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Arash Yavari

Abstract In this chapter we discuss some applications of algebraic topology in
elasticity. This includes the necessary and sufficient compatibility equations
of nonlinear elasticity for non-simply-connected bodies when the ambient
space is Euclidean. Algebraic topology is the natural tool to understand the
topological obstructions to compatibility for both the deformation gradient
F and the right Cauchy-Green strain C. We will investigate the relevance of
homology, cohomology, and homotopy groups in elasticity. We will also use
the relative homology groups in order to derive the compatibility equations
in the presence of boundary conditions. The differential complex of nonlinear
elasticity written in terms of the deformation gradient and the first Piola-
Kirchhoff stress is also discussed.

1 Introduction

Compatibility equations of elasticity are more than 150 years old and ac-
cording to Love [34] were first studied by Saint Venant in 1864. In nonlinear
elasticity a given distribution of strain on a body B may not correspond to
a deformation mapping. Similarly, in linear elasticity a given distribution of
linearized strains may not correspond to a well-defined displacement field.
Strain has to satisfy a set of integrability equations in order to correspond to
some deformation field. These integrability equations are called compatibil-
ity equations in continuum mechanics. We provided a detailed history of the
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compatibility equations in nonlinear and linear elasticity in [62] and will not
repeat it here. Compatibility equations for simply-connected bodies are well
understood and are a set of PDEs that depend on the measure of strain. For
non-simply connected bodies these “bulk” compatibility equations are only
necessary. In other words, when the bulk compatibility equations are satisfied
in a non-simply connected body the strain field may still be incompatible;
there may be topological obstructions to compatibility. A classical example
of incompatible strain fields that satisfy the bulk compatibility equations are
Volterra’s “distortions” (dislocations and disclinations) [55]. For a strain field
on a non-simply connected body to be compatible, in addition to the bulk
compatibility equations, some extra compatibility equations that explicitly
depend on the topology of the body are needed [39, 14, 55, 30, 49] . We call
these extra compatibility equations the complementary compatibility equa-
tions [52] or the auxiliary compatibility equations.

The natural mathematical tool for understanding the topological obstruc-
tion to compatibility is algebraic topology. Topological methods, and partic-
ularly algebraic topology have been used in fluid mechanics [7], and electro-
magnetism [27] for quite sometime. In the case of electromagnetism this goes
back to the work of Maxwell [38] before the formal developments of alge-
braic topology that started in the work of Poincaré [43]. Algebraic topology
has not been used systematically in solid mechanics until recently [62]. To
motivate the present study consider the following problem. Having a solid
sphere (a ball) with the different types of holes shown in Fig. 1, what are the
compatibility equations for F and C? The necessary compatibility equations
(“bulk” compatibility equations) are well understood and our focus will be
on the sufficient conditions. We will see that in case (a) of a spherical hole
no extra compatibility equations are needed. For (b), (c), and (d) one needs
to impose some extra constraints on the (red) loops (generators of the first
homology group) to ensure compatibility.

(a) (b) (c) (d)

Fig. 1 Balls with (a) spherical, (b) toroidal, and (c) cylindrical holes. (d) A ball with a
hole consistening of a solid torus attached to two solid cylinders. Betti numbers of these
sets are zero, one, one, and two, respectively.



Applications of Algebraic Topology in Elasticity† 3

This chapter is structured as follows. In §2 we tersely review differential
geometry. This follows by short discussions of presentation of groups, ho-
mology and cohomology groups, relative homology groups, the idea of homo-
topy and the fundamental group, classification of 2-manifolds with boundary,
knot theory and the fundamental group of their complements in R3, and the
topology of 3-manifolds in §3. In §4 we discuss the kinematics of nonlinear
elasticity. In §5, F-compatibility equations for non-simply connected bodies
are discussed. F-compatibility equations in the presence of essential (Dirich-
let) boundary conditions are also derived. C-compatibility equations for non-
simply connected bodies are derived. Several examples are presented. Finally,
the necessary and sufficient compatibility equations of linearized elasticity are
derived. In §6, the differential complex of nonlinear elasticity written in terms
of the deformation gradient and the first Piola-Kirchhoff stress is discussed.
Some applications are also briefly mentioned.

2 Differential Geometry

In this section, we briefly review the differential geometry background needed
in the kinematic description of nonlinear elasticity.

Consider a map π ∶ E → B, where E and B are sets. The fiber over X ∈ B is
defined to be the set EX ∶= π−1(X) ⊂ E . If the map π is onto, fibers are non-
empty and E = ⊔X∈BEX , where ⊔ denotes disjoint union of sets. Now assume
that E and B are manifolds and for any X ∈ B, there exists a neighborhood
U ⊂B of X , a manifold F , and a diffeomorphism ψ ∶ π−1(U)→U ×F such that
π = pr1 ○ψ, where pr1 ∶U ×F →U is projection onto the first factor. The triplet
(E ,π,B) is called a fiber bundle and E , π, and B are called the total space,
the projection, and the base space, respectively. If π−1(X) is a vector space,
for any X ∈ B, then (E ,π,B) is called a vector bundle. The set of all smooth
maps σ ∶ B→ E such that σ(X) ∈ EX , ∀ X ∈ B, is called the set of sections of
this bundle, and is denoted by Γ (E). The tangent bundle of a manifold is an
example of a vector bundle for which E = TB.

A vector field on a manifold B is a section of the tangent bundle TB of B.
The set of all Cr vector fields on B is denoted by Xr(B) and the set of all C∞

vector fields by X(B). A vector field on B is an assignment, to each X ∈B, of a
tangent vector WX ∈ TXB. Note that for an N-dimensional manifold B, TXB is
an N-dimensional vector space with a local basis { ∂

∂X1 , ...,
∂

∂XN } induced from
a local chart {XA}. Given a vector field W, for each point X ∈B, W is locally
described as

W(X) =
N

∑
A=1

W A(X) ∂
∂XA , (1)

where W A are C∞ maps. One important role of tangent vectors is the di-
rectional differentiation of functions. In other words, a vector field acts on
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functions by taking their directional derivative, i.e.,

W[ f ] ∶=
N

∑
A=1

W A(X)∂ f (X)
∂XA . (2)

This is the directional or Lie derivative of f along W and is denoted by
LW f . Thus, LW f (X) ∶=W[ f ](X) = d f (X) ⋅W(X). This is the reason L f = d f
belongs to the cotangent space of B, where the cotangent space T∗B is defined
as T∗B ∶= {φ ∶ TB→R, φ is linear and bounded}.

A linear (affine) connection on a manifold B is an operation ∇ ∶ X (B)×
X (B) → X (B), where X (B) is the set of vector fields on B, such that
∀ X,Y,X1,X2,Y1,Y2 ∈X (B),∀ f , f1, f2 ∈C∞(B),∀ a1,a2 ∈R:

i) ∇ f1X1+ f2X2Y = f1∇X1Y+ f2∇X2Y,
ii) ∇X(a1Y1+a2Y2) = a1∇X(Y1)+a2∇X(Y2),
iii)∇X( f Y) = f∇XY+(X f )Y.

∇XY is called the covariant derivative of Y along X. In a local chart {XA},
∇∂A

∂B = Γ C
AB∂C, where Γ C

AB are the Christoffel symbols of the connection,
and ∂A = ∂

∂xA are the natural bases for the tangent space corresponding to a
coordinate chart {xA}. A linear connection is said to be compatible with a
metric G of the manifold if

∇X⟪Y,Z⟫G = ⟪∇XY,Z⟫G+⟪Y,∇XZ⟫G, (3)

where ⟪., .⟫G is the inner product induced by the metric G. A connection
∇ is G-compatible if and only if ∇G = 0, or in components, GAB∣C = GAB,C −
Γ D

CAGDB−Γ D
CBGAD = 0. We consider an N-dimensional manifold B with the

metric G and a G-compatible connection ∇. The torsion of a connection is a
map T ∶X (B)×X (B)→X (B) defined by

T(X,Y) =∇XY−∇YX− [X,Y], (4)

where [X,Y] = XY−YX is the commutator of the vector fields X and Y.
For an arbitrary scalar field f , [X,Y][ f ] = X[ f ]Y−Y[ f ]X. In components
in a local chart {XA}, T A

BC = Γ A
BC −Γ A

CB. The connection ∇ is symmetric
if it is torsion-free, i.e., ∇XY−∇YX = [X,Y]. It can be shown that on any
Riemannian manifold (B,G) there is a unique linear connection (the Levi-
Civita connection) ∇, which is compatible with G and is torsion-free with the
Christoffel symbols Γ C

AB = 1
2 GCD(GBD,A+GAD,B−GAB,D). In a manifold with a

connection, the curvature is a map R ∶X (B)×X (B)×X (B)→X (B) defined
by

R(X,Y)Z =∇X∇YZ−∇Y∇XZ−∇[X,Y]Z, (5)

or in components, RA
BCD =Γ A

CD,B−Γ A
BD,C +Γ A

BMΓ M
CD−Γ A

CMΓ M
BD.

An N-dimensional Riemannian manifold is locally flat if it is isometric
to Euclidean space. This is equivalent to vanishing of the curvature tensor
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[31, 9]. Ricci curvature is defined as RAB =RC
ACB. The trace of Ricci curvature

is called scalar curvature: R = RABGAB. In dimensions two and three Ricci
curvature algebraically determines the entire curvature tensor. In dimension
three [28]:

RABCD =GACRBD−GADRBC −GBCRAD+GBDRAC −
1
2

R(GACGBD−GADGBC) . (6)

In dimension two RAB =RgAB, and hence, scalar curvature completely charac-
terizes the curvature tensor and is twice the Gauss curvature.3

2.1 Exterior calculus

We introduce differential forms on an arbitrary manifold B following [1]. The
permutation group on N elements consists of all bijections σ ∶ {1, ...,N} →
{1, ...,N} and is denoted by SN . For Banach spaces E and F, a k-multilinear
mapping t ∈ Lk(E;F), i.e., t ∶E×E× ...×E→ F is called skew symmetric if

t(e1, ...,ek) = (sign σ)t(eσ(1), ...,eσ(k)), ∀e1, ...,ek ∈E, σ ∈ Sk, (7)

where sign σ is +1 (−1) if σ is an even (odd) permutation. The subspace
of skew-symmetric elements of Lk(E;F) is denoted by Λ k(E,F). Elements of
Λ k(E,F) are called exterior k-forms. Wedge product of two exterior forms
α ∈ Λ k(E,F) and β ∈ Λ l(E,F) is a (k + l)-form α ∧β ∈ Λ k+l(E,F), which is
defined in components as

(α ∧β)i1...ik+l = ∑
(k,l)∈SK+l

(sign σ)ασ(i1)...σ(ik)βσ(ik+1)...σ(ik+l). (8)

For a manifold B, the vector bundle of exterior k-forms on TB is denoted
by Λ k

B ∶Λ
k(B)→B. In a local coordinate chart a differential k-form α has the

following representation

ω = ∑
I1<I2<...<Ik

ωI1I2...Ik dX I1 ∧ ...∧dX Ik , I1,I2...,Ik ∈ {1,2, ...,N}, (9)

where ωI1I2...Ik are C∞ maps. The space of k-forms on B is denoted Ω k(B).
Let

Ω(B) = ⊕
k=0,1,...

Ω k(B), (10)

3 It is known that the necessary compatibility equations for the right Cauchy-Green
strain C♭ in 2D and 3D are written as R(C♭) = 0 and R(C♭) = 0, respectively, i.e., in 2D
there is only one compatibility equation while in 3D there are six. Note also that the
Bianchi identities do not reduce the number of compatibility equations.
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with its structure as a real vector space and multiplication ∧. Ω(B) is called
the algebra of exterior differential forms on B.

Let U be an open subset of an N-manifold B. Consider the unique family
of mappings dk(U) ∶Ω k(U)→Ω k+1(U) (k = 0,1, ...,N) merely denoted d with
the following properties: (i) d(α ∧β) = dα ∧β +(−1)kα ∧dβ , ∀α ∈Ω k(U), β ∈
Ω l(U), ii) If f ∈Ω 0(U), d f is the (usual) differential of f , iii) d2 = d ○d = 0
(i.e., dk+1(U)○dk(U) = 0), iv) d is a local operator (natural with respect to
restrictions), i.e., if U ⊂V ⊂B are open and α ∈Ω k(V), then d(α ∣U) = (dα)∣U .
In component form, for the differential form in (9) one writes

dω =
∂ ωI1I2...Ik

∂XJ dXJ ∧dX I1 ∧ ...∧dX Ik , (11)

where summation over repeated indices is implied.
For an N-manifold B, dim[Λ k(B)] = (Nk) = (

N
N−k) = dim[Λ N−k(B)]. This

shows that Λ k(B) and Λ N−k(B) should be isomorphic to each other. The
natural isomorphism is the Hodge star operator. Hodge star is the unique
isomorphism ∗ ∶Λ k(B)→Λ N−k(B) satisfying

α ∧∗β = ⟪α,β⟫G µ, ∀ α,β ∈Λ k(B), (12)

where ⟪,⟫G and µ are the standard Riemannian inner product and the stan-
dard volume element on B, respectively. As an example, Λ 1(R3) and Λ 2(R3)
are both three dimensional and ∗ ∶Λ 1(R3)→Λ 2(R3) is defined by

e1↦ e2∧e3, e2↦ e3∧e1, and e3↦ e1∧e2. (13)

The codifferential operator δ ∶Ω k+1(B)→Ω k(B) is defined by

δ(Ω 0(B)) = 0,

δα = (−1)Nk+1 ∗d ∗α, ∀ α ∈Ω k+1(B), k = 0,1, ...,N −1.
(14)

This is the adjoint of d with respect to ⟪,⟫G. For an oriented smooth N-
manifold B with boundary ∂B and α ∈ Ω N−1(B), Stokes’ theorem tells us
that

∫
∂B

α = ∫
B

dα, (15)

assuming that both integrals exist.

3 Algebraic Topology

To make this chapter self-contained, we tersely review some notation and facts
from algebraic topology and also refer the reader to the relevant literature
for more details.
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3.1 Homology and cohomology groups

An r-form ω is closed if dω = 0 and it is exact if there exists an (r − 1)-
form α such that ω = dα. An exact differential form is always closed, and
from Poincaré’s lemma a closed form is locally exact. However, globally a
closed differential form may not be exact. Cohomology aims in finding the
topological obstructions to exactness. This turns out to be directly related
to the compatibility equations of elasticity. In the following we mainly follow
[40, 20, 24, 27, 53].

3.1.1 Group theory

For two Abelian groups (G1, .) and (G2, .), a map f ∶G1→G2 is a homomor-
phism if

f (x.y) = f (x). f (y), ∀x,y ∈G1. (1)

Our notation is flexible here; we use x.y and xy interchangeably. If in addition
f is a bijection, it is an isomorphism, G1 and G2 are said to be isomorphic,
and this is denoted by G1 ≅ G2. Let H ⊂ G be a subgroup. If xy−1 ∈ H, then
x,y ∈G are called equivalent and we write x ∼ y. The equivalence class of x is
denoted by [x]. G/H is the quotient space — the set of equivalence classes —
and [x].[y]= [xy]. If ghg−1 ∈H,∀g ∈G,h ∈H, H is called a normal subgroup. For
a normal subgroup H, G/H is always a subgroup called the quotient group.
For a homomorphism f ∶G1→G2, Ker f and Im f are subgroups of G1 and G2,
respectively, where

Ker f = {x ∈G1∣ f (x) = 1}, Im f = {x ∈G2∣x ∈ f (G1) ⊂G2}, (2)

and 1 is the identity element of G2. The isomorphism theorem of group theory
tells us that G1/Ker f ≅ Im f .

Let (G, .) be an Abelian group, i.e., x.y = y.x, ∀ x,y ∈ G. If there exist
g1, ...,gn ∈G such that

g = gλ1
1 ...gλn

n , ∀ g ∈G,λi ∈Z, (3)

then G is called a finitely-generated Abelian group with generators g1, ...,gn.
If in addition

g = gλ1
1 ...gλn

n = 1 ⇒ λ1 = ... = λn = 0, (4)

G is called a free finitely-generated Abelian group, and g1, ...,gn are called free
generators or a basis. It can be shown that (G, .) is a free finitely-generated
Abelian group if and only if every g has a unique representation with respect
to the basis {g1, ...,gn}.

Suppose S = {s1, ...,sk} is a set of distinct elements. Let S̃ be the set of
expressions of the form s̃ =∏k

i=1 sλi
i , where λi ∈Z. Then ∏k

i=1 sλi
i =∏

k
i=1 sµi

i if and
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only if λi = µi, i = 1, ...,k. Multiplication is defined as

∏
i

sλi
i ∏

i
sµi

i =∏
i

sλi+µi
i . (5)

S̃ is a free finitely-generated Abelian group with basis {s1
1s0

2...s
0
k , ...,s

0
1...s

0
k−1s1

k}.
S̃ is called the free finitely-generated Abelian group on S. If G is an Abelian
group, g ∈G has finite order if gn = 1 for some n ∈N. The set of all elements
of finite order in G is a subgroup called the torsion subgroup T of G. If T is
trivial, i.e., T = {1}, G is called torsion-free. Any free Abelian group is torsion-
free. For x,y ∈G, and G a group, [x,y] = xyx−1y−1 ∈G is called the commutator
of x and y. [G,G] is a normal subgroup of G generated by all commutators.
Note that G/[G,G] is an Abelian group.

The direct sum of two groups A and B is the set of pairs (a,b),a ∈ A,b ∈ B
and is denoted by A⊕B. Group multiplication in A⊕B is defined as

(a1,b1).(a2,b2) = (a1a2,b1b2), ∀a1,a2 ∈ A, ∀b1,b2 ∈ B. (6)

Generalization of this to any finite number of groups is straightforward.

3.1.2 Combinatorial group theory

In combinatorial group theory one studies groups that are described by gen-
erators and some defining relations. Here we mainly follow [8] and [53]. If
X ⊂ G, the smallest subgroup of G containing X is denoted by ⟨X⟩ and is
characterized as

⟨X⟩ = {g ∈G∣ g = xε1
1 xε2

2 ...xεk
k , xi ∈ X ,εi = ±1}. (7)

xε1
1 xε2

2 ...xεk
k is called an X-word or simply a word. A word is reduced if xi = xi+1

implies that εi+εi+1 ≠0, i=1, ...,k−1. For example, the word x−1
1 x−1

1 x2x−1
2 x1x1x1x2

is not reduced while x1x2 is reduced. If G = ⟨X⟩ and every non-empty reduced
X-word w ≠G 1, X is called a free group. In this case, two reduced X-words
have equal values in G if and only if they are identical. A group is finitely
generated if it can be generated by a finite set. If G is a freely generated
group by X , then for any group H and map ψ ∶ X → H, there is a unique
homomorphism φ ∶G→H such that φ ∣X = ψ. For a group G, and X ⊂G, the
normal closure of X in G (the smallest normal subgroup of G containing X)
is defined as

gpG(X) = ⟨{g−1xg∣ g ∈G,x ∈ X}⟩ . (8)

If F is a free group on X ⊂G and ψ ∶X →G, a map such that G = ⟨ψ(X)⟩, then
the extension of this map φ ∶F →G has kernel K = gpF(R), where R ⊂F . Then
one writes G = ⟨X ;R⟩ and this is called a presentation for G, which comes with
an implicit map ψ ∶ X → G, the presentation map. Elements of R are called
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defining relators. A group is finitely-presented if it has a finite presentation,
i.e., if both X and R are finite.

Any normal subgroup of a group G consists of elements expressed by words
of the following form

n

∏
i=1

gix
εi
ji
g−1

i , gi,x ji ∈G, εi = ±1. (9)

This normal subgroup is said to be generated by x1,x2, ... ∈G and is denoted
by gpG({x1,x2, ...}) as in (8). Dyck’s theorem says that the group ⟨X ,R⟩ is the
quotient of F = ⟨X⟩ by its normal subgroup gpG(R).

3.1.3 Chain complexes and homology groups

Let {v0, . . . ,vk} be a geometrically independent set in RN , i.e., {v1−v0, . . . ,vk−
v0} is a set of linearly independent vectors in RN . A k-simplex σ k is defined
as

σ k = {x ∈RN ∣x =
k

∑
i=0

tivi, where 0 ≤ ti ≤ 1,
k

∑
i=0

ti = 1} . (10)

The numbers ti are uniquely determined by x and are called barycentric co-
ordinates of the point x of σ with respect to vertices v0, . . . ,vk. The number
k is the dimension of σ k. A simplical complex K in RN is a collection of sim-
plices in RN such that (i) every face of a simplex of K is in K, and (ii) the
intersection of any two simplices is either empty or a face of each of them.
The largest dimension of the simplices of K is called the dimension of K. A
subcomplex of K is a subcollection of K that contains all faces of its elements.

Suppose K is an oriented simlicial complex of dimension n. Let αp be the
number of p-simplices of K, 0≤ p≤ n. Let {σ1

p , ...,σ
αp
p } be the set of p-simplices

of K. The pth chain group of K with integer coefficients is denoted by Cp(K)
and is a free Abelian group on the set {σ1

p , ...,σ
αp
p }, i.e.,4

σ ∈Cp(K), σ =
αp

∑
i=1

λiσ i
p , λi ∈Z . (11)

For p > n or p < 0, Cp(K) = 0. Let σ = (v0, ...,vp) be an oriented p-simplex of
K. Then, the boundary of σ is defined as

∂σ = ∂pσ =
p

∑
i=0
(−1)i(v0, ..., v̂i, ...,vp), (12)

4 Here, we find it more convenient to use an additive notation. Also, to be more specific
we should denote the group by Cp(K;Z) to emphasis that it has integer coefficients.
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where hat over vi indicates omission of vi. The boundary homomorphism
∂p ∶Cp(K)→Cp−1(K) is defined as

∂p (∑λiσ i
p) =∑

i
λi∂p(σ i

p). (13)

Note that for any p, ∂ ○ ∂ = ∂p−1 ○ ∂p = 0. Note also that Im∂p+1 ⊂ Ker∂p.
Zp =Ker∂p is the set of p-cycles and Bp = Im∂p+1 is the set of p-boundaries.
Hp(K) = Zp(K)/Bp(K) is a finitely generated Abelian group and quantifies
the non-bounding p-cycles of K. This is called the pth homology group of K
(with integer coefficients). Note that Hn(K) = Zn(K) is free Abelian. Two p-
cycles z and z′ ∈ Zp(K) are homologous (z ∼ z′) if z−z′ ∈Bp(K). It is a fact that
homology groups are topological invariants, i.e., two homeomeorphic topo-
logical spaces have isomorphic homology groups. For a simplicial complex,
the set of simplices as subsets of Rm (m ≤ n) is called the polyhedron ∣K∣ of
K. For a topological space X , if there exists a simplicial complex K and a
homeomorphism f ∶ ∣K∣→X , X is said to be triangulable and (K, f ) is called a
triangulation of X . For a triangulable topological space X , given an arbitrary
triangulation (K, f ), Hr(X) ∶=Hr(K),r = 0,1, ....5

Example 3.1 Circle S1 is not the boundary of any 2-chain, and hence, H1(S1)
is generated by the circle itself (only one generator), i.e., H1(S1) = Z. S1 is
connected, and hence, H0(S1) = Z. A similar example is the punctured plane
R2/(0,0), which is connected and its first homology group is generated by
any simple closed curve circling the origin once.

Example 3.2 Torus T 2 is not a boundary of any 3-chain. Thus, H2(T 2) is
freely generated by one generator, the surface itself, i.e., H2(T 2) ≅ Z. T 2 is
connected, and hence, H0(T 2) ≅Z. H1(T 2) is freely generated by the loops γ1
and γ2 (see Fig. 2), and hence, H1(T 2) ≅ Z⊕Z. The group presentation can
be written as π1(T 2) = ⟨γ1,γ2⟩. For a torus of genus g (the number of closed
cuts that leave the torus path-connected)

H1(Σg) ≅Z⊕Z⊕ ...⊕Z´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2g

. (14)

Example 3.3 Möbius band is constructed from a square by the identification
shown in Fig. 3. z is a generator of the first homology group H1(M,Z), i.e.,
H1(M,Z) =Z.

Remark 3.4 Note that Zr(K) and Br(K) are both free Abelian groups as they
are both subgroups of a free Abelian group Cr(K). However, this does not

5 Note that the homology groups are independent of triangulations. Note also that not
every space can be triangulated. For such spaces one can still define homology, e.g.,
singular and Čech homologies.
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Fig. 2 A torus can be constructed from a square by the identifications shown above. γ1
and γ2 are generators of the first homology and first homotopy groups.

imply that Hr(K) is also free Abelian. From the fundamental theorem of
finitely-generated Abelian groups one has

H1(K;Z) ≅Z⊕Z⊕ ...⊕Z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f

⊕ Zk1 ⊕ ...⊕Zkp
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

torsion subgroup

, (15)

where k1, ...,kp are integers, ki+1 divides ki (i = 1, ..., p−1), and Zki = Z/kiZ is
the set of integers modulo ki. f is called the rank of H1(K;Z) or the first Betti
number and p is called the torsion number. The torsion subgroup contains
all the elements of the first homology group that have finite order.

Let M be an m-dimensional manifold and let σr be an r-simplex in Rm, and
f ∶ σr →M a smooth map, not necessarily invertible. sr = f (σr) ⊂M is called
a singular r-simplex in M (these simplices do not provide a triangulation of
M). Given the set of r-simplices {sr

i} in M, an r-chain in M is defined as

c =∑
i

aisr
i , ai ∈R. (16)

The r-chains in M form the chain group Cr(M) with real coefficients. The
boundary of a singular r-simplex sr is defined as ∂ sr ∶= f (∂σr). The boundary
and cycle groups Br(M) and Zr(M) are defined similarly to those of simplicial
complexes. The singular homology group is defined as Hr(M) ∶=Zr(M)/Br(M).
The singular homology group is isomorphic to the corresponding simplicial
homology group with R-coefficients.

a a
a

z

z

Fig. 3 Möbius band and its deformation retract to a circle.
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3.1.4 Cohomology groups

Integration of an r-form ω over an r-chain in M is defined as

∫
sr

ω = ∫
σr

f ∗ω, (17)

where f ∗ω is the pull-back of ω under f . For c =∑i aisr
i ∈Cr(M):

∫
c
ω =∑

i
ai∫

sr
i

ω. (18)

The set of closed r-forms (rth cocycle group) is denoted by Zr(M). The set
of exact r-forms (the rth coboundary group with real coefficients) is denoted
by Br(M). The rth de Rham cohomology group of M is defined as

Hr(M;R) ∶= Zr(M)/Br(M). (19)

For ω ∈ Zr(M), [w] ∈Hr(M) (the equivalence class of ω) is defined as

[ω] = {ω ′ ∈ Zr(M)∣ω ′ =ω +dψ, ψ ∈Ω r−1(M)}, (20)

where Ω r−1(M) is the set of (r−1)-forms on M.

Example 3.5 The first cohomology group of the unit circle S1 = {eiθ ∣0≤θ < 2π}
is calculated as follows. Let ω and ω ′ be closed forms (dω = dω ′ = 0) that
are not exact. Note that ω ′−aω is exact when a = ∫

2π
0 ω ′/∫

2π
0 ω. Thus, given

ω such that dω = 0, any closed 1-form ω ′ is cohomogolous to aω for some
a ∈R. Hence, each cohomology class is given by a real number a. Therefore,
H1(S1) =R.

The period of a closed r-form ω over a cycle c is defined as (c,ω) = ∫c ω.
For [c] ∈Hr(M),[ω] ∈Hr(M) define

Λ([c],[ω]) ∶= (c,ω) = ∫
c
ω. (21)

We note that both Λ(.,[ω]) ∶Hr(M)→R, and Λ([c], .) ∶Hr(M)→R are linear
maps. De Rham’s theorem [18, 25] says that if M is a compact manifold,
Hr(M) and Hr(M) are finite-dimensional and the map Λ ∶Hr(M)×Hr(M)→R
is bilinear and non-degenerate. Hence, Hr(M) is the dual vector space of
Hr(M). As a corollary of de Rham’s theorem, for a compact manifold M,
let br = dimHr(M;R) be its rth Betti number. Let c1, ...,cbr be generators of
Zr(M). Then, a closed r-form ψ is exact if and only if6

6 This was conjectured by Cartan in 1928 and was proved later on by de Rham [20].
This theorem can be summarized as follows. If for a closed form ω, (c,ω) = 0 for all
p-cycles, then ω is exact. If for a p-cycle c, (c,ω) = 0 for all closed p-forms, then c is a
boundary.
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∫
ci

ψ = 0, i = 1, ...,br. (22)

Note that Λ([ci], .) ∶Hr(M)→R is non-degenerate, and hence, Λ([ci],[ω]) = 0
implies [ω] = 0, i.e., the cohomology class of exact forms. Duff [22] generalized
this theorem to manifolds with boundary.7

3.1.5 Relative homology groups

The relative homology groups were introduced by S. Lefschetz [32]. These are
important in problems with boundary conditions and also appear in duality
theorems. Let K be an oriented simplicial complex of dimension n and L ⊂K.
The pth chain group of K modulo L (the pth relative chain group) is the
subgroup of Cp(K) in which the coefficient of every simplex of L is zero.
This is denoted by Cp(K,L) ⊂Cp(K). Let us define a homomorphism j = jq ∶
Cq(K)→Cq(K,L), which changes to zero the coefficient of every simplex in L.
The relative boundary homomorphism ∂̃ = ∂̃p ∶Cp(K,L)→Cp−1(K,L) is defined
as

∂̃c = jp−1(∂pc), ∀c ∈Cp(K,L). (23)

Note that ∂̃p = jp−1 ○∂p ○ ip, where ip ∶Cp →Cp(K) is the inclusion map. Note
also that for any p, ∂̃ ○ ∂̃ = ∂̃p−1 ○ ∂̃p = 0.

Let Ω be a compact manifold and S ⊂ Ω a compact subset. C∗(Ω) =
{Cp(Ω),∂p} is the chain complex corresponding to Ω and for S ⊂Ω ,C∗(S) =
{Cp(S),∂ ′p}, where Cp(S) ⊂Cp(Ω), ∀p, is the chain complex associated with
S. The relative chain group is defined as

Cp(Ω ,S) ∶=Cp(Ω)/Cp(S) = {c+Cp(S)}, c ∈Cp(Ω). (24)

The induced boundary operator ∂ ′′p ∶Cp(Ω)/Cp(S)→Cp−1(Ω)/Cp−1(S) is de-
fined the obvious way. Zp(Ω ,S) = Ker∂ ′′p is the group of relative p-cycles
modulo S and Bp(Ω ,S) = Im∂ ′′p+1 is the group of relative p-boundaries of Ω
modulo S. Note that z is a relative p-cycle if its boundary lies in S and b
is a relative p-boundary if it is homologous to some p-chain in S. In Fig. 4,
four paths on a cylinder are shown. c1 and c2 are relative boundaries, i.e., are
elements of B1(Ω ,∂Ω), c3 ∈H1(Ω), and c4 ∈H1(Ω ,∂Ω).

Cp(Ω ,S) is defined to be the set of linear combinations of p-forms whose
support lies in Ω/S. For z ∈ Zp

c (Ω/S), ∫z ω is the relative period of ω on z,
where Zp

c (Ω/S) is the set of closed p-forms with compact support in Ω/S.
Suppose M is a manifold with boundary ∂M. If a closed p−form has zero
relative periods in M, then α is an exact relative p-form [22].

7 Duff [22] showed that a closed form with zero relative periods in H1(M,∂M) is a closed
relative form, i.e., a closed form with compact support in M.
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3.1.6 Duality theorems in algebraic topology

The following duality theorems are useful in nonlinear elasticity applications.

• Poincaré duality: For an orientable n-manifold M without boundary,
H p

c (M) ≅Hn−p(M), where H p
c (M) ∶= Zp

c (M)/Bp
c (M), and Zp

c (M) and Bp
c (M)

are the closed and exact p-forms with compact supports in M, respectively.
For compact manifolds from de Rham’s theorem Hp(M) ≅Hn−p(M).

• Lefschetz duality: For a compact n-manifold M, Hn−p
c (M) ≅ Hp(M,∂M).

From de Rham’s theorem, Hn−p(M) ≅ H p
c (M/∂M). Therefore, Hn−p(M) ≅

Hp(M,∂M).8 Thus, bn−p(M) = bp(M,∂M).
• Poincaré-Lefschetz duality: For a compact, orientable n-manifold M with

boundary (for 0 ≤ k ≤ n), Hk(M;Z) ≅ Hn−k(M,∂M;Z). This holds for any
Abelian coefficient group as well.

• Alexander duality: For a closed subset M of an n-manifold Q, H p(M) ≅
Hn−p(Q,Q/M). In elasticity applications, Q =R3. It can be shown that for
p ≠ 2, H p(M) ≅ H2−p(R3/M), and R⊗H2(M) ≅ H0(R3/M) [27]. Thus, for
p ≠ 2, bp(M) = b2−p(R3/M), and 1+b2(M) = b0(R3/M).

Let us now restrict ourselves to embedded 3-submanicolds of R3,9 which
model our three-dimensional deformable bodies in elasticity. H0(M) is gen-
erated by equivalence classes of points in M; two points are in the same
equivalence class if they can be connected to each other by a continuous
path in M. H1(M) is generated by equivalent classes of oriented loops; two
loops are in the same equivalence class if their “difference” is the boundary
of an oriented surface in M. H1(M,∂M) is generated by the equivalence class

Fig. 4 A cylinder Ω = S1 ×
[0,1]. S = ∂Ω = γ1 ∪ γ2 has
two components. c1 and
c2 are relative boundaries,
c3 generates H1(Ω), and
c4 is a relative cycle but
not a relative boundary; it
generates H1(Ω ,∂Ω).

c
1

c
2

c
3

c
4

γ
1

γ
2

Ω

8 Love [34] in Article 156 writes: “Now suppose the multiply-connected region to be
reduced to a simply-connected one by means of a system of barriers.” A “barrier” Ω in a
three-dimensional body B is a generator of H2(B,∂B) ≅H1(B), and in a two-dimensional
body it is a generator of H2(B,∂B) ≅H1(B).
9 Cantarella, et al. [12] present an elementary exposition of homology theory with ap-
plications to vector calculus. The reader may find their exposition useful.
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of oriented paths with end points on ∂M; two paths are equivalent if their
“difference” (augmented by paths on ∂M if necessary) is the boundary of an
oriented surfaces in M. From Poincaré duality we know that

H0(M) ≅ H3(M,∂M), (25)
H1(M) ≅ H2(M,∂M), (26)
H2(M) ≅ H1(M,∂M), (27)
H3(M) ≅ H0(M,∂M). (28)

Define Mc =R3/M. From Alexander duality one has

H0(M) ≅H2(Mc), H1(M) ≅H1(Mc), H0(Mc) ≅R⊗H2(M). (29)

Let Σ1, ...,Σk be a family of surfaces in M with boundaries on ∂M such that
they generate H2(M,∂M). As an example, consider the solid torus with two
holes shown in Fig. 5 for which k = 2. Let γ1, ...,γk be loops in the interior of
M that generate H1(M) chosen such that intersection number of ci with Σ j is
δi j.10 These loops can be chosen to be disjoint. If one pushes the boundaries
of Σ1, ...,Σk slightly into Mc, one obtains the loops Γ1, ...,Γk that generate
H1(Mc).

γ
1

γ
2

Γ
1

Σ
1

Γ
2

Σ
2

Fig. 5 A two-hole solid torus M. The closed curves γ1 and γ2 are generators of H1(M).
Γ1 and Γ2 are generators of H1(R3/M).

3.2 Homotopy and the fundamental group

Fundamental group was introduced by Poincaré in 1895 and plays an impor-
tant role in understanding compatibility equations. It is much easier to define
compared to homology groups but it is much harder to calculate, in general.
A path in a topological space X is a map c ∶ [0,1]→X . It is simple if it is one-
to-one. A closed path (loop) has the same end points, i.e., c(0) = c(1), which
10 This is possible as a consequence of Poincaré duality.
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is called the base point of the loop. A cycle is a continuous map γ ∶ S1 → X .
It is different from a loop because in a cycle no end points are distinguished.
Two paths c1 and c2 having the same end points are homotopic if there is a
continuous family of paths whose end points are the same as those of c1 and
c2. Roughly speaking, the set of equivalent paths based at x0 constitute the
fundamental group π1(X ,x0). An isotopy between c1 and c2 is a homotopy for
which the curves remain simple during the whole deformation process from
c1 to c2. Note that two homotopic simple paths are not necessarily isotopic.
We make these notions more precise in the following.

Consider a topological space X and a base point x0 ∈X . Two loops based at
x0 are equivalent if one loop can be continuously deformed to the other loop. A
loop based at x0 is a continuous map f ∶ I = [0,1]→X such that f (0)= f (1)= x0.
Two loops f ,g are called homotopic if there is a continuos function F ∶ I×I→X
such that F(s,0) = f (s),F(s,1) = g(s), F(0,t) = F(1,t) = x0. F is a homotopy
between f and g and this is denoted by f ∼F g. It can be shown that homotopy
gives an equivalence relation on loops based at x0. The equivalence class of f
is denoted by [ f ] and the equivalence classes are elements of the fundamental
group π1(X ,x0). Group multiplication is defined as [ f ][g] = [ f g], where f g is
defined by first going along the loop f and then along the loop g. Inverse of a
loop f , f −1 is the same loop with the opposite orientation and [ f ]−1 = [ f −1].
Identity loop at x0 is a loop f ∶ [0,1]→ X such that f (s) = x0,∀ s ∈ [0,1]. For a
path-connected topological space X fundamental groups at two distinct points
x0 and x are isomorphic. A path α connecting x0 to x (α(0) = x0,α(1) = x),
induces an isomorphism α∗ ∶π1(X ,x)→π1(X ,x0) defined as α∗([ f ])= [α f α−1]
(see Fig. 6).

A path-connected space X is simply-connected if π1(X ,x0) ≅ {1}. Rn is
an example of a simply-connected space. Another example is the 2-sphere
S2. In a simply-connected and path-connected space any closed path can be
continuously shrunk to any point in the space.

Example 3.6 The fundamental group of the unit circle S1 is π1(S1) = Z. Ho-
motopy class of a loop is determined by the number of times it winds around.
In other words, any closed path in the circle can be tightened through homo-
topy into the product of n standard circular paths. Torus T 2 = S1×S1 has the
fundamental group π1(T 2) ≅Z⊕Z and is Abelian.

Fig. 6 Having a loop f
based at x a loop αγα−1

based at x0 is constructed.

f

α

α-1

x
0

x
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Consider two paths f ,g ∶ I→X , f (0) = a0, f (1) = a1, and g(0) = b0,g(1) = b1.
f and g are said to be freely homotopic if there exists a continuous map
F ∶ I × I → X such that F(s,0) = f (s),F(s,1) = g(s). In addition to this if
F(0,t) = a0,F(1,t) = b0, f and g are called homotopic. Two loops f ,g ∶ I → X
are freely homotopic if there is a continuos map F ∶ I × I → X such that
F(s,0) = f (s),F(s,1) = g(s) and F(0,t) = F(1,t) = α(t) is a path between
f (0) = f (1) = a and g(0) = g(1) = b.

Let Y be a topological space. X ⊂ Y is a retract of Y if there exists a
continuous map r ∶Y → X such that r(x) = x for all x ∈ X . X is a deformation
retract of Y if it is a retract of Y and there is a continuous map h ∶ [0,1]×Y →Y
such that: i) h(0,y) = y, h(1,y) = r(y), ∀y ∈ Y , and ii) h(t,x) = x, ∀x ∈ X , ∀t ∈
[0,1]. A deformation retract r ∶ Y → X induces an isomorphism r∗ ∶ π1(Y)→
π1(X). One can visualize deformation retraction as a continuous collapse
of Y onto X in such a way that each point of X remains fixed during the
deformation process.

Example 3.7 The Möbius bandM is constructed from a square by the iden-
tification shown in Fig. 3. This is an example of a non-orientable surface. The
circle S1 is a deformation retract of the Möbius band, and hence, π1(M) =Z.

Example 3.8 Consider the solid cylinder Ω with four tubular holes shown in
Fig. 7. As is shown schematically Ω has a deformation retract to a bouquet
of four circles, and hence, π1(Ω) =Z⊗Z⊗Z⊗Z, i.e., the free group with four
generators. If this is a solid body, e.g., a hollow bar under torsion and bending,
we will see in the next section that because ci’s are free generators of the
fundamental group, each would require an additional (vectorial) compatibility
equation.

c1 c2

c3
c4

Fig. 7 A solid cylinder with four tubular holes and its deformation retract to a bouquet
of four circles. c1,c2,c3,c4 are the generators of the fundamental group.

H. F. F. Tietze (1908) showed that the fundamental group of any compact,
finite-dimensional, path-connected manifold is finitely presented. One forms
the Abelization of a group by taking the quotient over the subgroup generated
by all commutators g−1h−1gh. Pioncaré isomorphism theorem tells us that
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(Pioncaré, 1895)11

π1(M)/[π1(M),π1(M)] ≅H1(M,Z). (30)

Given a group G with the presentation

G = ⟨a1, ...,am; r1, ...,rn⟩, (31)

its Abelianization is obtained by adding the relations aia j = a jai and it is
independent of the presentation of G.

γ
1

γ
3

γ
2

Fig. 8 A sphere with k holes and n handles. γ1, γ2, and γ3 are typical generators for the
first homologgy group. Note that a sphere with a single hole is simply-connected, i.e.,
there are k−1 generators corresponding to the k holes.

3.3 Classification of compact 2-manifolds with boundary

Let M1 and M2 be compact manifolds with boundary. Assume that their
boundaries have the same number of components. M1 and M2 are homeo-
morphic if and only if the manifolds M∗1 and M∗2 obtained by gluing a disk
to each boundary component are homeomorphic. Any compact surface is ei-
ther homeomorphic to a sphere, a connected sum of tori, or a connected sum
of projective planes. Any compact orientable two-manifold with boundary is
homeomorphic to a sphere with n handles and k holes, see Fig. 8.

11 If γn1
1 γn2

2 ...γnk
k = 1, Poincaré observed that n1γ1+n2γ2+ ...+nkγk is null-homologous [20].
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3.4 Curves on oriented surfaces

R. Baer in 1928 showed that simple closed curves on a 2-manifold are isotopic
if and only if they are homotopic [53]. Epstein [23] showed that any two sim-
ple, homotopic, non-contractible loops on an orientable surface are isotopic.
If c is a simple, null-homotopic (contractible) loop on a surface, then it is
the boundary of a topological disk (a genus zero surface with one boundary
curve) [33, 35], see Fig. 9. A zero-genus surface with two boundary curves
is called a cylinder. Any two non-contractible, non-intersecting, and freely
homotopic curves on a closed surface bound a cylinder [33]. We will use these
facts to derive the “bulk” compatibility equations.12

3.5 Theory of knots

Topology of subsets of R3 with tubular holes can, at least partially, be un-
derstood using the complementary spaces of knots. For the background in
knot theory we mainly follow [3, 17, 53]. A knot K is a simple closed curve in
R3. A knot K is trivial if it is isotopic to the circle in R3. The fundamental
group of a trivial knot R3/K is infinite cyclic. Any knot K can be represented
by a projection on a plane with no multiple points higher than double, with
an indication of the upper branch of each crossing point (each of the dou-
ble points). A projection of the trefoil knot (the simplest non-trivial knot) is
shown in Fig. 10. A link is a set of knots tangled up together.

If the lower branch (under crossing) of each crossing is broken, one obtains
a finite number of arcs αi. It turns out that π1(R3/K) is generated by loops
ci that pass around these arcs (this is rigorously proved using the Seifert-van
Kampen theorem). This means that the number of generators of π1(R3/K)
is equal to the number of crossing points. Given the crossing point shown in
Fig. 11a, the three generators of the fundamental group corresponding to the

Fig. 9 A null-homotopic
curve on an orientable
surface bounds a region.

12 These topological results are implicitly assumed in the literature of compatibility
equations.
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arcs αi,αi+1, and α j are ci,ci+1, and c j, respectively, and are oriented using
the right-hand rule. It can be shown that cic−1

j c−1
i+1c j is null-homotopic, or

equivalently, at this crossing point we have the relation ci+1c j = c jci [53]. All
the four possibilities and their corresponding group relations are shown in
Fig. 11b.

Next, as examples, we find the fundamental groups of the complements
of the two-crossing link, and the trefoil knot (see Fig. 12). Using the dia-
grams of Fig. 11b, it is straightforward to see that the fundamental groups
of the complements of the two-crossing link T1 and the trefoil knot T2 are,
respectively:

π1 (R3/T1) = ⟨c1,c2; c1c2 = c2c1⟩,

π1 (R3/T2) = ⟨c1,c2,c3; c3c1 = c2c3,c2c3 = c1c2,c1c3 = c2c1⟩.
(32)

Note that if the two circles are unlinked then π1 (R3/T1) = ⟨c1,c2⟩, i.e., a free
group with c1 and c2 as generators.

Remark 3.9 In the case of knots, Abelianization always gives an infinite cyclic
group [53]. A handlebodyHn is a solid body bounded by an orientable surface
of genus n embedded in R3. π1 (R3/Hn) is the free group of rank n.

Fig. 10 A trefoil knot
and its projection. γ is
the generator of the first
homology group of the
“thickened” trefoil and Γ
is the generator of the first
homology group of R3/T .
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Fig. 11 a) A crossing point. α j corresponds to the over crossing and αi and αi+1 corre-
spond to the under crossing. Their corresponding loops c j,ci, and ci+1 are oriented using
the right-hand rule. b) Two types of crossing points and their corresponding group re-
lations. Note that ci is the fundamental group generator corresponding to the arc αi,
etc.
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3.6 Topology of 3-manifolds

Material manifold — the natural configuration of a body — may be non-
Euclidean in many applications [41, 58, 59, 60, 61, 51]. However, for most
applications the ambient space is the Euclidean 3-space. We consider a body
that has a non-trivial topology, i.e., it has “holes”. We assume that the body is
elastic and the material manifold is an embedded 3-submanifold of R3. There
is a complete classification of 3-manifolds [29, 37], but it is not known what
3-manifolds can be embedded in R3. However, a large class of embedded 3-
submanifolds can be constructed by thickened knots and their complements in
R3. The important thing to note is the complexity of embedded 3-manifolds
and the importance of algebraic topology in deriving their necessary and
sufficient compatibility equations for non-simply connected bodies.

For an embedded 3-manifold with boundary in R3, its boundary is an
embedded closed (orientable) 2-manifold, which has a complete classifica-
tion. If the boundary of the 3-manifold is the two-sphere, then its topology
is uniquely determined by the genus of the boundary, i.e., the manifold is
simply the compact region bounded by the boundary in R3 (by the general-
ized Jordan-Brower separation theorem, any closed embedded 2-manifold in
R3 divides R3 into a pair of regions, and precisely one of these regions has
compact closure). If the boundary is not connected, then things are more
complicated. For instance even when the boundary consists of a single torus,
the compact region that it bounds in R3 is not uniquely determined, but it is
known that it must be either a solid torus or a knot complement. Things get
more complicated when the boundary has genus larger than one. The only
simple case is when the boundary is a sphere, in which case the manifold must
necessarily be a ball by Jordan’s theorem. To summarize, while 3-manifolds
with boundary have been completely classified, it is not known which ones
can be embedded in R3. The answer certainly depends on both the topology
of the boundary, as well as its isotopy (or knotting) in R3. As to what types
of “holes” can occur in a 3-dimensional solid, consider the following example:
Put a knot in the solid body, then “thicken” it to obtain a (knotted) solid
torus, and then remove the interior of that torus. This way one can construct
as many different types of holes (or topological types for the solid) as there
are knots. Now consider doing the same construction with multiple tori or
higher genus surfaces, which may be linked with each other.

Fig. 12 The double link
and the trefoil knot and
their corresponding arcs
αi.
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4 Kinematics of Nonlinear Elasticity

In this section we review the kinematics of nonlinear elasticity. A body B
is identified with a Riemannian manifold (B,G)13 and a configuration of
B is a mapping φ ∶ B → S, where (S,g) is another Riemannian manifold.
The set of all configurations of B is denoted by C. A motion is a curve c ∶
R → C;t ↦ φt in C. The material manifold is, by construction, the natural
configuration of the body. For a fixed t, φt(X) = φ(X ,t) and for a fixed X ,
φX(t) =φ(X ,t), where X is the position of a material point in the undeformed
configuration B. The material velocity is given by Vt(X) = V(X ,t) = ∂φ(X ,t)

∂ t .
Similarly, the material acceleration is defined by At(X) =A(X ,t) = ∂V(X ,t)

∂ t . In
components, Aa = ∂V a

∂ t + γa
bcV bV c, where γa

bc is the Christoffel symbol of the
local coordinate chart {xa}. The spatial velocity of a regular motion φt is
defined as vt ∶ φt(B)→ Tφt(X)S, vt =Vt ○φ−1

t , and the spatial acceleration at is
defined as a = v̇ = ∂v

∂ t +∇vv. In components, aa = ∂va

∂ t +
∂va

∂xb vb+ γa
bcvbvc.

Let φ ∶B→S be a C1 configuration of B in S, where B and S are manifolds.
The deformation gradient is the tangent map of φ and is denoted by F = T φ.
Thus, at each point X ∈B, it is a linear map F(X) ∶ TXB→ Tφ(X)S. If {xa} and
{XA} are local coordinate charts on S and B, respectively, the components of
F are Fa

A(X) = ∂φa

∂XA (X). F has the following local representation F = Fa
A

∂
∂xa ⊗

dXA. F can be thought of a vector-valued 1-form with the representation
F = ∂

∂xa ⊗ϑ a, with the coframes ϑ a = Fa
AdXA. The adjoint of F is defined by

FT ∶ TxS → TXB, ⟪FW,w⟫g = ⟪W,FTw⟫G, ∀W ∈ TXB, w ∈ TXS. (1)

In components, (FT(X))Aa = gab(x)Fb
B(X)GAB(X), where g and G are metric

tensors on S and B, respectively. The right Cauchy-Green deformation tensor
is defined as

C(X) ∶ TXB→ TXB, C(X) = FT(X)F(X). (2)

In components, CA
B = (FT)AaFa

B. It is straightforward to show that, C♭ =
φ∗(g) = F⋆gF, i.e., CAB = Fa

A(gab ○φ)Fb
B, where the dual of the deformation

gradient is defined as F⋆ = Fa
AdXA ⊗ ∂

∂xa . The Finger tensor is defined as
b = c−1, where c = φt∗G. In components, ba

b = Fa
AgbcFc

BGAB = Fa
A (FT)A b.

Thus
b(x) ∶ TxS → TxS, b(x) = F(X)FT(X). (3)

Polar decomposition theorem states that F =RU [48]. In components it reads
Fa

A = Ra
BUB

A, where R(X) ∶ TXB → Tφt(X)S is a (G,g)-orthogonal transfor-
mation, i.e., GAB = Ra

ARb
Bgab, and U(X) ∶ TXB → TXB is the material stretch

tensor. Note that G =R∗g and C =U∗G.

13 In general, (B,G) is the underlying Riemannian manifold of the material manifold,
i.e., its natural state. See [58, 59, 60, 61] for more details.
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5 Compatibility Equations in Nonlinear Elasticity

In this section we summarize the results of [62], [4], and [5]. We assume a
finite body, and hence, the material manifold (B,G) is a compact Rieman-
nian manifold. We also assume that the first homology and homotopy groups
H1(B) and π1(B) are given. In the presence of boundary conditions we will
use the relative homology groups, which are also assumed to be given. In [62]
we derived the compatibility equations for the deformation gradient F using
a generalization of de Rham’s theorem. The F-compatibility equations can be
derived using the fundamental group as well. It turns out that understanding
the role of homotopy in compatibility equations is crucial in formulating the
C-compatibility equations [62].

5.1 Compatibility equations for the deformation gradient F

The following old questions in vector calculus are relevant to the compatibility
equations: i) Given a vector field defined on some bounded domain in the
Euclidean 3-space, is it the gradient of some function defined on the same
domain? ii) Is it the curl of another vector field? It turns out that the topology
of the domain of definition of the vector field plays a crucial role. The F-
compatibility problem is stated as: Given a body B ⊂R3, find the condition(s)
that guarantee existence of a map φ ∶B→R3 such that F = T φ. Question i) is
related to compatibility equations while question ii) is related to the existence
of stress functions in elasticity. The following proposition summarizes the F-
compatibility equations, which is a simple extension of de Rham’s theorem
to R3-valued forms.

Proposition 5.1 (Yavari [62]) The necessary and sufficient F-compatibility
equations are14

dF = 0, and ∫
ci

FdX = 0, i = 1, ...,b1(B), (1)

where ci, i = 1, ...,b1(B) are the generators of H1(B;R).

Instead of using de Rham’s theorem, one may follow a different path using
the fundamental group. Let us assume that the position of a point X0 ∈ B in
the deformed configuration x0 ∈ S is given. The position of an arbitrary point
X ∈ B in the deformed configuration is given as

14 The exterior derivative of the deformation gradient dF can be identified with CurlF.
Note that dF = 0 is equivalent to ∇GF = 0, where ∇G is the Levi-Civita connection
corresponding to the material metric G [63]. In components, Fa

A,B =Fa
B,A, or equivalently,

Fa
A∣B = Fa

B∣A.
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x = x0+∫
γ

FdX. (2)

Note that the ambient space is Euclidean, and hence, integrating vector
fields makes sense. F is compatible if and only if the above integral is path-
independent, which is equivalent to

∫
γ

FdX = 0, (3)

for any closed path γ based at X0.
Suppose π1(B) has the generators {γi}i=1,...,m. For a compact material man-

ifold B, i.e., a finite body, the fundamental group has a finite presentation
[53]

π1(B) = ⟨γ1, ...,γm;r1, ...,rn⟩, (4)

where
ri = γ

εi1
i1

...γ
ε ji
ji
= 1, i = 1, ...,n, εk = ±1, (5)

are the relators of the fundamental group. If γ is a contractible (null homo-
topic) curve that lies on a 2-submanifold P ⊂ B, then

∫
γ

FdX = ∫
∂U

FdX = ∫
U

d(FdX) = 0, (6)

where γ = ∂U ⊂ P [33, 23]. Because P is arbitrary one concludes that dF = 0
in B, which is a necessary compatibility condition. Note that from (3)

∫
γi

FdX = 0, i = 1, ...,m. (7)

Therefore, dF = 0, and ∫γi
FdX = 0, i = 1, ...,m subjected to ∫ri

FdX = 0, i = 1, ...,n
are necessary for compatibility of F. It turns out that they are sufficient as
well. Given a null-homotopic curve γ, γ = ∂Ω , and hence, from dF = 0, one
can write

∫
γ

FdX = ∫
∂U

FdX = ∫
U

d(FdX) = ∫
U

dF∧dX = 0. (8)

If γ is non-contractible, in terms of the group generators it has the repre-
sentation γ = (w1γ1w−1

1 )
ε1 ...(wpγpw−1

p )
εp , where wi is a curve joining X0 to a

point on γi and {γ1, ...,γp} is a subset of the group generators with possible
relabelings. Using the relations ∫wiγiw−1

i
FdX = ∫γi

FdX, one has

∫
γ

FdX = ε1∫
γ1

FdX+ ...+εp∫
γp

FdX = 0. (9)

The relators of the group representation impose the following constraints

∫
ri

FdX = 0, i = 1, ...,n. (10)
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This implies that the conditions ∫γi
FdX = 0, i = 1, ...,m, may not all be inde-

pendent.

Proposition 5.2 (Yavari [62]) The necessary and sufficient F-compatibility
conditions are:

i) dF = 0 in B,
ii) If π1(B) = ⟨γ1, ...,γm;r1, ...,rn⟩, then

∫
γi

FdX = 0, i = 1, ...,m, (11)

subjected to ∫
ri

FdX = 0, i = 1, ...,n. (12)

For a path-connected set B the first homology group is the Abelianization
of the fundamental group [11]. One Abelianizes π1(B) by adding the relations
γiγ j = γ jγi, which do not lead to any new compatibility equations.

One should note that the generators of the torsion subgroup do not con-
tribute to the F-compatibility equations because for γ an element of the tor-
sion subgroup γn = 1 for some n ∈N, and thus, ∫γ FdX = 0 is trivially satisfied.
This means that it is sufficient to have ∫γ FdX = 0 only on each generator of
the first homology group with real coefficients. Therefore, the number of the
complementary compatibility equations is Nb1(B), where N = dimS.

Example 5.3 Let us assume that dimB = 1 and S =R2. The bulk compatibil-
ity equations are trivially satisfied. It is known that when B is a graph its
fundamental group is freely generated. Assuming that γ1, ...,γk are the free
generators of π1(B), there are 2k compatibility equations. As an example, let
us assume that B = S1(R), i.e., the circle with radius R and let X =Θ be the
standard parametrization of S1. Compatibility equations read

∫
2π

0
FdΘ = 0. (13)

As examples, F = (κ1Θ ,κ2)T, where κ1 and κ2 are arbitrary constants, is not
compatible, while F = (κ1 sinΘ ,κ2 cosΘ)T is compatible.

Remark 5.4 One should note that the F-compatibility equations derived here
are valid for anelastic bodies as well. In other words, we have not assumed a
flat material manifold (B,G); the compatibility equations have the same form
even in problems for which the material manifold is non-flat. As an example,
see the discussion of universal deformations and eigenetrains in compressible
solids in [63].
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5.2 Examples of non-simply-connected bodies and their
F-compatibility equations

We next look at a few examples of 2D and 3D non-simply-connected bodies
and derive their compatibility equations.

5.2.1 2D elasticity on a torus and a punctured torus

The first homology groups of both torus and punctured torus (handle) are
generated by the loops γ1 and γ2 in Figs. 2 and 13. Hence, the F-compatibility
equations read

dF = 0, ∫
γ1

FdX = ∫
γ2

FdX = 0. (14)

The fundamental group of torus (see Fig. 2) has the presentation

π1(T 2) = ⟨γ1,γ2;γ1γ2 = γ2γ1⟩. (15)

Therefore, the group relator is written as r1 = γ1γ2γ−1
1 γ−1

2 = 1. Note that

∫
r1

FdX = ∫
γ1γ2γ−1

1 γ−1
2

FdX = ∫
γ1

FdX+∫
γ2

FdX−∫
γ1

FdX−∫
γ2

FdX = 0. (16)

This means that (14) are the necessary and sufficient F-compatibility equa-
tions.

γ
1

γ
2

γ
3

γ
1

aa

γ
2

b

b

Fig. 13 A punctured torus. γ1, γ2, and γ3 are generators of the fundamental group.

For a punctured torus (see Fig. 13) the fundamental group has three gen-
erators and the following presentation [53]

π1(H) = ⟨γ1,γ2,γ3;γ3 = γ1γ2γ−1
1 γ−1

2 ⟩. (17)

Therefore, the group relator is written as r1 = γ3γ2γ1γ−1
2 γ−1

1 = 1. Note that
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0 = ∫
r1

FdX

= ∫
γ3γ2γ1γ−1

2 γ−1
1

FdX

= ∫
γ3

FdX+∫
γ2

FdX+∫
γ1

FdX−∫
γ2

FdX−∫
γ1

FdX

= ∫
γ3

FdX.

(18)

Therefore, the necessary and sufficient F-compatibility equations read

dF = 0, ∫
γ1

FdX = ∫
γ2

FdX = 0. (19)

One observes that γ3 is a generator of the fundamental group but does not
have a corresponding complementary compatibility equation. The bound-
ary of the hole in a punctured torus is null-homologous path but not null-
homotopic.

5.2.2 2D elasticity on arbitrary compact orientable 2-manifolds

When B is an arbitrary compact orientable 2-manifold, it is homeomorphic to
a sphere with n handles. Each handle corresponds to two generators of the first
homology group, and hence, there are 3× 2n complementary compatibility
equations. If the body manifold has boundaries they correspond to k holes,
which introduce another k−1 generators of the first homology group (see Fig.
8). The total number of complementary compatibility equations are 3(2n+
k−1).

5.2.3 3D elastic bodies with holes

A 3D solid with internal cavities has a trivial H1(B). As an example, a solid
with a spherical hole (see Fig. 1a) has a trivial first homology group, and
hence, dF = 0 is both necessary and sufficient for compatibility of F. The First
homology group of a solid torus has only one generator. The body shown in
Fig. 1c is homeomorphic to a solid torus and the (red) closed curve generates
its first homology group. The body shown in Fig. 1d has Betti number two
and the two (red) loops generate its first homology group. The complement
of a solid torus has Betti number one (see Fig. 1b). The First homology group
of a 2-holed solid torus has the two generators γ1 and γ2 shown in Fig. 5. Its
complement has Betti number two and the generators Γ1 and Γ2 are shown
in Fig. 5. A thick torus with two tubular holes has Betti number three. The
generators of the first homology group are shown in Fig. 14.
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Fig. 14 A solid torus with two tubular holes.

A solid trefoil knot has Betti number one and a generator of its first
homology group is γ shown in Fig. 10. Its complement in R3 has Betti number
one as well and Γ in Fig. 10 is its generator. A cylinder and an annulus are
homeomorohic. The first homology group is generated by the loop c3 in Fig.
4. A solid with tubular holes shown in Fig. 7 has a fundamental group freely
generated by the four loops ci, i = 1,2,3,4. Each ci corresponds to three extra
compatibility equations for F (six extra compatibility equations for C♭). A
thick hollow cylinder is the special case of this example when there is only one
hole. The Betti number of both the Möbius band M and the thick Möbius
band M× [0,1] are one. The knotted ball shown in Fig. 15(left) has Betti
number one. Note that its fundamental group has four generators but only
one requires complementary compatibility equations. The ball shown in Fig.
15(right) has a hole, which is a genus four handlebody. Its Betti number is
four.

γ

Fig. 15 Left: A knotted ball. γ is a generator of the first homology group. Right: A ball
with a toridal hole of genus four. This body has Betti number four.
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5.3 F-compatibility equations in the presence of Dirichlet
boundary conditions

In [5], the compatibility equations in the presence of Dirichlet boundary con-
ditions were derived using some Hodge-type orthogonal decompositions. Here,
we follow [22] and find the F-compatibility equations when deformation map-
ping (or displacement field) is prescribed on part of the boundary ∂DB ⊂ ∂B.

Consider a k-form ω (k ≥ 1) on B. Using the inclusion map ı ∶ ∂B↪ B, the
tangential component of ω is defined as tω = ı∗ω [44]. This can equivalently
be defined using the decomposition of vector fields on ∂B into tangential and
normal parts. Given X ∈ Γ (TB∣∂B), X = X∥ +X⊥, and the tangential part of
the k-form ω is defined as

tω(X1, ...,Xk) =ω(X∥1 , ...,X
∥
k), ∀X1, ...,Xk ∈Γ (TB∣∂B). (20)

The normal part is defined as nω =ω −tω. For k = 0, tω =ω. The deformation
mapping can be thought of an R3-valued 0-form. The Dirichlet boundary
conditions are given as φa∣∂DB = φ̂a, where φa, a = 1,2,3, are 0-forms defined
on B, and φ̂a, a = 1,2,3, are 0-forms defined on ∂DB.

The following result is a simple corollary of [22, Theorem 6].

Proposition 5.5 Suppose F is an R3-valued 1-form in B. Also assume that
tF = dφ̂ on ∂DB.15 The necessary and sufficient conditions for compatibility
of F, i.e., the existence of an R3-valued 0-form φ such that F = dφ, and
φ ∣∂DB = φ̂ are:

dF = 0, and ∫
ci

FdX = ∫
∂ci

φ̂ = φ̂(X i
2)− φ̂(X i

1), i = 1, ...,b1(B,∂DB), (21)

where ci’s are the generators of the first relative singular homology group
H1(B,∂DB;R). Note that each ∂ci = [X i

1,X
i
2] is an oriented pair of points

(X i
1,X

i
2) such that X i

1 and X i
2 lie on ∂DB.

Fig. 16 The boundary of
B is the union of the inner
circle Ci and the outer
ellipse Co.
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15 tF = dφ̂ means that for any vector W ∈ TB∣∂DB, FW∥ = ⟨dφ̂,W∥⟩.
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Example 5.6 Let us consider the body shown in Fig. 16. We consider the
following four cases of boundary conditions.

• ∂DB =∅: In this case the auxiliary compatibility equation reads

∫
γ2

FdX = 0, (22)

where γ2 is the generator of the first de Rham cohomology group (see Fig.
16).

• ∂DB =Ci: In this case there are no auxiliary compatibility equations. Note
that γ2 and γ3 are relative boundaries.

• ∂DB =Co: In this case there are no auxiliary compatibility equations. Note
that γ2 and γ4 are relative boundaries.

• ∂DB = ∂B: In this case a generator of H1(B,∂DB;R) is γ5, and the auxiliary
compatibility equation reads

∫
γ5

FdX = φ̂(X2)− φ̂(X1). (23)

Note that γ2, γ3, and γ4 are relative boundaries.

Our calculations in this example are consistent with [5, Example 10] in which
the Dirichlet boundary was assumed fixed.

5.4 Compatibility equations for the right Cauchy-Green strain
C♭

Consider a motion of a body φt ∶ B→ S and assume that dimB = dimS. The
right Cauchy-Green deformation tensor is defined as C♭ =φ∗t g. For a Euclidean
ambient space R(g) = 0. Thus

0 = φ∗t R(g) =R(φ∗t g) =R(C♭), (24)

i.e., a necessary condition for C♭ to be compatible is vanishing of its Riemann
curvature, or equivalently local flatness of the Riemannian manifold (B,C♭).
Note that this is independent of the geometry of (B,G). In other words,
even for a non-flat material manifold R(C♭) = 0 is a necessary compatibility
equation for C♭. Marsden and Hughes [36] showed that this condition is locally
sufficient as well. In the case of simply-connected elastic bodies this condition
guarantees the existence of a global deformation mapping [16].

Suppose {XA},{xa} are coordinate charts for B, and S, respectively. The
Levi-Civita connection coefficients of g and C♭ = φ∗g are denoted by γa

bc and
Γ A

BC, respectively. They are related as
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Γ A
BC =

∂XA

∂xa
∂xb

∂XB
∂xc

∂XC γa
bc+

∂ 2xm

∂XB∂XC
∂XA

∂xm . (25)

Assuming that {xa} is a Cartesian coordinate chart for the Euclidean ambient
space, γa

bc = 0, and hence

Γ A
BC =

∂ 2xm

∂XB∂XC
∂XA

∂xm . (26)

Therefore
∂ 2xa

∂XB∂XC =
∂

∂XC Fa
B = Fa

AΓ A
BC. (27)

Using the polar decomposition in (27) one obtains16

Ra
A,B = Ra

CΩC
AB, (28)

where

ΩC
AB = (Γ M

BNUC
M −UC

N,B)UA
N , Γ C

AB =
1
2

CCD(CBD,A+CAD,B−CAB,D), (29)

and UA
N are components of U−1. Note that the material manifold is assumed

to be embedded in the Euclidean ambient space. Choosing Cartesian co-
ordinates for B, GAB = δAB. For a path γ that connects X0, X ∈ B and is
parametrized by s ∈ I, one obtains the following system of linear ODEs gov-
erning the rotation tensor

d
ds

R =RK, (30)

where
KC

A(s) =ΩC
AB(s)ẊB(s). (31)

Note that KBA = −KAB. Therefore, (30) is a linear ODE for R ∈ SO(3), and
K ∈ so(3), the Lie algebra of the Lie group SO(3). For each a

dRa
A

ds
−ΩC

ABRa
CẊB(s) = 0. (32)

This is the equation of parallel transport of Ra
A along the curve γ when B

is equipped with the connection Ω . Let us assume that R(0) = R0. We see
that rotation tensor at s is the parallel transport of R0. It can be shown that
in a simply-connected body the integrality conditions of (32) are equivalent
to vanishing of curvature tensor of C♭ [42]. For solving (30) in [62] we used
product integration and wrote the solution as

R(s) =R0

s

∏
0
(γ)eK(ξ)dξ , (33)

16 Note that Eq. (28) is identical to Shield [45]’s Eq. (8).
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where R0 = R(s) is assumed to be given and ∏s
0(γ)eK(ξ)dξ is the product

integral of K along the path γ from 0 to s. For more details on product
integration see [62], and [21, 50].

For a compatible C♭, the rotation tensor calculated from (33) must be
independent of the path γ. Therefore, for any closed path γ in B

∏
γ

eK(s)ds = I. (34)

It was shown in [62] that a necessary and sufficient condition is

∫
1

0
K(s)ds = 0, (35)

where γ ∶ [0,1]→ B is any closed path.
C♭-compatibility is formulated as follows. Given C, U =

√
C is determined

uniquely. The system of ODEs (28) govern the rotation R. The calculated
rotation is path independent if and only if the curvature tensor of C♭ vanishes,
and (35) are satisfied over each generator of the first homology group.

Proposition 5.7 (Yavari [62]) The necessary and sufficient C♭-compatibility
conditions in a non-simply-connected body B are:

i) R(C♭) = 0 in B,
ii) ∫ci

K(s)ds = 0, i = 1, ...,b1(B), where ci’s are generators of H1(B;R),
iii)The above two conditions guarantee that deformation gradient F =R

√
C is

uniquely determined. For the deformation gradient to be compatible, one
must have, ∫γi

FdX = 0, i = 1, ...,b1(B).

5.5 Compatibility equations in linearized elasticity

Suppose φε is a 1-parameter family of deformations around a reference motion
φ̊, and let ε = 0 correspond to the reference motion. The displacement field
is defined as [57, 64]:

U(X) = δφ(X) = dφε(X)
dε

∣
ε=0

. (36)

The linearization of the deformation gradient is written as [36, 64]: L (F) =
∇U. In components, L (F)aA =Ua

∣A = ∂Ua

∂XA +γa
bcFb

AUc, where γa
bc are the con-

nection coefficients of the Riemannian manifold (S,g). The spatial and mate-
rial strain tensors are defined, respectively, as e= 1

2(g−φt∗G), and E= 1
2(φ

∗
t g−

G) [36]. In components, eab = 1
2 (gab−GABFa

AFb
B), and EAB = 1

2(CAB−GAB). It
can be shown that L (C)AB = 2Fa

AFb
B εab, where εab = 1

2(ua∣b+ub∣a) is the lin-
earized strain, and u =U○φ−1. Thus, L (C) = 2φ∗t ε, and hence, ε = φt∗L (E).
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When the ambient space is Euclidean and one uses Cartesian coordinates the
covariant derivatives reduce to partial derivatives and the classical definition
of linear strain in terms of partial derivatives is recovered, i.e.,

εab =
1
2
(∂ua

∂xb +
∂ub

∂xa ) . (37)

The necessary and sufficient conditions for compatibility in terms of F
are ∫γ FdX = 0, for every loop γ in B. The linearization of this condition
reads ∫γ∇UdX = 0. In components, ∫γ ua

,BdXB = 0, where {XA} and {xa} are
coordinate charts for B and S, respectively. Linearization is assumed about
the standard embedding of B in RN , i.e., Fa

A = δ a
A . This implies that dXB =

∂XB

∂xb dxb = δ B
b dxb, and thus

∫
γ

ua,BdxB = ∫
γ

ua,bdxb = ∫
γ
(eab+ωab)dxb = 0, (38)

where eab = u(a,b) = 1
2(ua,b +ub,a), and ωab = u[a,b] = 1

2(ua,b −ub,a), are the lin-
earized strain and rotation tensors, respectively. Note that

∫
γ

ωabdxb = ∫
γ
[(xcωac),b−xcωac,b]dxb = −∫

γ
xcωac,bdxb. (39)

The gradient of the rotation tensor is rewritten as

ωac,b =
1
2
(ua,cb−uc,ab)+

1
2
(ub,ac−ub,ac)

= 1
2
(ua,bc+ub,ac)−

1
2
(uc,abc+ub,ac)

= eab,c−ebc,a.

(40)

For a given eab, ωab is calculated by integrating ωab,c = eac,b − ecb,a along an
arbitrary curve. To ensure that the rotation field is well-defined one must have
∫γ (eac,b−ecb,a)dxc = 0, for any closed path γ ∈ B. When γ is null-homotopic,
γ = ∂Ω , on a 2-submanifold of B, and hence

∫
γ
(eac,b−ecb,a)dxc = ∫

Ω
d (eac,b−ecb,a)∧dxc

= ∫
Ω
(ead,bc+ebc,ad −eac,bd −ebd,ac)(dxc∧dxd) = 0,

(41)

where {(dxc ∧dxd)} = {dxc ∧dxd}c<d is a basis of 2-forms. Note that (41) is
equivalent to curl○curle = 0, which is the classical bulk compatibility equation
of linear elasticity [34]. From (40), one writes

∫
γ

ua,bdxb = ∫
γ
Cabdxb = 0, (42)
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where Cab = eab−xc(eab,c−ebc,a) is called the Cesàro tensor. The above repre-
sentation is called the Cesàro integral [14]. For a null-homotopic path γ that
lies on a surface P ⊂B, γ = ∂Ω for some Ω ⊂P. Hence, using Stokes’ theorem
one writes

∫
γ
Cabdxb = ∫

Ω
dCab∧dxb = ∫

Ω
Cab,cdxc∧dxb

= ∫
Ω
[ebc,a−xd (eab,cd −ebd,ac)]dxc∧dxb.

(43)

Due to symmetry of strain ebc,adxc∧dxb = 0, and hence

∫
γ

ua,bdxb = ∫
Ω

xd (ebd,ac−eab,cd)dxc∧dxb

= ∫
Ω

xd (eab,cd +ecd,ab−eac,bd −ebd,ac)dxb∧dxc = 0.
(44)

One should note that (44) are equivalent to curl○curle = 0, i.e, the classical
bulk compatibility equations [34].

Proposition 5.8 (Yavari [62]) The necessary and sufficient conditions for com-
patibility conditions for the linearized strain e =Lug in B are:
i) curl○curle = 0 in B,
ii) For each generator of H1(B;R)

∫
ci
CdX = 0, & ∫

ci
(eac,b−ecb,a)dxc = 0, i = 1, ...,b1(B). (45)

We call (45)1 and (45)2 the Cesàro and the rotation compatibility equa-
tions, respectively. Note that in dimension n (n = 2 or 3) for each ci, there are
n Cesàro and n(n−1)/2 rotation compatibility equations. Hence, each ci has
n(n+ 1) complementary compatibility equations. In dimension three, there
are six bulk compatibility equations, and six auxiliary compatibility equa-
tions for each generator of the first homology group. We should mention that
this is consistent with Weingarten’s theorem [56] that says that if a body is
cut along a surface the jump in the displacement field is a rigid-body motion,
see Love [34] for a detailed discussion (he calls homotopic paths, “reconcil-
able circuits” and a null-homotopic path, a “evanescible circuit”). Zubov [65]
and Casey [13] demonstrated the validity of Weingarten’s theorem for finite
strains (see also Acharya [2]). In [62] it was pointed out that the discussion in
[49] regarding sufficient compatibility equations in linear elasticity is flawed
as Skalak, et al. missed the rotation compatibility conditions (45)2. In [62,
Example 29] the rotation compatibility conditions were trivially satisfied.
Next, we provide an example of an incompatible strain field for which the
Cesàro compatibility conditions are satisfied while the rotation compatibility
conditions are not satisfied.

Example 5.9 Consider a single wedge disclination [19, 60] along the z-axis in
an infinite linear elastic body. The linearized strain field of the disclination
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in the Cartesian coordinates (x,y,z) reads [19]

e11 =
Ω

4π(1−ν)
[(1−2ν) ln

√
x2+y2+ y2

x2+y2 ] ,

e22 =
Ω

4π(1−ν)
[(1−2ν) ln

√
x2+y2+ x2

x2+y2 ] ,

e12 = −
Ω

4π(1−ν)
xy

x2+y2 , e33 = e13 = e23 = 0,

(46)

where Ω is the Frank vector of the disclination. For this strain field the bulk
compatibility equation e11,yy+e22,xx−2e12,xy = 0 is satisfied in R3/ z−axis. Eq.
(45)1 gives the following two Cesàro compatibility equations

∫
γ
[e11−y(e11,y−e12,x)]dx+ [e12−y(e12,y−e22,x)]dy = 0,

∫
γ
[e12−x(e12,x−e11,y)]dx+ [e22−x(e22,x−e12,y)]dy = 0,

(47)

where γ is any closed curve lying in a plane normal to the z-axis and enclosing
the origin. Using a square path with corners (a,−a,0), (a,a,0), (−a,a,0), and
(−a,−a,0), where a > 0, it is straightforward to show that the two Cesàro
compatibility equations are trivially satisfied. For this strain field there is
only one rotation compatibly equation, which is not satisfied, namely

∫
γ
(e11,y−e12,x)dx+(e12,y−e22,x)dy = −Ω ≠ 0. (48)

6 Differential Complexes in Nonlinear Elasticity

For a flat 3-manifold B, let Ω k(B) be the space of smooth k-forms on B, i.e.,
α ∈Ω k(B) is an anti-symmetric (0k)-tensor with smooth components αi1⋯ik .
The exterior derivatives dk ∶Ω k(B)→Ω k+1(B) are linear differential operators
that satisfy dk+1○dk =0. In order to simplify the notation we drop the subscript
k in dk. The following sequence of spaces and operators

0 // Ω 0(B) d // Ω 1(B) d // Ω 2(B) d // Ω 3(B) // 0, (1)

is denoted by (Ω(B),d) and is called the de Rham complex. Note that each
operator is linear and the composition of any two successive operators van-
ishes. Also the first operator on the left sends 0 to the zero function and the
last operator on the right sends Ω 3(B) to zero. The property d ○d = 0, implies
that imdk ⊂ kerdk+1, where imdk is the image of dk and kerdk+1 is the kernel of
dk+1. If imdk = kerdk+1, the complex is exact. The de Rham cohomology groups
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are defined as Hk
dR(B) = kerdk/imdk−1. A complex is exact if and only if all

Hk
dR(B) are the trivial group {0}. Cohomology groups quantify non-exactness

of a complex.
For β ∈Ω k(B), the necessary and sufficient condition for the existence of

a solution for the PDE dα = β is β ∈ imd. If (Ω(B),d) is exact, β ∈ imd if
and only if dβ = 0. Assuming that Hk

dR(B) is finite dimensional, de Rham’s
theorem states that dimHk

dR(B) = bk(B), where bk(B) is the k-th Betti number
— a purely topological property of B. Thus, β ∈ imd if and only if

dβ = 0, and ∫
ck

β = 0, k = 1, ...,bk(B), (2)

where ck are the generators of the kth homology group of B.
Sometimes one may be able to establish a connection between a given

complex and the de Rham complex. A complex closely related to the de Rham
complex is the grad-curl-div complex of vector analysis. Let C∞(B) and X(B)
be the spaces of smooth real-valued functions and smooth vector fields on B,
an open subset of R3. Consider the three operators grad ∶C∞(B)→X(B), curl ∶
X(B)→X(B), and div ∶X(B)→C∞(B). The classical identities curl○grad = 0,
and div○curl = 0, allow one to write the following complex

0 // C∞(B)
grad

// X(B) curl // X(B) div // C∞(B) // 0, (3)

which is called the grad-curl-div complex or simply the gcd complex. One
can show that the gcd complex is equivalent to the de Rham complex, or
more precisely is isomorphic to the de Rham complex [4]. As an example of
the application of this isomorphism, one can show that a vector field w is the
gradient of a function if and only if

curlw = 0, and ∫
γ

w ⋅ tγ ds = 0, ∀γ ⊂ B, (4)

where γ is an arbitrary closed curve in B, tγ is the unit tangent vector field
along γ, and w ⋅ tγ is the standard inner product of w and tγ in R3.

It turns out that when using deformation gradient F and its correspond-
ing stress, i.e., the first Piola-Kirchhoff stress P, the differential complex of
nonlinear elasticity is isomorphic to the R3-valued de Rham complex [4]. Let
us assume that the ambient space is Euclidean, i.e., S = R3 with Cartesian
coordinates {xi}. Suppose φ ∶B→S is a smooth map and define the following
operators for two-point tensors in Γ (T φ(B)) and Γ (T φ(B)⊗TB):

Grad ∶Γ (T φ(B))→Γ (T φ(B)⊗TB), (GradU)iI =U i
,I ,

Curl ∶Γ (T φ(B)⊗TB)→Γ (T φ(B)⊗TB), (CurlF)iI = εIKLF iL
,K ,

Div ∶Γ (T φ(B)⊗TB)→Γ (T φ(B)), (DivF)i = F iI
,I .
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Note that Curl○Grad = 0, and Div○Curl = 0. Therefore, the GCD complex or
the nonlinear elasticity complex is written as:

0 // Γ (T φ(B))Grad// Γ (T φ(B)⊗TB) Curl// Γ (T φ(B)⊗TB) Div // Γ (T φ(B)) // 0.

Any R3-valued k-form α ∈ Ω k(B;R3) can be written as α = (α1,α2,α3),
where α i ∈Ω k(B), i=1,2,3. The exterior derivative d ∶Ω k(B;R3)→Ω k+1(B;R3)
is defined as dα = (dα1,dα2,dα3). From d ○d = 0, one concludes that d○d = 0,
which gives the R3-valued de Rham complex (Ω(B;R3),d).

Let us define the following isomorphisms

I0 ∶Γ (T φ(B))→Ω 0(B;R3), [I0(U)]i =U i,

I1 ∶Γ (T φ(B)⊗TB)→Ω 1(B;R3), [I1(F)]iJ = F iJ ,

I2 ∶Γ (T φ(B)⊗TB)→Ω 2(B;R3), [I2(F)]iJK = εJKLF iL,

I3 ∶Γ (T φ(B))→Ω 3(B;R3), [I3(U)]i123 =U i,

where εJKL is the permutation symbol. The following diagram commutes [4].

0 // Γ (T φ(B))Grad//

I0
��

Γ (T φ(B)⊗TB) Curl//

I1
��

Γ (T φ(B)⊗TB) Div //

I2
��

Γ (T φ(B)) //

I3
��

0

0 // Ω 0(B;R3) d // Ω 1(B;R3) d // Ω 2(B;R3) d // Ω 3(B;R3) // 0

The above isomorphisms induce a cohomology isomorphism Hk
GCD(B) ≈

⊕3
i=1Hk

dR(B), where Hk
GCD(B) is the k-th cohomology group of the GCD com-

plex. Let ⟨F,W⟩ ∶=∑3
i,I=1 F iIW Iei, where {ei} is the standard basis of R3. The

following result can be proved using the fact that the nonlinear elasticity and
the R3-valued de Rham complexes are isomorphic.

Theorem 6.1 (Angoshtari and Yavari [4]) Given F ∈ Γ (T φ(B)⊗ TB), there
exists U ∈Γ (T φ(B)) such that F =GradU, if and only if

Curl F = 0, and ∫
γ
⟨F,tγ⟩dS = 0, ∀γ ⊂ B, (5)

where γ is any closed curve in B, and tγ is the unit tangent vector field along
γ. Moreover, there exists Ψ ∈ Γ (T φ(B)⊗TB) such that F = Curl Ψ , if and
only if

DivF = 0, and ∫
C
⟨F,NC⟩dA = 0, ∀C ⊂ B, (6)

where C is any closed surface in B and NC is the unit outward normal vector
field of C.

Using the first Piola-Kirchhoff stress P, one defines a complex that de-
scribes both the kinematics and the kinetics of motion. The displacement field
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U ∈Γ (T φ(B)) is defined as U(X) =φ(X)−X ∈ Tφ(X)S, ∀X ∈B. Then, GradU is
the displacement gradient, and Curl○GradU = 0 expresses the compatibility
of the displacement gradient. On the other hand, P =Curl Ψ , where Ψ is a
stress function. DivP = 0 are the equilibrium equations. Therefore, the GCD
complex or the nonlinear elasticity complex contains both the kinematics and
the kinetics of motion as schematically shown below.

displacements //
OO

��

disp. gradients //
OO

��

compatibility
OO

��

0 // Γ (T φ(B)) Grad // Γ (T φ(B)⊗TB) Curl//
OO

��

Γ (T φ(B)⊗TB) Div //
OO

��

Γ (T φ(B)) //
OO

��

0

stress functions // first PK stresses // equilibrium

Using the differential complex of nonlinear elasticity, a new family of mixed
finite elements – compatible-strain mixed finite element methods (CSFEMs)
– has been introduced for both compressible and incompressible nonlinear
elasticity [6, 46, 47]. CSFEMs are capable of capturing very large strains and
accurately approximating stresses. CSFEMs, by construction, satisfy both
the Hadamard jump conditions, and the continuity of traction at the dis-
crete level. This makes them quite efficient for modeling heterogeneous solids.
Moreover, CSFEMs seem to be free from numerical artifacts such as checker-
boarding of pressure, hourglass instability, and locking.
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