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Abstract

The unusual properties of many multifunctional materials originate from a structural phase trans-
formation and consequent martensitic microstructure. Phase-field models are typically used to predict
the formation of microstructural patterns and subsequent evolution under applied loads. However, for-
mulating a phase-field energy with the correct equilibrium crystal structures and that also respects the
crystallographic symmetry is a formidable task in complex materials. This paper presents a simple
method to construct such energy density functions for phase-field modeling. The method can handle
complex equilibrium structures and crystallographic symmetry with ease. We demonstrate it on a
shape memory alloy with 12 monoclinic variants.

The unusual behavior of shape-memory alloys, ferroelectrics, and other multifunctional materials is
driven by a structural phase transformation. Below the critical phase-transformation temperature, the
crystal structure changes and this leads to multiple, symmetry-related variants. The different variants
can form microstructural mixtures to satisfy applied boundary conditions. Changes in the applied loads
can cause microstructural rearrangements rather than the lattice distortions that are characteristic of typ-
ical materials. This ability to rearrange microstructure leads to unusual and technologically important
behavior as seen in shape-memory alloys, ferroelectrics, and other multifunctional materials [1, 2, 3, 4].

To enable design with multifunctional materials, it is important to be able to predict the microstructural
patterns. Phase field models are widely used for this purpose [5, 6, 7, 8, 9]. They obtain microstruc-
tural patterns by minimizing the free energy E of a specimen Ω. In the case of shape-memory alloys,
that are the focus of this paper, E consists of Winter, the surface energy of the interfaces between dif-
ferent variants, and Waniso, the anisotropy energy that penalizes deviation of the strain ε(x) from the
crystallographically preferred states.

E [ε] =

∫
Ω

[Winter(∇ε) + Waniso(ε)] dx
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Winter = A0

2
|∇ε|2 penalizes the gradient of the strain and hence the interface has finite thickness to allow

easy computation. In general, constructing Waniso can be challenging [10, 11, 12]: it must have the
appropriate minima in a high-dimensional space as well as reflect the symmetry of the crystal. This letter
shows a simple method to construct Waniso by introducing a set of auxiliary scalar fields λI(x). We also
demonstrate the approach by calculating the microstructure in thin-film shape memory alloy NiTi with
monoclinic symmetry that is of technological importance to small-scale actuators [13].

We start by introducing the scalar fields λI(x), I = 1 . . . N where there are N variants. Each variant is
associated with a tensor εI

0 that represents the stress-free strain. At every point, we define the average

stress-free strain to be ε0(x) =
N∑

I=1

λI(x)εI
0.

We write the free energy of a shape-memory specimen in terms of ε(x) and the set {λI(x)}:

E [ε(x), {λI(x)}] =

∫
Ω

[Winter(ε, {λI(x)}) + Waniso(ε, {λI(x)})] dx − work by external loads (0.1)

For the interfacial energy density we use Winter =
A0

2

N∑
I=1

|∇λI(x)|2. We write Waniso as the sum of 3

terms:

1

2
(ε− ε0(x)) : C : (ε− ε0(x))︸ ︷︷ ︸

Linear elastic penalty for ε 6= ε0(x)

+ A

N∑
I=1

λI(x)2(1− λI(x))2

︸ ︷︷ ︸
Drives each λI to 1 or 0

+ B

(
1−

N∑
I=1

λI(x)

)2

︸ ︷︷ ︸
Drives the λI to sum to 1

(0.2)

To understand this expression, consider a point x and no stress. The second term drives every variant I
to be represented by either λI = 0 or λI = 1. The third term drives the sum of λI at a point to be 1.
Taken together, these terms provide a driving force for one and only one variant K to have λK = 1 and

the other λJ = 0, J 6= K. Given this distribution of {λI}, the stress-free strain ε0 =
N∑

I=1

λIε
I
0 will be just

the stress-free strain εK
0 of the variant that is represented by λK = 1, and the elastic energy is minimized

when ε = εK
0 .

There are two key innovations of the general approach. The first is the use of separate driving forces
for each λI to drive them to 0 or 1 in the second term. The separate driving forces inherently satisfy the
symmetry requirements, and the procedure is the same for any crystal symmetry. This is much simpler
than the complex multi-variable polynomials that are typically used in phase-field modeling[11, 12].
While we use a specific choice for demonstration, any driving force that drives each λI to 0 or 1 can
be used. For accurate fitting of energy surfaces of specific materials, other choices can be made, e.g.
λ4

I(1− λI)
4 lowers the energy barriers. The second innovation is the use of a penalty to require the λI to

sum to 1. Again we use a specific choice but other expressions that fit the energy better are possible, as
long as it drives the sum to 1.

Our approach is closely related to and builds on the work of Shu and coworkers [14, 15, 16]; they
introduce the variables λI and then transform them to a new set motivated by laminate microstructures.
However, this transformation is not symmetric in the variants and hence the crystallographic symmetry
is not satisfied. The energy that we have written above is obviously symmetric. An additional advantage
of our approach (inherited from [14, 15, 16]) is that there are no strain gradients that would require
higher-order elements for an FEM implementation [17].
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The microstructure is obtained by minimizing the energy in (0.1). This is done by evolving from the
initial state following the variational derivative of E with respect to λI :

1

µ

∂λI

∂t
= − δE

δλI

= A0∇2λI − 2AλI (1− λI) (1− 2λI)− 2B

(
N∑

J=1

λJ − 1

)
+ εI

0 : C : (ε− ε0) (0.3)

While evolving, at each step we set the variational derivative of E with respect to ε to 0:

δE

δε
= ∇ · [C : (ε− ε0)]︸ ︷︷ ︸

stress

= 0 (0.4)

This ensures mechanical equilibrium throughout the evolution and at the final state.

We use standard phase-field numerical techniques to solve the resulting evolution and elasticity equations.
The time-evolution uses a semi-explicit scheme, and the elasticity uses a fast Fourier technique with
periodic boundary conditions. For details, we refer the reader to the Appendix of the work by Shu and
Yen[14]. Normalizing all length scales by the interface thickness, the computational domain is a square
of size 100 and the mesh spacing is 0.1. We normalize time: t̂ = (2µA) t and the time step is ∆t̂ = 0.01.

We apply our formulation to predict microstructure in shape-memory cubic-to-monoclinic nickel titanium
(NiTi) with thin-film geometry. In NiTi with cubic to monoclinic phase transformation, there are 12
variants. The stress-free strains of the variants are:

ε1
0 ≡

 εβ ε ε
ε εα δ
ε δ εα

 ε2
0 ≡

 εβ −ε −ε
−ε εα δ
−ε δ εα

 ε3
0 ≡

 εβ −ε ε
−ε εα −δ
ε −δ εα

 ε4
0 ≡

 εβ ε −ε
ε εα −δ
−ε −δ εα


ε5

0 ≡

 εα ε δ
ε εβ ε
δ ε εα

 ε6
0 ≡

 εα −ε δ
−ε εβ −ε
δ −ε εα

 ε7
0 ≡

 εα −ε −δ
−ε εβ ε
−δ ε εα

 ε8
0 ≡

 εα ε −δ
ε εβ −ε
−δ −ε εα


ε9

0 ≡

 εα δ ε
δ εα ε
ε ε εβ

 ε10
0 ≡

 εα δ −ε
δ εα −ε
−ε −ε εβ

 ε11
0 ≡

 εα −δ ε
−δ εα −ε
ε −ε εβ

 ε12
0 ≡

 εα −δ −ε
−δ εα ε
−ε ε εβ


(0.5)

where εα = 0.0243, εβ = −0.0437, δ = 0.058, ε = −0.0427 [1], and material constants A0 = 2 ×
10−4, A = 0.1270, B = 0.1270, C11 = C22 = 80GPa, C12 = 20GPa, C66 = 30GPa, C16 = C26 = 0GPa
[14].

We examine a (111) deposited thin-film and the texture is introduced by replacing the expressions
in (0.5) by R(111)ε

I
0R

T
(111) where R(111) is the proper rotation that maps to this texture. Further, in

the thin-film limit, out-of-plane mechanical compatibility does not play a role and only the in-plane
strains are of importance [13]. We orient the film in the 1 − 2 plane and hence only the components(
εI
0

)
11

,
(
εI
0

)
12

,
(
εI
0

)
21

,
(
εI
0

)
22

are used. Considering the simulation domain as a small portion of a thin-
film specimen, we apply periodic boundary conditions with displacement boundary conditions. We pre-
dict various microstructures as shown in Figure 1.

Interesting results from the calculations include that the same far field applied strain causes two possible
crossing-twin microstructures when the space-averaged volume fractions of all four participating variants

is equal to 0.25. In Figure 1(a), a far-field applied strain of
[

0.0330 0.0
0.0 −0.0013

]
leads to a crossing twin
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microstructure between the variants 8, 4, 5 and 1. The same far-field strain can also lead to a crossing
twin microstructure with the same variants but different geometry, Figure 1(b). Both microstructures are
compatible and completely stress-free. This degeneracy in microstructure can provide shape-memory
alloys with multiple low-energy possibilities to accommodate certain macroscopic deformations.

When the far-field strain is changed to
[

0.0330 0.0
0.0 −0.0048

]
, the martensitic microstructure in Figure

1(a) evolves to a new pattern as in Figure 1(c). However, the microstructure in Figure 1(b) is unable to
accommodate this new applied strain in a stress-free manner Instead, extremely large stresses are seen,
and would likely lead to plasticity or completely new microstructure.

Figure 1(d) shows a stress-free microstructure under a far-field applied strain of
[
−0.0310 −0.0310
−0.0310 0.0679

]
.

The interfaces that are formed are possible only in thin-films and not in the bulk [13].

We also examine the microstructure in a (100) deposited thin film by using R(100) in the expressions
above and restricting attention to the 1 − 2 plane. In this setting, many of the variants have the same
inplane stress-free strains, and only 6 distinct variants remain. Figure 2 shows a four-variant crossing

twin stress-free microstructure under a far-field applied strain of
[

0.0045 −0.0113
−0.0113 −0.0239

]
. This provides

an interesting comparison between bulk microstructures and thin-film microstructures. Variants 1, 2,
7 and 5 can form a stress-free microstructure of this type in the bulk setting. However, in the (100)
thin-film, variant 6 and variant 7 have the same

(
εI
0

)
11

,
(
εI
0

)
12

,
(
εI
0

)
21

,
(
εI
0

)
22

components. Hence, in
thin-films this microstructure can also represent a crossing twin between variants 1, 2, 6 and 5. The
crossing twin microstructure between variants 1, 2, 6, and 5 is possible only the thin-film but would
cause stresses in a bulk specimen.

We have proposed a simple formulation of the phase-field energy for structural transformations with
complex symmetries. We have demonstrated it on a NiTi shape-memory thin film with cubic to mono-
clinic transformation with 12 variants that are symmetry related. We find multiple possible crossing twin
microstructures to accommodate the same far-field applied strains. We also see the formation of twin
interfaces that are possible only in thin film geometries and not in the bulk.

The method can be extended to ferroelectric and ferromagnetic materials, e.g., by adding the contribution

(p− p0) · χ−1 · (p− p0) to Waniso, and using p0(x) =
N∑

I=1

λI(x)pI
0 where p is the polarization and pI

0

is the spontaneous polarization of each variant. An important question for future research is to accurately
fit the constants and functions to model the transformation barriers and other material information, e.g.
(2.40) in [18].

We thank Yi-Chung Shu for useful discussions.
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I=1

I × λI(x).
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