , (15)

where a is the (nondimensional) dislocation core radius. This term is independent of the
details of the core region, depending only on its radius (and we would expect it to be the
same whatever the core model). The particular core model would affect the next term in the
expansion, at which order the force is no longer local but depends on the whole dislocation
curve. We note that (15) agrees with (and generalises) the expressions for the self-force on
circular dislocation loops in [11]. Typically the core radius is taken to be between b and 4b,
so that a ≈ b/L [20].

An alternative way to approach the self-force is to calculate the energy of the dislocation and
then to determine the self-force as the variation of this energy. There is still the problem of
the singularity, which leads to a formally infinite self-energy. In this case the regularisation
is usually performed by defining the self-energy to be the strain energy exterior to a tube
of radius a surrounding the dislocation. Such a procedure was carried out by Barnett and
Gavazza [16] for planar dislocation loops. The expression (15) agrees with their expressions
for circular edge and shear loops, and generalises their results to non-planar dislocations
(though, unlike [16], (15) is limited to isotropic materials).

The projection of the unit Burgers vector onto the plane normal to the dislocation, b̂− b̂ll,
plays a key role in the law of motion. Providing the dislocation is not pure screw we can
define the unit vector in this direction as

ρ =
b̂− b̂ll

|b̂− b̂ll|
;

ρ is the direction normal to the dislocation in the glide plane. By replacing b̂mm by
√

1− b̂2l ρ − b̂n n the local force can be decomposed into components parallel to ρ and
n as

floc =
κ

(1− ν)

(

(1 + νb̂2l )n− 2νb̂n

√

1− b̂2l ρ

)

log

(

1

a

)

+O(1). (16)

We now consider that in addition to the self-induced force the dislocation is subject to a
uniform (nondimensional) external stress σext.

The presence of log(1/a) in (16), with a ≪ 1, means that the motion of the dislocation is
fast on the timescale we have chosen. We may remove this factor from the law of motion
by rescaling time with 1/ log(1/a). After substituting (16) into (6) and using (9) the law of
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b

x1 = x

x2 = y

x3 = z

Figure 2: A uniformly translating rectilinear dislocation with tangent l = (0, 0, 1) and
Burger’s vector b = b(b̂1, 0, b̂3).

motion is then

v =
ϕ
(

1−b̂2
l

ǫ2

)(

1 + νb̂2l

)

1− ν
κn

−
2νκb̂n

√

1− b̂2l

1− ν
ρ+

κb̂n

(

1− ϕ
(

1−b̂2
l

ǫ2

))

(1 + νb̂2l )

(1− ν)
√

1− b̂2l

ρ

+

(

1− ϕ

(

1− b̂2l
ǫ2

))

(ρ · (F ∧ l))ρ+ ϕ

(

1− b̂2l
ǫ2

)

(F ∧ l), (17)

where F = (1/ log(1/a))σext · b̂ (which we assume is O(1) as a → 0; this is the distinguished
limit). Note that we could add an arbitrary multiple of l to the right-hand side of (17): such
a term does not change the curve C, it merely corresponds to a different parametrisation of
it.

3 Linear Stability Analysis

We consider the stability of a uniformly translating rectilinear dislocation.

Without loss of generality, we choose the x3 coordinate to be in the direction of the tangent
(see Figure 2). We still have one degree of freedom in orientating the coordinate system. We
fix this by choosing the x1 direction to be the projection of the Burgers vector in the plane
normal to the dislocation, so that b̂1 ≥ 0, b̂2 = 0, b̂3 ≥ 0. To simplify the notation slightly
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(a) (b)

yz

x

y
x

δw2

δw1

Figure 3: A perturbed dislocation (a) three dimensional view; (b) in the cross-section
z = constant. At each height z, δw1(z) is the displacement of the dislocation line in the
x direction, and δw2(z) is the displacement of the dislocation line in the y direction.

we will hemceforth use x, y and z to denote x1, x2 and x3 respectively. Then the solution of
(17) corresponding to a uniformly translating rectilinear dislocation is

x0 =







F2t

−ϕ
(

1−b̂2
l

ǫ2

)

F1t

z






. (18)

For b̂1 > 0, we perturb this solution by setting

x = x0 + δ





w1

w2

0



 ,

where δ ≪ ǫ2. At each height z, δw1(z) is the displacement of the dislocation line in the
x direction, and δw2(z) is the displacement of the dislocation line in the y direction (see
Figure 3). Then

l ∼





0
0
1



+ δ





w1,z

w2,z

0



 ; κn ∼ δ





w1,zz

w2,zz

0



 ; n ∼ 1
√

w2
1,zz + w2

2,zz





w1,zz

w2,zz

0



 ;

ρ · (F ∧ l) ∼ F2 + δ
F1b̂3 − F3b̂1

b̂1
w2,z; ϕ

(

1− b̂2l
ǫ2

)

∼ ϕ

(

b̂21
ǫ2

)

− 2δw1,z
b̂1b̂3
ǫ2

ϕ′

(

b̂21
ǫ2

)

.
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Collecting the O(δ) terms in the law of motion (17) gives the evolution of the perturbation
as

w1,t =
1

1− ν
·
(

b̂23(1 + ν) + b̂21(1− 2ν)
)

w1,zz −
(

(ϕ− 1)F1b̂3/b̂1 + F3

)

w2,z, (19)

w2,t =
ϕ

1− ν
·
(

b̂23(1 + ν) + b̂21

)

w2,zz

+ ϕF3w1,z +
2ϕ′b̂1b̂3

ǫ2
F1w1,z + (ϕ− 1)

F2b̂3

b̂1
w2,z, (20)

where ϕ and ϕ′ denote ϕ(b̂21/ǫ
2) and ϕ′(b̂21/ǫ

2), respectively.

We look for solutions of the form

w1 = A1e
λt cos kz +B1e

λt sin kz, w2 = A2e
λt cos kz + B2e

λt sin kz. (21)

We find that (21) satisfies (19)-(20) if and only if








λ+ c1k
2 0 0 −a12k

0 a12k λ+ c1k
2 0

0 λ+ c2k
2 −a21k −a22k

a21k a22k 0 λ+ c2k
2

















A1

A2

B1

B2









=









0
0
0
0









, (22)

where

c1 =
1

1− ν
·
(

b̂23(1 + ν) + b̂21(1− 2ν)
)

, c2 =
ϕ

1− ν
·
(

b̂23(1 + ν) + b̂21

)

; (23)

a12 = −
(

(ϕ− 1)F1b̂3/b̂1 + F3

)

, a21 = ϕF3w1,z +
2ϕ′b̂1b̂3

ǫ2
F1, a22 = (ϕ− 1)

F2b̂3

b̂1
. (24)

Note that, since ν < 1/2, c1 and c2 are positive. A non-zero solution exists if and only if
the determinant of the matrix vanishes, which gives the dispersion relation between λ and
k. The cumbersome calculations are presented in Appendix 6.2, with the result that

ℜ(λ) = −(c1 + c2)k
2

2

± k

2
√
2

(

(

(c1 − c2)
4k4 + 2(c1 − c2)

2(a222 − 4a12a21)k
2 + (a222 + 4a12a21)

2
)1/2

+ (c1 − c2)
2k2 − (a222 + 4a12a21)

)1/2

. (25)

The dependence of λ in (25) on the direction of the Burgers vector and the applied stresses
(through (23) and (24)) is difficult to interpret in general. To tease out this information
we consider the limit in which ǫ → 0, that is, in which only dislocations which are close to
screw can cross slip. The behaviour of the equations then depends crucially on how close to
a pure screw the original dislocation is, that is, it depends on the size of b̂1. We consider
each distinguished limit in turn.
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3.1 Perturbation to a mixed dislocation (b̂1 = O(1))

In this regime, ϕ(b̂21/ǫ
2) ≪ 1, and (25) simplifies to

ℜ(λ) ∼ −c1k
2, ℜ(λ) ∼ 0.

The origin of these eigenvalues can be seen by observing that in this limit (19) and (20) can
be reduced to

w1,t =
1

1− ν

(

b̂23(1 + ν) + b̂21(1− 2ν)
)

w1,zz −
(

F3 − F1
b̂3

b̂1

)

w2,z, (26)

w2,t = −F2b̂3

b̂1
w2,z, (27)

at leading order in ǫ. The first (stable) eigenvalue corresponds to the line tension in a planar
dislocation line. The second (neutrally stable) eigenvalue corresponds to a local change in
the slip plane for line segments which are perturbed out of the (x, z)-plane. In this regime
the dislocation line is therefore stable.

3.2 Perturbation to an almost-screw dislocation (b̂1 = O(ǫ))

We set b̂1 = b̄1ǫ. Then b̂21/ǫ
2 = b̄21 is O(1), so that in this regime ϕ and ϕ′ denote ϕ(b̄21) and

ϕ′(b̄21), respectively. We can see from (26) and (27) that the coefficents of w2,z are becoming
large in this regime. This means that the relevant wavenumbers are large. Writing

k =
(1− ν)σ13k̂

ǫ(1− φ)(1 + ν)
, λ =

(1− ν)σ2
13λ̂

ǫ2(1 + ν)
.

equation (25) reduces at leading order to

ℜ(λ̂) = k̂

2
√
2(1− φ)

√

√

k̂4 + L̂2 + 2k̂2Q̂+ k̂2 − L̂− (1 + ϕ)k̂2

2(1− φ)2
, (28)

where

L̂ = (1− ϕ)2
1

b̄21

σ2
23

σ2
13

+ 8(1− ϕ)ϕ′, Q̂ = (1− ϕ)2
1

b̄21

σ2
23

σ2
13

− 8(1− ϕ)ϕ′.

The remaining parameters are b̄1, which measures the edge component of the unit Burgers
vector, and the ratio of shear stresses σ23/σ13 (recall that φ is a function of b̄1). Fig. 4 shows
maximum ℜ(λ̂)max as a function of b̄1 and σ2

23/σ
2
13.

By analysing (28) we find that the dislocation is unstable if

σ2
23

σ2
13

< −2b̄21(1 + φ)2φ′

(1− φ)φ
, (29)
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Figure 4: The rescaled maximum growth rate ℜ(λ̂)max as a function of b̄1 and σ2
23/σ

2
13. The

dislocation is unstable in the region below the solid white curve. The maximum growth rate
is 0.18 and occurs for σ23 = 0, b̄1 ≈ 0.981 with a corresponding wavenumber k̂ ≈ 0.54.

which is shown as the solid line in Figure 4 (remember that φ′ < 0, so the right-hand side of
(29) is positive). Note that the unstable region grows as b̄1 grows, which seems to contradict
the fact that the dislocation is stable for b̂1 of order one. However, as b̄1 grows the growth rate
decays to zero exponentially and the wavenumber also tends zero, so that these (marginally)
unstable modes match into the neutrally stable mode of the mixed dislocation.

The most unstable mode occurs when σ23 = 0, b̄1 ≈ 0.981 with a corresponding wavenumber
k̂ ≈ 0.54.

3.3 Perturbation to a screw-dominant dislocation (b̂1 = O(ǫ2))

There is another distinguished limit when b̂1 = O(ǫ2). We set b̂1 = b̃1ǫ
2. Then

b̂3 = 1− b̃21
2
ǫ4 + o(ǫ4), ϕ

(

b̂21
ǫ2

)

= ϕ
(

b̃21ǫ
2
)

= 1 + b̃21ϕ
′
0ǫ

2 +O(ǫ4),
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where ϕ′
0 = ϕ′(0). Incorporating these into (25) gives at leading order

ℜ(λ) = −(1 + ν)

(1− ν)
k2 +

k

2
√
2

√

|S| − S, (30)

where
S = (σ23φ

′
0b̃1)

2 − 4σ2
33 − 4σ13σ33φ

′
0b̃1 − 8(σ13φ

′
0b̃1)

2. (31)

We see that there are eigenvalues with positive real part if S < 0, i.e.

b̃21σ
2
23ϕ

′2
0 − 4(b̃1σ13ϕ

′
0 + σ33)(2b̃1σ13ϕ

′
0 + σ33) ≥ 0. (32)

The maximum growth rate and corresponding wavelength are

ℜ(λ)max =
(1− ν)

(1 + ν)

σ2
13

16

(

4

(

b̃1ϕ
′
0 +

σ33

σ13

)(

2b̃1ϕ
′
0 +

σ33

σ13

)

− b̃21
σ2
23

σ2
13

ϕ′2
0

)

, (33)

kmax =
(1− ν)

4(1 + ν)

√

4(b̃1σ13ϕ′
0 + σ33)(2b̃1σ13ϕ′

0 + σ33)− b̃21σ
2
23ϕ

′2
0 . (34)

From (32) and (33) we see that, in this regime, the instability depends on not only on
the shear stresses, but also on the normal stress σ33; the key parameters are b̃1, σ23/σ13,
and σ33/σ13. We see from (32) that for large b̃1 the dislocation is stable if and only if
σ23/σ13 ≥

√
8.

In the limit in which b̃1 ≪ 1, so that the dislocation is even closer to a pure screw, the
dispersion relation can be written explicitly as

ℜ(λ) = −
(

σ33k +
(1 + ν)k2

(1− ν)

)

, (35)

so that there is a band of unstable wavenumbers

k ∈















(

0,−(1− ν)σ33

(1 + ν)

)

, σ33 < 0;

(

−(1− ν)σ33

(1 + ν)
, 0

)

, σ33 > 0.

In this regime, the stability and growth rate depend only on the normal stress. We see that
the dislocation is always unstable for small b̃1 if σ33 6= 0.

Fig. 5 depicts the maximum growth rate against b̃1 for various combinations of applied
stress. We see that even when the dislocation is unstable for small and large b̃1 there may
be a region of stability at moderate b̃1 depending on the relative size and signs of σ13, σ23

and σ33.
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Figure 5: The maximum growth rate as a function of b̃1. The solid curve corresponds to
σ23/σ13 = 1, σ33/σ13 = 2; the dashed curve corresponds to σ23/σ13 = 1, σ33/σ13 = −2; the
dotted curve corresponds to σ23/σ13 = 4, σ33/σ13 = −2; the dot-dashed curve corresponds
to σ23/σ13 = 4, σ33/σ13 = 2. The dislocation is always unstable for b̃1 small. For large b̃1 it
is stable if and only if σ23/σ13 ≥

√
8. Even when the dislocation is unstable for small and

large b̃1 there may be a region of stability at moderate b̃1 depending on the relative size and
signs of σ13, σ23 and σ33.

3.4 Numerical results

Having understood how the behaviour of (25) depends on the parameters b1, σ11, σ23, σ33

and ǫ we are now in a position to plot the maximum growth rate as a function of b1 for
various representative parameter combinations. In fig. 6 we show the maximum growth rate
as a function of b̂1 on a log-log plot to cope with the vastly different growth rates for small
and large b̂1.

We see that when the shear-driven instability of §3.2 is present it dominates, with a growth-
rate which is orders of magnitude greater than the normal-stress-driven instability of §3.3.
We may summarise the results of our stability calculations as follows.

(i) When b̂1 = O(1), the dislocation is stable to any planar perturbation.

(ii) When b̂1 = O(ǫ), the dislocation is unstable if the shear-stress ratio σ23/σ13 is less than
a critical value which depends only on b̂1. The wavelength of the most unstable mode
is small (O(ǫ)), and the growth rate is large (O(ǫ−2)).

(iii) When b̂1 = O(ǫ2) ,the dislocation is unstable whenever σ33 is non zero, for sufficiently
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Figure 6: The maximum growth rate as a function of b̂1 for various combinations of ap-
plied stress. the solid curve corresponds to σ23/σ13 = 1, σ33/σ13 = 10; the dashed curve
corresponds to σ23/σ13 = 10, σ33/σ13 = 1; the dotted curve corresponds to σ23/σ13 = 1,
σ33/σ13 = 1; the dot-dashed curve corresponds to σ23/σ13 = −1, σ33/σ13 = −1. For all plots
ǫ = 0.01.

small b̂1. The wavelength and growth rate of this instability are O(1).

4 Non-linear evolution of the instability

The linear stability analysis is useful for determining the stability of a rectilinear dislocation.
However, to track the non-linear evolution of the instabilities we have found, we need to solve
the evolution equation (17) numerically.

We discretise q and v in time and space. At the nth timestep we use a TVD Runge-Kunta
method described in [21] to compute qn+1 from qn and vn via the following scheme:

qn+1 = qn + vn∆t, qn+2 = qn+1 + vn+1∆t, qn+1/2 =
3

4
qn +

1

4
qn+2,

qn+3/2 = qn+1/2 + vn+1/2∆t, qn+1 =
1

3
qn +

2

3
qn+3/2;

all the other variables are updated in the sequence

q ⇒ l ⇒ κn ⇒ a1, a3 ⇒ ρ ⇒ v,
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using the definitions

l =
qz

|qz|
, n =

lz
|lz|

.

The derivatives of q are approximated by

∂q

∂z
|z=zi =

qi+1 − qi−1

2∆z

and
∂2q

∂z2
|z=zi =

qi+1 + qi−1 − 2qi

∆z2
,

at zi, where ∆z is the spatial grid size.

We note the following three points. Firstly, we use the approximation that

κn =
∂l

∂z
=

1

|qz|2
(qzz − (l · qzz)qzz) ,

to keep the truncation error O(∆z2). Secondly, we impose periodic boundary conditions on
all variables except the z-component of displacement q3, for which we impose

q3(z1)− q3(z2) = z1 − z2,

where z1 and z2 are the two end points. Finally, to avoid calculating the CFL condition at
each time step we simply chose ∆t = 0.1∆z2, which was enough top give numerical stability
for the examples we considered.

4.1 Numerical results

We take ǫ = 0.1 and ν = 0.3.

We begin by perturbing a dislocation in which b̂ ≈ (0.1, 0, 0.99)T and the only nonzero
external stress is σ13 = 4π. We choose the wavenumber of the initial perturbation to be
k = 30, which is close to that for maximal growth. We discretize space so that there are 100
points per wavelength, which corresponds to ∆z = 0.0021. We take ∆t = 10−7.

Fig. 7 gives the evolution of the dislocation curve from various angles as well as its projection
onto the coordinate planes. Fig. 7(b) depicts its projection to the x-y plane, from which
the expansion can be seen; Fig. 7(c) depicts its projection to the x-z plane, from which the
glide planes parallel to Burgers vector can be identified; Fig. 7(d) depicts its projection to
the y-z plane, from which we can see some parts in the dislocation curve pinned, while the
other parts grow.

To try to understand this evolution we show in Fig. 8(a) the proportion of the velocity in
the direction normal to the glide plane β as a function of the spatial parameter z. We see
that most parts of the dislocation are moving in the glide plane, with zero velocity in the
cross slip direction. Fig. 8(b) shows the proportion of the dislocation which is screw at every
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Figure 7: Non-linear evolution of a perturbed rectilinear dislocation. (a) three-dimensional
view; (b) projection onto the x-y plane; (c) projection onto the x-z plane; (d) projection
to the y-z plane. The only nonzero component of the (nondimensional) external stress is
σ13 = 4π.

point, again parameterised by z. The parts which are close to pure screw are those which are
cross slipping, as we would expect. Noting that initially the dislocation was almost screw, we
see that the perturbation has evolved the dislocation into mixed-type undergoing in-plane
motion for most of its length.

We can see from Fig 7(b) that for the current parameter values the dislocation will reach
a new non-rectilinear equilibrium, in which the “line tension” of the curved parts of the
dislocation balances the external stress driving the expansion. This is rather like the way
forest interactions may pin a dislocation if the external stress is not too large.

When we increase the only non-vanishing component of the external stress to σ13 = 20π,
again using an initial perturbation with wavenumber k = 30, the evolution behaves differ-
ently, as shown in Fig. 9 (for the numerical simulations we choose this time 1000 points per
wavelength, corresponding to ∆z = 2.0944× 10−4, and take ∆t = 5× 10−9). In this case the
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Figure 8: The left plot gives the proportion of velocity in β (normal to the glide plane)
direction against the spatial parameter z, showing that most parts of the dislocation do
in-plane motion. The right plot depicts the proportion of screw segment at every point,
parameterised by z, showing that the edge components grow when evolving.

external stress is strong enough that no new equilibrium is found.

Fig. 9(a) shows the 3-D plot for the evolution. Fig. 9(b) shows the projection onto the x-y
plane, again showing the the expansion due to instability. Fig. 9(c) shows the projection
onto the x-z plane; the family of glide planes, which are all perpendicular to x-z plane, can
be identified. Fig. 9(d) shows the projection onto the y-z plane; as before, some points of
the dislocation are pinned in this projection.

5 Conclusions

5.1 Spacing and orientation of active slip planes

While Figures 7 and 9 are useful, they are not so easy to interpret. It is of some use to
illustrate schematically the non-linear evolution of the dislocation line, as in Fig. 10.

After some time from the initial perturbation the dislocation line will comprise two sets
of curves. The expanding blue curves lie in a family of parallel slip planes determined by
the applied stress. They are joined by the red segments, which are straight lines lying in a
different slip plane (with normal (0, 1, 0)), which is the glide plane of the original straight
dislocation. Each of these joining red lines rotates around its central point and grows in
length as the blue curves expand. Cross slip occurs only at the joins of the blue and red
segments. The intersections of the two slip systems are, of course, parallel to the Burgers
vector.

The slip planes for the expanding blue segments are those which maximise the resolved shear
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Figure 9: Non-Linear evolution of a perturbed rectilinear dislocation when σ13 = 20π. (a)
3-D plot for the evolution; (b) projection onto the x-y plane (c) projection onto the x-z
plane; (d) projection onto the y-z plane.

stress. To be precise, for a plane with normal β and a dislocation with unit Burgers vector
b̂, the resolved shear stress, also known as the Schmid stress, is given by

τ =
(

σext · b̂
)

· β,

where σext is the applied stress. The slip planes for the expanding blue curves are given by
maximising τ with respect to β subject to β ·b = 0 and |β| = 1. For the parameters used in
the simulations presented this gives β = (0.9950, 0,−0.0995)T , which is in agreement with
Fig. 9. Other simulations (not shown) confirm this result.

One way to understand this evolution is to imagine the initial rectilinear mixed dislocation
to be divided into a sequence of edge and screw components. The screw components then
cross slip and bow out, while the edge components rotate to accommodate this.

We would expect the vertical separation between the family of parallel slip planes in Figure
10 to be the wavelength of the instability. The normal separation between these planes is
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Figure 10: Schematic diagram of the non-linear evolution. The black vertical line shows the
initial position of the dislocation. The normal separation between the slip planes on which
the blue dislocation segments expand is d.

then b̂1 times this. Redimensionalising, this gives a normal separation between slip planes of

d =
2πb1L

kb
=

ǫµ(1 + ν)(1− φ)b1

2(1− ν)σ13k̂
; (36)

For general σ23 we find k̂ and b1 by maximising (28). The most unstable mode occurs when
σ23 = 0 giving k̂ ≈ 0.54 and b1 ≈ 0.98ǫb.

The most difficult parameter to estimate here is ǫ, which in principle can be determined
from atomistic simulations. If we imagine that a dislocation line slightly tilted away from
the Burgers vector remains mainly screw and accounts for the deviation by making kinks
with atomic height h, then the tilt angle α is related to the average separation between kinks
D through tanα = h/D. Thus dislocations can be considered as a combination of screw
segments and kinks (and thus able to cross slip) as long as α < tan−1(h/D) [12]. Since
b̂1 = sinα ≈ tanα for small α, this gives the estimate ǫ ≈ h/D. In [12] the typical with
of a kink is given as 5h, giving ǫ ≈ 0.2. In [20] the width of a kink is given as 22h, giving
ǫ ≈ 0.045. In [30] the width of a kink is found to be about 20 Burgers vectors, corresponding
to 21.2h, giving ǫ ≈ 0.047.
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Using the representative values

µ = 20GPa, σ13 = 1MPa, ν = 0.3, ǫ = 0.045, b = 2.48Å,

gives a spacing of 104Å. Using instead ǫ = 0.2 would give a spacing of 2068Å. We recall that
the experiments of Brown [7] suggest a spacing of 200-800Å.

Finally we speculate on the possible effect of lattice friction or Peierls stress, which is not
included in the law of motion (6). We would expect the inclusion of a Peierls stress to increase
the threshold stress for the instability to be activated. We would also expect the range of
values of applied stress for which the nonlinear evolution arrests at a new equilibrium as in
Fig 7 to be increased. However, we would not expect it to have an effect on the maximally
unstable wavelength, and therefore we would expect the spacing between active slip planes
to remain unaltered.

A related phenomenon is that in practice cross-slip is not automatic once a segment becomes
of screw orientation, as we have presumed. A dislocation core is spread out over a range
of 5-10 Burger’s vectors, and may be localized in partial dislocations, such as the 1/2(112)
Shockley partials in FCC. In order for the screw core to cross-slip, the dislocation core must
be constricted (at least according the Friedel-Escaig model) and then re-assembled on any
conjugate slip plane for which a reasonable Schmidt stress exists. The activation energy
required to do this is likely to further increase the threshold stress for our instability. On
the other hand, we note that Aluminium has a high stacking fault energy and therefore is
not predisposed to forming partial dislocations easily.

5.2 A microscopic analog of non-Schmid behavior and non-associated
flow

The generalised helical instability elucidated for the close to screw dislocation (Secs. 3.2 and
3.3) indicates one possible mechanism for an analog of non-Schmid type behavior at the mi-
croscopic level. This is a useful observation as, on occasion, yielding and flow characteristics
at the single dislocation level survive averaging to macroscopic scales as shown in Bassani
and Racherla [6]. The ‘yield criterion’ for the instability—equation (29)—contains infor-
mation on the elastic modulus and deviation from pure screw orientation of the dislocation
that is simply not contained in the resolved shear stress expression for slip on the cross-slip
plane. Therefore, qualitatively, this must mean that the causes for the initiation and con-
tinued progress of the instability are different. A test for non-Schmid yielding on a given
slip system, characterized by a slip direction b̂ and slip plane normal β, is to compare the
direction of the normal to the yield function for that slip system to that of the corresponding
plastic strain rate tensor (b̂⊗β)sym and check for differences; for yielding following Schmid’s
law, the stress-state dependence of the scalar yield function would necessarily have to be
only through the resolved shear stress τ = (σ · b̂) · β, and consequently the two directions
in question have to be the same.
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In the present context, as mentioned in Sec. 5.1, we obtain β from

max
β,|β|=1

(

σ · b̂
)

· β subject to β · b̂ = 0.

For b̂ parallel to b with only non-zero components b1, b3 and the only non-zero components of
stress being σ13, σ23, it can be shown that β is parallel to the direction (1− s2, p(1 + s2),−s(1− s2))
where p = σ23/σ13 and s = b1/b3.

The instability criterion (29) suggests two possible types of stress dependence for microscopic
yielding:

f1(σ) = Kσ2
13 − σ2

23, f2(σ) =
Kσ2

13

σ2
23

.

It can be checked that the tensors ∂f1/∂σ and ∂f2/∂σ are not parallel to (b̂ ⊗ β)sym, and
therefore we have a microscopic analog of non-Schmid yielding and non-associated flow.

In closing we make two further points. First, with respect to the experimental observations
of Cahn [10] (1951), discussed further by Mott (1951) [25], related to bending of the slip
traces, it is quite conceivable that when the loops on the cross-slip plane have expanded to
a significant extent they would have produced extended close-to-screw segments and if the
loading orientation was such that the original plane from which cross-slip first ensued had
some resolved shear stress on it, these screw segments could double cross-slip back onto the
original plane producing a Frank-Read source mechanism.

Second, in the formulation of mesoscale plasticity models it is currently fashionable to in-
troduce scalar dislocation densities with associated pde for their evolution. We believe that
much like vortices in fluid dynamics and superconductivity, and as evidenced by the example
considered in this paper, a great deal of fundamental physics of dislocation motion is encoded
in the conservation statement of topological charge carried by a line density, a statement
which is quite different in content and implications than those that arise for scalar densities.
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6 Appendix

6.1 Local expansion of σ

Using the fact that

1

Z3
∼ 1

ε3
1

(R2 + l2)3/2
+

1

ε2
3κR cos θl2

2(R2 + l2)5/2
+O

(

1

ε

)

,

the expansion for σ1 can be derived in terms of local coordinates. Instead of giving the
cumbersome details of all the calculations, we only list the possible singular terms. From
(12), we can see that the projection from dq to m is O(ε3), which makes all the terms arising
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from dyadic products with m in the expression for σ1 regular. Therefore, only the remaining
six entries for the second order tensor in the local coordinate system need to be considered,
and these are:

σnn ∼ −
∫ S/ε

−S/ε

b̂mκl
2

(R2 + l2)3/2
dl +O(1) = 2b̂mκ log(Rε) +O(1),

σnl ∼ −1

ε

∫ S/ε

−S/ε

b̂lR sin θ

(R2 + l2)3/2
dl +O(1) = − 2

Rε
b̂l sin θ +O(1),

σmn ∼
∫ S/ε

−S/ε

κ(b̂lR cos θ + b̂nl)

(R2 + l2)3/2
ldl +O(1) = −2b̂nκ log(Rε) +O(1),

σml ∼ 1

ε

∫ S/ε

−S/ε

b̂lR cos θ + b̂nl

(R2 + l2)3/2
dl − 1

2

∫ S/ε

−S/ε

b̂lκl
2

(R2 + l2)3/2
dl +O(1)

=
2

Rε
b̂l cos θ + b̂lκ log(Rε) +O(1),

σln ∼
∫ S/ε

−S/ε

b̂nR sin θκ

(R2 + l2)3/2
ldl +O(1) = O(1),

σll ∼ 1

ε

∫ S/ε

−S/ε

b̂nR sin θ − b̂mR cos θ

(R2 + l2)3/2
dl +

1

2

∫ S/ε

−S/ε

b̂mκl
2

(R2 + l2)3/2
dl +O(1)

∼ 2

Rε
(b̂n sin θ − b̂m cos θ)− b̂mκ log(Rε) +O(1).

Thus the expansion σ1 in the local basis (n,m, l) is

σ1 ∼ 2

εR





0 0 −b̂l sin θ

0 0 b̂l cos θ

0 0 b̂n sin θ − b̂m cos θ



+ log(Rε)κ





2b̂m 0 0

−2b̂n 0 b̂l
0 0 −b̂m



+ · · · , (37)

as ε → 0.

Let us now consider σ2. By using the fact that

∂2Z

∂qi∂qj
= δij

1

Z
− zizj

Z3
,

where zi is the ith entry of z and δij is the Kronecker delta, we can rewrite σ2 as

(1− ν)σ2 =

∫ S/ε

−S/ε

(

dq · (b̂ ∧∇)
)

(

(∇⊗∇)Z − 2

Z
I

)

= −
∫ S/ε

−S/ε

dq ·
(

b̂ ∧∇ 1

Z

)

I−
∫ S/ε

−S/ε

(

dq · (b̂ ∧∇)
)

(

z⊗ z

Z3

)

. (38)
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From the first term of (38), we obtain

∫ S/ε

−S/ε

dq

Z3
· (b̂ ∧ z)I

∼ −1

ε

∫ S/ε

−S/ε

b̂nR sin θ − b̂mR cos θ

(R2 + l2)3/2
dl I+

1

2

∫ S/ε

−S/ε

b̂mκl
2

(R2 + l2)3/2
dl I+O(1)

= − 2

Rε
(b̂n sin θ − b̂m cos θ)I− b̂mκ log(Rε)I+O(1). (39)

The second term of (38) can rewritten

−
∫ S/ε

−S/ε

(

dq · (b̂ ∧∇)
)

(

1

Z3
(z⊗ z)

)

= −
∫ S/ε

−S/ε

(

dq · (b̂ ∧∇)
) z⊗ z

Z3
−
∫ S/ε

−S/ε

(

dq

Z3
· (b̂ ∧∇)

)

(z⊗ z)

=

∫ S/ε

−S/ε

3dq

Z5
·
(

b̂ ∧ z
)

(z⊗ z)−
∫ S/ε

−S/ε

(

dq

Z3
· (b̂ ∧∇)

)

(z⊗ z)

= σ21 + σ22,

say. From the expansion

dq

Z5
·
(

b̂ ∧ z
)

∼ − 1

ε3
(b̂nR sin θ − b̂m cos θ)dl

(R2 + l2)5/2
+

1

ε2
b̂mκl

2dl

(R2 + l2)5/2
+O

(

1

ε

)

,

28



σ21 can be calculated term by term in a similar way to σ1, giving

σnn ∼ −3

ε

∫ S/ε

−S/ε

(b̂n sin θ − b̂m cos θ)R3 cos2 θ

(R2 + l2)5/2
dl +O(1)

= −4 cos2 θ(b̂n sin θ − b̂m cos θ)

Rε
+O(1),

σmn = σnm ∼ −3

ε

∫ S/ε

−S/ε

(b̂n sin θ − b̂m cos θ)R3 cos θ sin θ

(R2 + l2)5/2
dl +O(1)

= −4 cos θ sin θ(b̂n sin θ − b̂m cos θ)

Rε
+O(1),

σnl = σln ∼ 3

∫ S/ε

−S/ε

b̂lκR
2 cos θ sin θ

(R2 + l2)5/2
l2dl +O(1) = O(1),

σmm ∼ −3

ε

∫ S/ε

−S/ε

(b̂n sin θ − b̂m cos θ)R3 sin2 θ

(R2 + l2)5/2
dl +O(1)

= −4 sin2 θ(b̂n sin θ − b̂m cos θ)

Rε
+O(1),

σml = σlm ∼ 3

∫ S/ε

−S/ε

b̂lκR
2 sin2 θ

(R2 + l2)5/2
l2dl +O(1) = O(1),

σll ∼ −3

ε

∫ S/ε

−S/ε

(b̂n sin θ − b̂m cos θ)Rl2

(R2 + l2)5/2
dl +

3

2

∫ S/ε

−S/ε

b̂mκl
4

(R2 + l2)5/2
dl +O(1)

= −2(b̂n sin θ − b̂m cos θ)

Rε
− 3b̂mκ log(Rε) +O(1).

Thus

σ21 ∼ − 4

Rε
(b̂n sin θ − b̂m cos θ)





cos2 θ cos θ sin θ 0
cos θ sin θ sin2 θ 0

0 0 1/2





+ κ log(Rε)





0 0 0
0 0 0

0 0 −3b̂m



+O(1). (40)

For σ22 we first note that if the unit vector in the xi direction is denoted by ei, then we have

[dq ·
(

b̂ ∧∇′(z⊗ z)
)

]i,j = 2
(

(z · ei)(b̂ ∧ ej) · dq
)S

= 2
(

(z · ei)(b̂nn+ bmm+ b̂ll) ∧ (njn+mjm+ tjl) · (εl+ ε2nκl)dl
)S

= 2dl
(

zi

(

ε(b̂nmj − bmnj) + ε2κl(bmtj − b̂lmj))
))S

= 2(εb̂n − ε2b̂lκl)dl(zimj)
S − 2εbmdl(zinj)

S + 2ε2bmκldl(zitj)
S,
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where S denotes the symmetric part and nj, mj, tj and zj are the j-th entries of the corre-
sponding vectors. Therefore the integrand of σ22 can be written as

−dq · 1

Z3

(

b̂ ∧∇(z⊗ z)
)

=
dl

Z3
(−εb̂n + ε2b̂lκl) ((z⊗m) + (m⊗ z))

+
εb̂mdl

Z3
((z⊗ n) + (n⊗ z))− ε2b̂mκl

Z3
((z⊗ l) + (l⊗ z)) . (41)

With the expansion

− 1

Z3
(εb̂n − ε2b̂lκl) ∼ − 1

ε2
b̂n

(R2 + l2)3/2
− 1

ε

3b̂nκR cos θl2

2(R2 + l2)5/2
+

1

ε

b̂lκl

(R2 + l2)3/2
+ · · · ,

the singular terms in σ22 can be evaluated as the sum of a stress tensor and its transpose.
This stress tensor has entries

σnm ∼ 1

ε

∫ S/ε

−S/ε

b̂nR cos θ

(R2 + l2)3/2
dl − 1

2

∫ S/ε

−S/ε

b̂nκl
2

(R2 + l2)3/2
dl +

3

2

∫ S/ε

−S/ε

b̂nκR
2 cos2 θ

(R2 + l2)5/2
l2dl + o(1)

=
2

Rε
b̂n cos θ + b̂nκ log(Rε) +O(1),

σmm ∼ 1

ε

∫ S/ε

−S/ε

b̂nR sin θ

(R2 + l2)3/2
dl +

3

2

∫ S/ε

−S/ε

b̂nκR
2 cos θ sin θ

(R2 + l2)5/2
l2dl +O(1)

=
2

Rε
b̂n sin θ +O(1),

σlm ∼
∫ S/ε

−S/ε

b̂lκl
2

(R2 + l2)3/2
dl +O(1) = −2b̂lκ log(Rε) +O(1),

σnn ∼ −1

ε

∫ S/ε

−S/ε

b̂mR cos θ

(R2 + l2)3/2
dl +

1

2

∫ S/ε

−S/ε

b̂mκl
2

(R2 + l2)3/2
l2dl +O(1)

= − 2

Rε
b̂m cos θ − b̂mκ log(Rε) +O(1),

σmn ∼ −1

ε

∫ S/ε

−S/ε

b̂mR sin θ

(R2 + l2)3/2
dl +O(1) = − 2

Rε
b̂m sin θ +O(1),

σll ∼
∫ S/ε

−S/ε

b̂mκl
2

(R2 + l2)3/2
dl +O(1) = −2b̂mκ log(Rε) +O(1).

Thus the expression for σ22 can be obtained as

σ22 ∼ 2

Rε





−2b̂m cos θ b̂n cos θ − b̂m sin θ 0

b̂n cos θ − b̂m sin θ 2b̂n sin θ 0
0 0 0





+ κ log(Rε)





−2b̂m b̂n 0

b̂n 0 −2b̂l
0 −2b̂l −4b̂m



+ · · · . (42)
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6.2 Derivation of equation (25)

For there to exist non-zero solutions of (22) the determinant of the matrix must vanish, so
that

(λ+ c1k
2)2(λ+ c2k

2)2 + 2a12a21(λ+ c1k
2)(λ+ c2k

2)k2 + a222(λ+ c1k
2)k2 + a212a

2
21k

4 = 0.

Completing the square gives

(

(λ+ c1k
2)(λ+ c2k

2) + a12a21k
2
)2

+ a22k
2(λ+ c1k

2)2 = 0, (43)

so that
(λ+ c1k

2)(λ+ c2k
2) + a12a21k

2 = ∓ia22k(λ+ c1k
2).

Now collecting powers of λ gives

λ2 +
(

(c1 + c2)k
2 ± ia22k

)

λ+ c1c2k
4 + a12a21k

2 ± ia22c1k
3 = 0.

The solutions for λ are therefore

λ =
1

2

(

−(c1 + c2)k
2 ∓ ia22k ±

√
∆
)

, (44)

where
∆ = (c1 − c2)

2k4 − (a222 + 4a12a21)k
2 ± 2ia22(c2 − c1)k

3. (45)

Now observing that, for real x and y,

(x+ iy)1/2 =
1√
2

(
√

√

x2 + y2 + x+ i

√

√

x2 + y2 − x

)

, (46)

we find that the real part of λ is given by

Re(λ) = −(c1 + c2)k
2

2

± k

2
√
2

(

√

(c1 − c2)4k4 + 2(c1 − c2)2(a222 − 4a12a21)k2 + (a222 + 4a12a21)2

+ (c1 − c2)
2k2 − (a222 + 4a12a21)

)1/2

.

Substituting for c1, c2, a12, a21 and a22 leads to (25).

31


