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1 Introduction

Any structure that survives after construction must be stable, in the sense that it has
already demonstrated its ability to withstand a range of loads without undergoing un-
acceptable deflection or distortion. It is, however, necessary to consider the question of
how great a load a structure can support, before its performance is compromised – that
is, before it will collapse. Examples may be of several types: for instance, an exceptional
fall of snow could result in a shell roof supporting more weight than was envisaged in
its design. As the snow continues to fall, the load increases until the roof collapses.
Conceptually, at the instant before the last snowflake landed, the roof was in a state of
unstable equilibrium, so that the small load represented by the last snowflake caused
the large deflection and the onset of the failure. Excessive loads from other sources are
easy to envisage. It is also possible that a structure may be stable but that, under some
exceptional conditions, one of its resonant vibrations is stimulated. In the absence of
sufficient damping, this can result in the build-up of a vibration of large amplitude and
consequent failure. Earthquake damage can (but does not always) fall into this category.
The famous collapse of the Tacoma Narrows suspension bridge involved the development
of an oscillation of large amplitude, induced by wind, by the mechanism of “flutter”.

Evidently, the safe design of a structure must take into account its possible modes
and frequencies of vibration, and must incorporate sufficient margins of safety. Stability
(in the sense that a “small” disturbance induces only a small response in the structure)
is necessary but not sufficient: what about a “moderate” disturbance, for instance?
These questions must be addressed quantitatively, in relation to the types of load that
a structure will experience during service.

This course provides an introductory account of the concepts and methodology re-
quired for the assessment of structural stability. Structural collapse can be a “global”
event, involving the whole structure, or it can result from a large deformation occurring
locally, because the material from which the structure is built reaches a critical condi-
tion. Some attention is also devoted to this topic, though specialized aspects such as the
development and propagation of cracks are not addressed; any such topic would require
a whole course by itself.

The remainder of this introduction is devoted to a simple example, which requires
no specialized knowledge and yet illustrates many of the features present in the analysis
of the stability of any structure.

1



Fig. 1.1. Model structure.

1.1 An elementary one-dimensional example

The configuration shown in Fig. 1.1 displays most of the features of the buckling of
a strut or a column under compression. A rigid rod OA of zero mass and length L is
pivoted at a point O, and its deflection from the vertical (with A above O) is resisted
by a nonlinear spring, which exerts a restoring couple

C = f(θ); f(0) = 0 (1.1)

when OA makes an angle θ with the upward vertical. It is assumed that f ′(θ) > 0. A
point mass M is attached at A. A force acts vertically downwards at A. This could be
due to gravity acting on the mass M , in which case the force would have magnitude Mg.
However, to preserve generality, we let its magnitude be λ. The equation of motion of
this system follows from the balance of moment of momentum:

ML2θ̈ = λL sin θ − f(θ). (1.2)

Any equilibrium position is defined by θ̇ = θ̈ = 0, and must therefore satisfy

λL sin θ = f(θ). (1.3)

The number of equilibria depends on the form of the function f and the value of λL.
The vertical configuration θ = 0 is in equilibrium for any value of λL (though it need
not be stable). Consider the length L of the rod to be fixed but suppose that the load λ

2

jrw1005
Placed Image



Fig. 1.2. Equilibrium paths. (a) λ1 < 0; (b) λ1 = 0, λ2 > 0; (c) λ1 = 0, λ2 < 0.

is open to choice. Equation (1.3) then defines an equilibrium path in the θ-λ plane. The
path θ = 0 will be called the fundamental path. If f(θ) has the expansion

f(θ) = K1θ + K2θ
2 + K3θ

3 + · · · (K1 > 0), (1.4)

another path defining a “buckled state” is connected to the fundamental path θ = 0 at
the critical mass λc defined by

λc = K1/L = f ′(0)/L. (1.5)

The buckled state, in the vicinity of θ = 0, lies on the path

λ = λc + λ1θ + λ2θ
2 + · · · , (1.6)

where
λ1/λc = K2/K1, λ2/λc = (K3/K1 + 1

6
), · · · (1.7)

The point (0, λc) is called a point of bifurcation. The path (1.6) defines the initial post-
bifurcation (or post-buckling) response. Figure 1.2 illustrates possible paths. Figure
1.2(a) illustrates an asymmetric bifurcation (the case λ1 > 0 just reverses the slope
of the bifurcated path). Figures 1.2(b) and (c) illustrate symmetric bifurcations. The
response of an actual structure depends in part on the form of the post-bifurcation
response. Two aspects are investigated below.
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Fig. 1.3. Imperfect model structure.

Effect of an imperfection

Real structures are never perfect. The effect of an imperfection may be illustrated by
introducing a small offset into the restoring spring. This is modelled by measuring θ
from the configuration in which the spring exerts no couple, which occurs when the rod
makes a small angle ε to the vertical, as shown in Fig. 1.3. The equation of motion now
becomes

ML2θ̈ = λL sin(θ + ε) − f(θ), (1.8)

and any equilibrium configuration must satisfy

λL sin(θ + ε) = f(θ). (1.9)

Thus, near θ = 0, and since |ε| ¿ 1,

λ = [K1θ + K2θ
2 + K3θ

3 + · · ·]/[(θ + ε) − 1

6
(θ + ε)3 + · · ·]L. (1.10)

The path θ = 0 for the perfect structure is altered, to lowest order when λ is sufficiently
below λc, to

θ ∼ ε

(λc/λ − 1)
. (1.11)

However, when λ is close to λc, this approximation breaks down. If K2 6= 0, a better
approximation is given by the solution of the quadratic equation

(K1 − λL)θ + K2θ
2 = λLε, (1.12)
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Fig. 1.4. Perturbed equilibrium paths. (a) K2 > 0; (b) K2 < 0.

or
(K2/K1)θ

2 + (1 − λ/λc)θ = (λ/λc)ε. (1.13)

The resulting equilibrium paths are sketched (for ε > 0) in Fig. 1.4. The branch that
passes through the origin has the equation

θ =
−(1 − λ/λc) + [(1 − λ/λc)

2 + 4(K2/K1)(λ/λc)ε]
1/2

2(K2/K1)
. (1.14)

When λ/λc is sufficiently smaller than 1, this reproduces the formula (1.11). The more
interesting of the two cases shown is K2 < 0. The branch passing through the origin
displays a maximum allowed λ: increasing λ from zero would generate the deflection
shown, until the maximum is reached. Any further attempt to increase λ must require
the structure to deform substantially. The deformation would be dynamic (limited by
inertia). Such a situation is termed a snap-through buckle.

Elementary analysis shows that the maximum λ admitted by (1.14) is given asymp-
totically, for small ε, by the formula

(1 − λmax/λc) ∼ 2(−K2/K1)
1/2ε1/2. (1.15)

Thus, the presence of the imperfection has reduced the buckling load by a quantity
proportional to

√
ε.

This conclusion can also be reached by introducing another small parameter ξ and
writing

θ = θ1ξ (1.16)
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and
λ/λc = 1 + µ1ξ + µ2ξ

2 + · · · (1.17)

Substituting these into (1.10) and expanding, but keeping only the term of lowest order
in ε, gives

(1 + µ1ξ + µ2ξ
2 + · · ·)(θ1ξ − 1

6
θ3
1ξ

3 + ε + · · ·)
= θ1ξ + (K2/K1)θ

2
1ξ

2 + (K3/K1)θ
3
1ξ

3 + · · · (1.18)

Simplifying, therefore,

ε + µ1θ1ξ
2 + (µ2θ1 − 1

6
θ3
1)ξ

3 + · · ·
= (K2/K1)θ1ξ

2 + (K3/K1)θ
3
1ξ

3 + · · · (1.19)

All relevant formulae can now be obtained.
First, if ε = 0, equating terms of like order in ξ gives

µ1 = (K2/K1)θ1, µ2 = [(K3/K1) + 1

6
]θ2

1, (1.20)

exactly consistent with formulae (1.7).
Next, suppose that ε 6= 0 and K2 6= 0. Retaining just terms of lowest order gives

µ1 =
K2θ1

K1

− ε

θ1ξ2
, (1.21)

and then, for consistency, it is necessary to choose ξ = ε1/2.
If K2 = 0, equation (1.21) contains no interaction between the imperfection and

the parameters defining the spring. This suggests that the procedure as so far given is
unsuitable when K2 = 0. A balance is obtained at order ξ3 if we take µ1 = 0. Then,

µ2 =
(

K3

K1

+ 1

6

)

θ2
1 −

ε

θ1ξ3
(1.22)

and for consistency the choice ξ = ε1/3 must be made.
The most interesting cases correspond to K2 < 0 and (K3/K1) + (1/6) < 0, respec-

tively. It follows then from (1.21) that

(λ/λc − 1) ≈ µ1ξ ≤ −2(−K2/K1)
1/2ε1/2 (1.23)

and from (1.22) that

µ1 = 0, µ2ξ
2 ≤ −3{−[(K3/K1) + 1

6
]/4}1/3ε2/3. (1.24)
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The first of these results implies (1.15), while the second gives

λmax/λc ∼ 1 − 3{−[(K3/K1) + 1

6
]}1/3 (ε/2)2/3 (K2 = 0, [(K3/K1) + 1

6
] < 0). (1.25)

The pattern for cases in which more µ’s vanish should now be apparent.

Dynamics and stability

By definition, the structure under consideration is fully described by the ordinary differ-
ential equation (1.2) (or (1.8) if the imperfect structure were considered). This is simple
enough to allow exact analysis. However, the present purpose is to introduce procedures
that can be applied more generally.

First, considering the perfect structure, θ = 0 defines an equilibrium configuration for
any value of λ. Stability of equilibrium is addressed, in the first instance, via analysis of
the differential equation, linearized about the equilibrium solution. In the present case,
the linear equation is simply

ML2θ̈ = (λL − K1)θ. (1.26)

Its general solution has the form1

θ(t) = Aeiωt + Be−iωt, (1.27)

where
ω2 = (K1 − λL)/ML2 = [λc − λ]/ML. (1.28)

Thus, the solution is bounded – and therefore remains small if it was initiated by a
small disturbance – so long as λ < λc. Conversely, if λ > λc, ω becomes imaginary,
the solution grows exponentially (except for very special initial conditions that generate
only the negative exponential). The linearization under which it was derived becomes
invalid and study of what actually happens requires a return to the original nonlinear
differential equation. In the former situation (λ < λc), the equilibrium configuration
θ = 0 is described as stable; in the latter it is unstable2.

The nonlinear dynamics may be investigated, in the vicinity of the critical point
(0, λc), by retention of the “next” terms in the differential equation (1.2). Thus, now,

ML2θ̈ = λL(θ − θ3/6 + · · ·) − (K1θ + K2θ
2 + K3θ

3 + · · ·). (1.29)

1In the case that ω is real, the most general real solution is obtained by taking A and
B to be complex conjugates.

2Stability will be defined formally later
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If K2 6= 0, retaining just terms up to order θ2 gives

θ̈ =

(

λ

ML

) [(

λ − λc

λ

)

θ −
(

K2λc

K1λ

)

θ2

]

. (1.30)

The procedure underlying the derivation of (1.30) can be formalised by writing

λ/λc = 1 + µ1ξ, θ = θ1ξ, and τ = ξ1/2t. (1.31)

The variable θ1 is regarded as a function of the “slow” time variable τ . Substituting into
(1.2) then gives

ML2ξ2θ′′1 = λcL[(1 + µ1ξ)(θ1ξ − θ3
1ξ

3/6 + · · ·)
−(θ1ξ + (K2/K1)θ

2
1ξ

2 + (K3/K1)θ
3
1ξ

3 + · · ·)], (1.32)

the prime denoting differentiation with respect to τ . The terms of order ξ cancel.
Equating those of order ξ2 gives

θ′′1 = Aθ1 + Bθ2
1, (1.33)

where
A = µ1λc/ML, B = −(K2/K1)λc/ML. (1.34)

The differential equation (1.33) admits constant solutions θ1 = 0 and θ1 = −A/B.
The latter corresponds exactly to the initial post-buckling path [c.f. (1.6) with (1.7)].
Linearizing about θ1 = 0 shows that this solution is stable so long as A < 0. Linearizing
about θ1 = −A/B gives the equation

ϕ′′

1 = −Aϕ1, (1.35)

having written θ1 = −A/B+ϕ1. Thus, the solution θ1 = −A/B is stable if A > 0. Phase
portraits (plots in a θ1-θ

′

1 plane) are sketched in Fig. 1.5. When A < 0, so that θ1 = 0
is stable against an infinitesimal perturbation, study of (1.33) permits an assessment of
exactly how large a perturbation would be allowed, before the solution would deviate
far from θ1 = θ′1 = 0. The interest of equation (1.33) is that it will be seen to emerge
generically from weakly-nonlinear stability analysis in the vicinity of a non-symmetric
bifurcation.

If K2 = 0, a different parametrization is required. A balance is obtained if

λ/λc = 1 + µ2ξ
2, θ = θ1ξ, τ = ξt. (1.36)
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Fig. 1.5. Phase portraits for the differential equation (1.33).

9

jrw1005
New Stamp



The equation that results is
θ′′1 = Aθ1 + Bθ3

1, (1.37)

where
A = µ2λc/ML, B = −(K3/K1 + 1

6
)λc/ML. (1.38)

The constant solutions θ1 = ±(−A/B)1/2 (which exist if A/B < 0) correspond to the
initial post-buckling path [c.f. (1.6) and (1.7) with K2 = 0]. Equation (1.37) will emerge
as a generic feature associated with a symmetric bifurcation.

The effect of an imperfection (ε) can be incorporated by adding its lowest-order
contribution to the governing differential equation. This has the effect of replacing
(1.33) by

θ′′1 = Aθ1 + Bθ2
1 + C(ε/ξ2), (1.39)

where
C = λc/ML. (1.40)

[For consistency, it is necessary that ε/ξ2 = O(1)]. The equilibrium point of (1.39)
agrees with the approximation given by (1.12). If K2 = 0, an analogous modification
follows for (1.37).
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2 Stability of systems: general discussion

This section discusses the stability of systems with any finite number of degrees of
freedom. Although real structures are continua, they are almost always modelled as
discrete for the purpose of stress analysis – for example by the use of finite elements –
and hence in practice this discussion will apply, at least at a formal level, to virtually
all structures, as well as to other dynamical systems. It is usual to consider a first-order
system,

u̇ = f(u, t; λ), (2.1)

where u : R → Rn is a vector-valued function of time t. The function f has the
arguments shown and takes values in Rn. The system (1.2) fits this pattern. With the
definitions u1 = θ, u2 = θ̇, it can be written

u̇1 = u2,

u̇2 = [λL sin u1 − f(u1)]/(ML2). (2.2)

In the general equation (2.1), λ represents any number m of scalar parameters; that
is, it could be an m-dimensional vector. The most significant difference between the
general system (2.1) and the realisation (2.2) is that (2.1) contains time t explicitly: it
is not autonomous. In fact, in the sequel only autonomous systems will be considered.
However, some formal definitions of stability will be given for the system (2.1).

Suppose that u0(t) is a particular solution of (2.1). It is called stable if the solution of
the initial-value problem comprising (2.1) for t > t0, together with the initial condition

u(t0) = u0(t0) + εv0 (2.3)

has the property
‖u(t) − u0(t)‖ → 0 as ε → 0 (2.4)

uniformly for all t ≥ t0, for all v0 with ‖v0‖ = 1. Here, ‖ · ‖ can be taken as the
Euclidean norm. This choice of norm is not important, however, because all norms on
a finite-dimensional vector space are equivalent.

If the solution u satisfies the stronger requirement that

‖u(t) − u0(t)‖ → 0 as t → ∞ (2.5)

for all sufficiently small ε (|ε| < δ for some δ > 0), the system (2.1) is called asymptotically

stable.
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The discussion of the preceding section strongly suggests that the solution u = 0
of the system (2.2) is stable but not asymptotically stable, when λ < λc. This can be
verified from its original form (1.2) by noting that θ̈ = θ̇d(θ̇)/dθ and integrating, to
obtain the energy integral

1

2
ML2θ̇2 +

∫ θ

0
f(θ′)dθ′ − λL(1 − cos θ) = E, constant. (2.6)

The condition λ < λc ensures that the function on the left side of (2.6) is a convex
function of (θ̇, θ) in a neighbourhood of (0, 0) and hence, when the constant E on the
right side, which is fixed by the initial conditions, is sufficiently small, (θ̇, θ) remains
close to (0, 0) for all t.

Before proceeding, it is appropriate to express a word of caution in relation to con-
tinuous systems. All norms are not equivalent for such systems, and so not only the
definition of stability, but also its relevance or utility, will depend upon the appropriate
choice of norm. A related concern is the possibility that any chosen finite-dimensional
approximation of a continuous system simply might not contain some instability of the
original system, though such a feature would be likely to show up in practice in the form
of strong sensitivity of predictions made from the discrete system to the precise detail,
such as the finite element mesh. A pragmatic approach is adopted throughout these
lectures: formal methods, such as the perturbation theory already used in Section 1,
will be employed. Such methods do not establish rigorously when instability is reached
but they have the virtue of providing fully explicit indications of the nature of likely
instabilities, and associated estimates for quantities such as critical loads.

Having made these general remarks, we now consider a system of the form3

Mü = F (u, λ). (2.7)

Here, u is a vector, F is vector-valued and M is a matrix. λ is a scalar parameter that
represents the intensity of the loading on the system.

Various aspects of the system (2.7) are now considered, in turn.

Equilibrium

Equilibrium configurations of the system must satisfy the equation

F (u, λ) = 0. (2.8)

3Complications will be considered later.

12



This equation may have several solutions (it will be assumed to have at least one, at
least for some range of values of λ). Their number may change with the value of λ. The
functional dependence upon λ of any one solution may be investigated by regarding λ
to be an increasing function of time (or any time-like parameter), while insisting that
the equilibrium condition (2.7) remains satisfied. Then, differentiating (2.7) gives

Fu(u, λ)u̇ + Fλ(u, λ)λ̇ = 0. (2.9)

Just to explain the notation employed here, regard F as a vector with r-component Fr.
Equation (2.8) is equivalent to

Fr,us
(u, λ)u̇s + Fr,λ(u, λ)λ̇ = 0, (2.10)

the comma denoting a partial derivative with respect to the following variable, and
summation over the repeated suffix s is implied. Assuming that the matrix Fu is not
singular, this equation has the unique solution

u̇ = −[Fu]
−1Fλλ̇. (2.11)

This is equivalent to the differential equation

du/dλ = −[Fu]
−1Fλ,

which defines the branch of the solution of (2.7) that is being followed. Any such branch
is called an equilibrium path.

Suppose, now, that an equilibrium path is followed, with λ increasing, until a crit-
ical value λc is reached, with corresponding equilibrium configuration uc, at which Fu

becomes singular. There are two possibilities:
(i) Equation (2.8) has no solution. In this case, λ cannot be increased beyond λc for this
branch. Any attempt to increase λ would have to result in motion, in which the inertia
mü is important.
(ii) Equation (2.8) has non-unique solution. The point (uc, λc) is then a point of bifur-

cation.
In either case, (uc, λc) is a critical point.

Uniqueness

Another perspective on the same phenomenon is gained by considering directly
whether equation (2.7) has a unique solution. Suppose that there are two solution

13



branches, u1(λ) and u2(λ), and suppose that for some set of values of λ they are close
together. It follows that

0 = F (u1, λ) − F (u2, λ) ∼ Fu(u2, λ)(u1 − u2), (2.12)

which implies that Fu must be singular, and that u1 and u2 may differ only by a multiple
of the eigenvector of Fu. In case (ii) above, the two distinct branches cross at (uc, λc).
In case (i), it may occur that u1 and u2 are different parts of a single branch that “turns
over”, as illustrated in Fig. 1.3(b).4 However, it is conceivable that the branch simply
terminates, the nonlinear terms omitted from (2.12) preventing its continuation. Thus,
by itself, linearized analysis provides an indication of what may happen but does not
predict what will happen.

Influence of an imperfection

Suppose that an imperfection is present, whose magnitude is described by the parameter
ε. Recall that, in the example given in Section 1, the imperfection was a small tilt of
the bar away from the vertical, when in equilibrium under zero load. More generally,
an imperfection could be any geometrical feature, or perhaps some variation in stiffness,
or perhaps both. In the present general formulation, the presence of the imperfection
is represented by replacing the function F (u, λ) in (2.8) by F (u, λ, ε). It is possible, in
fact, to let ε be a vector of any finite dimension, so that it represents the effect of several
types of imperfections. Equilibrium is now governed by the equation

F (u, λ, ε) = 0, (2.13)

with ε = 0 defining the structure with no imperfection. The primary solution branch
(that is, the one in which we are interested) is denoted u0 when ε = 0. That is,

F (u0, λ, 0) = 0. (2.14)

It is convenient to re-define variables so that u0 ≡ 0. Thus,

F (0, λ, 0) = 0 (2.15)

for all λ. Now call the perturbed solution (for ε 6= 0) u, and assume that u is small and
u → 0 as ε → 0. Then,

Fu(0, λ, 0)u + Fε(0, λ, 0)ε ∼ 0, (2.16)

4This figure is for a structure regarded as imperfect but the phenomenon can occur
generally.
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which implies that
u ∼ −[Fu(0, λ, 0)]−1Fε(0, λ, 0)ε, (2.17)

except when λ is close to λc (where the matrix Fu is singular).

The initial post-bifurcation path

Before considering the perturbed path when λ is close to λc, it is useful to examine
further the response of the unperturbed system in this vicinity. Within the present
framework, the primary solution branch is u = u0 ≡ 0, so the critical point (uc, λc)
becomes (0, λc). Assume that this is a point of (simple) bifurcation. Then, when λ is
close to λc, there is one other solution v say, and v → 0 as λ → λc. Therefore, expanding
the equation

F (v, λ, 0) = 0

about (0, λc, 0),

Fuv+ 1

2
Fuuv

2+Fuλv(λ−λc)+ 1

6
Fuuuv

3+ 1

2
Fuuλv

2(λ−λc)+ 1

2
Fuλλv(λ−λc)

2+· · · = 0. (2.18)

Here, for example, Fuuv
2 represents the vector whose i-component is Fi,urus

vrvs (sum-
mation over r and s implied). All derivatives of F are here evaluated at (0, λc, 0).
Derivatives with respect to λ by itself (such as Fλλ) are not included because they are
zero, on account of (2.15).

Now clearly, to lowest order, v is a multiple of the right eigenvector of Fu(0, λc, 0),
as found earlier5. Suppose, therefore, that u∗

1 and u1 are respectively left and right
eigenvectors:

u∗

1Fu = 0 and Fuu1 = 0. (2.19)

Now when λ is close to λc, v is small and (asymptotically) parallel to u1. Therefore,
introduce a small parameter ξ and write

v = ξv1 + ξ2v2 + · · · ,
λ = λc + ξλ1 + ξ2λ2 + · · · . (2.20)

Substituting these into (2.17) gives

ξFuv1 + ξ2{ 1

2
Fuuv

2
1 + λ1Fuλv1 + Fuv2} + ξ3{ 1

6
Fuuuv

3
1 + 1

2
λ1Fuuλv

2
1

+ 1

2
λ2

1Fuλλv1 + λ2Fuλv1 + λ1Fuλv2 + Fuuv1v2 + Fuv3} + · · · = 0.

(2.21)

5There is only one linearly independent right eigenvector, on account of the assumption
that the bifurcation point is simple.
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Therefore, by considering the coefficient of ξ,

Fuv1 = 0, (2.22)

implying that v1 = α1u1 for some α1. Now considering the coefficient of ξ2,

1

2
Fuuv

2
1 + λ1Fuλv1 + Fuv2 = 0. (2.23)

This implies necessarily (c.f. (2.19)1) that

λ1 =
−α1u

∗

1Fuuu
2
1

2u∗
1Fuλu1

, (2.24)

and then (2.23) can be solved for v2. The solution is unique only up to a term α2u1.
The coefficient of ξ3 can be treated similarly: it yields

λ2 =
−u∗

1{ 1

6
Fuuuv

3
1 + 1

2
λ1Fuuλv

2
1 + 1

2
λ2

1Fuλλv1 + λ1Fuλv2 + Fuuv1v2}
α1u∗

1Fuλu1

. (2.25)

The simplest way to fix α1 and α2 (and corresponding constants in succeeding terms) is
to define ξ in terms of v by insisting that ξ = ûT v for some vector û, such that ûT u1 = 1.
Then, α1 = 1 and the requirement that ûT v2 = 0 fixes α2. Another possibility would be
to insist that λ = λc + ξλ1 exactly, so that λ2 = λ3 = · · · = 0. Then, equation (2.24)
gives α1 in terms of λ1, and (2.25) fixes α2. In any case, v3 exists so long as (2.25) is
satisfied.

If u∗

1Fuλu1 = 0, then (2.24) and (2.25) do not apply. A balance of terms is obtained
if v1 = 0 and v2 = α2u1. This rather pathological case is not discussed further.

The imperfect system

Now revert to the imperfect system, with ε 6= 0. Expanding the equation

F (v, λ, ε) = 0

about the point (0, λc, 0) gives

Fuv + 1

2
Fuuv

2 + Fuλv(λ − λc) + 1

6
Fuuuv

3 + 1

2
Fuuλv

2(λ − λc)

+ 1

2
Fuλλv(λ − λc)

2 + · · · + Fεε = 0, (2.26)

having retained only the leading-order term with respect to ε. Again, set

v = ξv1 + ξ2v2 + · · · ,
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and let
λ = λc + (λ1 + λ̂1)ξ + (λ2 + λ̂2)ξ

2 + · · · , (2.27)

where λr are as before, so that the terms λ̂r give the additional perturbation of λ due
to ε.

Note first that an attempt to balance the term proportional to ξ with the term
that is linear in ε generally cannot succeed, because the condition for consistency of the
equation

ξFuv1 + Fεε = 0

is u∗

1Fε = 0, which is not usually the case. Therefore, it is necessary to assume that ε is
of order ξk for some k > 1. Then, as obtained previously, Fuv1 = 0 and so v1 = α1u1 for
some α1.

If ε is of order ξ2, equating terms of order ξ2 gives

Fuv2 + 1

2
α2

1Fuuu
2
1 + α1(λ1 + λ̂1)Fuλu1 + Fεε/ξ

2 = 0. (2.28)

The condition for consistency is

u∗

1{ 1

2
α2

1Fuuu
2
1 + α1(λ1 + λ̂1)Fuλu1 + Fεε/ξ

2} = 0.

Therefore,

λ̂1 =
−u∗

1Fεε

α1u∗
1Fuλu1ξ2

, (2.29)

since λ1 as given by (2.24) cancels the other terms. Thus, to this order,

λ ∼ λc −
{

u∗

1Fuuu
2
1α1

2u∗
1Fuλu1

+
u∗

1Fεε

u∗
1Fuλu1α1ξ2

}

ξ. (2.30)

The perturbation is of the form

−(Aα1ξ + B/α1ξ),

whose greatest value is −2(AB)1/2 if A > 0 and B > 0. Thus, in this case,

λ ≤ λc −
{2|(u∗

1Fuuu
2
1)(u

∗

1Fεε)|}1/2

|u∗
1Fuλu1|

. (2.31)

A snap-through buckle is indicated at a level of λ an amount of order ‖ε‖1/2 lower than
λc.
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If λ1 = 0 (i.e. u∗

1Fuuu
2
1 = 0), a different scaling is needed to obtain the desired

balance. It is appropriate, in fact, to take k = 3. Then, λ̂1 = 0 and equating terms of
order ξ3 gives

λ̂2 =
−u∗

1Fεε

α1u∗
1Fuλu1ξ3

.

Then,

λ ∼ λc + λ2ξ
2 − u∗

1Fεε

α1u∗
1Fuλu1ξ

. (2.32)

This has the form
λ ∼ λc − {A(α1ξ)

2 + B/α1ξ},
and if A > 0 and B > 0, it follows that

λ ≤ λc − 3A1/3(B/2)2/3. (2.33)

The reduction in the critical load is of order ‖ε‖2/3.

Stability

We consider now the stability of the primary equilibrium path u = 0 for the perfect
structure. This requires study of the system of differential equations

Mü = F (u, λ), with F (0, λ) = 0. (2.34)

First, linearizing gives
Mü = Fu(0, λ)u, (2.35)

for which a solution may be sought of the form

u(t) = veiωt.

This generates the eigenvalue problem

[Fu(0, λ) + µM ]v = 0 (µ = ω2). (2.36)

Since the system is real, complex eigenvalues must occur in complex conjugate pairs, so
instability is inevitable unless all eigenvalues µ are real and positive. It is reasonable to
assume that the system is stable at least for small loads (small λ), so assume that all
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eigenvalues are real and positive for λ < λc. Suppose, furthermore, that the smallest
eigenvalue µ1 = 0 when λ = λc and that it is simple. This gives

Fu(0, λc)u1 = 0,

exactly as discussed already. The solution branch u = 0 will be unstable for some range
of λ with λ > λc, if µ decreases below zero when λ increases beyond λc.

Now some weakly-nonlinear analysis can be developed assuming that λ is close to
λc. Let

λ = λc + λ1ξ, (2.37)

u = ξv1 + ξ2v2 + · · · , (2.38)

scale the time so that
τ = ξ1/2t (2.39)

and regard vi as functions of τ . Substituting into (2.34) then gives

ξFuv1 + ξ2{λ1Fuλv1 + 1

2
Fuuv

2
1 − Mv′′

1 + Fuv2} + · · · = 0, (2.40)

the prime denoting differentiation with respect to τ . It follows that v1 = A(τ)u1, and
that the scalar-valued function A(τ) must satisfy the equation

(u∗

1Mu1)A
′′ = λ1(u

∗

1Fuλu1)A + 1

2
(u∗

1Fuuu
2
1)A

2. (2.41)

In the presence of an imperfection, an additional term Fεε is added to the left side
of (2.40). If ε can be regarded as of order ξ2, equation (2.41) simply becomes altered to

(u∗

1Mu1)A
′′ = λ1(u

∗

1Fuλu1)A + 1

2
(u∗

1Fuuu
2
1)A

2 + u∗

1Fεε/ξ
2. (2.42)

It should be noted that equation (2.41) has equilibrium solutions corresponding to

A = 0 and A =
−2λ1(u

∗

1Fuλu1)

u∗
1Fuuu2

1

.

This is exactly consistent with the static post-bifurcation analysis performed earlier (c.f.
(2.24)).

The main point about the equation (2.41) is that it arose generically, from a study
of a fairly general system with several degrees of freedom, as was announced in the
Introduction, where an equation of this type arose from study of a simple one-dimensional
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example. Equation (2.42) can be reduced to the form (2.41) by adding a suitable constant
to A. Equation (2.41) provides immediately an estimate for how large a perturbation can
be, when the system is stable but close to instability. That is, it provides an estimate
for the margin of stability. The phase portraits illustrated in Fig. 1.5 provide this
information in graphical form.

It is left as a relatively simple exercise to analyze the case in which u∗

1Fuuu
2
1 = 0.

Flutter

It is appropriate at least to mention a phenomenon that is intrinsically dynamic in na-
ture. It cannot occur unless the matrix Fu is non-symmetric. In this case, the possibility
exists that two eigenvalues, µ1 and µ2 say, coincide at a load lower than λc (where λc still
denotes the load at which Fu(0, λ) first becomes singular), so that they are still positive,
but then, as λ increases further, they split and become complex conjugate pairs, having,
at least initially, positive real parts. The elementary static bifurcation theory gives no
hint of trouble: there is no equilibrium solution close to the primary one u = 0. How-
ever, even a linearized dynamical analysis predicts instability, because there are values
of ω (c.f. (2.36)) which will have negative imaginary parts. This type of bifurcation is
called a Hopf bifurcation. Weakly-nonlinear analysis is possible for this situation also:
the motion is basically harmonic, but with an amplitude that evolves slowly in time.
It is more complicated than the analysis presented above, because of the need to deal
simultaneously with two time-scales (the “ordinary” one which appears in the simple
harmonic motion and the “slow” time τ , upon which the amplitude depends), and is not
pursued in detail.

Conservative systems

If, in fact, F (u, λ) is derived from a scalar potential Φ, so that F (u, λ) = −Φu(u, λ),
then automatically the matrix Fu = −Φuu is symmetric. Conversely, if Fu is symmetric,
a potential Φ exists. Then, assuming also that the “mass matrix” M is symmetric and
independent of u, the equation of motion (2.7) has the following first integral6

1

2
u̇T Mu̇ + Φ(u, λ) = E, constant, (2.43)

which is an expression of conservation of energy. Now let u = u0 + v, where u0 is
an equilibrium solution so that F (u0, λ) = −Φu(u0, λ) = 0, and v is a small time-

6Exposure to a course on Lagrangian and Hamiltonian dynamics would permit the
derivation of this result in greater generality.
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dependent perturbation. Expanding (2.41) about u0 to second order (which is equivalent
to linearizing (2.7)) gives

1

2
v̇T Mv̇ + 1

2
Φuuv

2 = E − Φ(u0, λ). (2.44)

The kinetic energy quadratic form is positive-definite. It follows that if, also, the
quadratic form Φuuv

2 is positive-definite, a perturbation that is bounded initially remains
bounded, and therefore that the equilibrium configuration u0 is stable against a small
perturbation. Conversely, if the form Φuuv

2 is indefinite (or even negative-definite), there
will exist disturbances for which linearized analysis would predict exponential growth,
and thus instability. This is the Dirichlet condition for stability: u0 is stable if it attains
a local minimum for the potential energy function Φ.
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3 The Euler column

The approach outlined in the preceding section can be applied also when the structure
is a continuum (so having an infinite number of degrees of freedom). A strict discussion
would entail the introduction of suitable function spaces and corresponding norms. Such
machinery would be out of place here. It is, nevertheless, still possible to track the
reasoning presented in the preceding section virtually line-by-line, to derive at least a
formal (and physically credible) description of the static and dynamic characteristics of
a structure, close to a critical point. This will now be illustrated by considering the
classical example of the buckling of the Euler column. The column is modelled as a one-
dimensional structure that can support tension or compression, and also has resistance
to bending. Such a structure (which is called an elastica) can resist torsion as well, but
this aspect is not needed for the present example.

3.1 Equations of motion

It is necessary first to set up equations of motion. For this purpose, with reference to Fig.
3.1, the column (or beam) is modelled as initially straight. Arc length s measured, in the
undeformed configuration from one end (labelled O), is taken as Lagrangian coordinate.
Only deformations in the x, y plane are envisaged. Therefore, the deformed configuration
at time t is specified by the mapping s → (x(s, t), y(s, t)). The parts of the beam on
either side of any point P exert a resultant force and couple on each other. The part OP
experiences, at P , a force with components T along the beam and N normal to it, and a
couple of moment M , as illustrated. The complementary part experiences the opposite
force and couple. The unit tangent at P has components (x′, y′)/(x′2 + y′2)1/2, and the
normal has components (−y′, x′)/(x′2 + y′2)1/2, the prime denoting differentiation with
respect to s. Let the beam have mass per unit length m. Equating the rate of change
of linear momentum of the section OP to the forces applied to it gives

d

dt

∫ s

0
m

(

ẋ
ẏ

)

ds =
[{

T
(

x′

y′

)

+ N
(−y′

x′

)}

/(x′2 + y′2)1/2
]s

0

. (3.1)

Equating the rate of change of moment of momentum to the total applied moment gives

d

dt

∫ s

0
m(xẏ − yẋ)ds =

[

T (xy′ − yx′) + N(xx′ + yy′)

(x′2 + y′2)1/2
+ M

]s

0

. (3.2)

It follows by differentiation of these equations with respect to s that

mẍ = {(Tx′ − Ny′)/(x′2 + y′2)1/2}′, (3.3)
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Fig. 3.1. Forces and couple on the section OP of the beam.

mÿ = {(Ty′ + Nx′)/(x′2 + y′2)1/2}′, (3.4)

0 = N(x′2 + y′2)1/2 + M ′, (3.5)

the last equation having been simplified by use of the first two.
The formulation is completed by appending constitutive equations, which charac-

terise the response of the beam being considered. In general, T is related to the local
stretch (x′2 + y′2)1/2, and M is related to the “Lagrangian curvature” κ, where7

κ =
y′′x′ − x′′y′

(x′2 + y′2)
. (3.6)

However, we will adopt the idealisation that the beam is inextensible. Then it is subject
to the constraint

(x′2 + y′2) = 1 (3.7)

and T becomes an undetermined multiplier. The constitutive relation for M will be
taken to be

M = f(κ) = B1κ + B3κ
3 + · · · , (3.8)

where now the inextensibility constraint reduces κ to

κ = y′′x′ − x′′y′. (3.9)

Equation (3.5) simplifies correspondingly.

7This choice is in the spirit of taking material derivatives. It is based on the formula
κ = d{tan−1(y′/x′)}/ds. More generally, M could depend on local stretch and κ. However,
inextensibility will be assumed in any case.
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Fig. 3.2. The Euler column.

3.2 The problem

The problem to be studied is illustrated in Fig. 3.2. The column is initially vertical, and
its end O is clamped so that x = 0 and x′ = 0 when s = 0. A dead load of magnitude λ
is applied, vertically downwards, at the upper end of the column, s = l. No moment is
applied at the upper end. Therefore, the boundary conditions are that

x(0, t) = y(0, t) = 0, x′(0, t) = 0,

T (l, t) = −λy′(l, t), N(l, t) = −λx′(l, t), M(l, t) = 0. (3.10)

Evidently, one solution of the equations of motion is

x = 0, y = s, and T = −λ. (3.11)

This corresponds to the fundamental equilibrium path u0 of the preceding section; our
basic objective is to examine its incremental uniqueness as λ increases, and its stability.

Static analysis

First, equilibrium configurations are studied by considering time-independent solutions.
These satisfy the equations

(Tx′ − Ny′)′ = 0, (3.12)

(Ty′ + Nx′)′ = 0, (3.13)

N + M ′ = 0, (3.14)

M = f(κ), (3.15)

x′2 + y′2 = 1. (3.16)
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The first two of these equations may be integrated and the constants fixed from their
known values at s = l. Solving the resulting two equations then gives

N = −λx′, T = −λy′. (3.17)

Although this is not essential, it is convenient to satisfy the constraint (3.16) identically
by setting

x′ = sin φ, y′ = cos φ. (3.18)

Then, κ = −φ′. Substituting all of the relations so far established into (3.14) now yields

(B1 + 3B3φ
′2 + · · ·)φ′′ + λ sin φ = 0. (3.19)

The boundary conditions are φ(0, t) = φ′(l, t) = 0. As already observed, one solution is
φ = 0.

Bifurcation

To investigate bifurcation, suppose that there is another solution, close to φ = 0.
This can be investigated by linearizing (3.19):

B1φ
′′ + λφ = 0. (3.20)

The solution for which φ(0) = 0 is

φ = A sin[(λ/B1)
1/2s], (3.21)

and the smallest value of λ that satisfies the condition at s = l (with A 6= 0) is

λc =
B1π

2

4l2
. (3.22)

The post-bifurcation path can be studied asymptotically by setting

φ = ξφ1 + ξ2φ2 + · · · , λ = λc + ξλ1 + ξ2λ2 + · · · . (3.23)

Then,

(B1 + 3B3ξ
2φ′2

1 + · · ·)(ξφ′′

1 + ξ2φ′′

2 + · · ·)
+ (λc + ξλ1 + ξ2λ2 + · · ·)(ξφ1 + ξ2φ2 + ξ3(φ3 − 1

6
φ3

1) + · · ·) = 0. (3.24)
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Equating to zero the coefficient of ξ gives

B1φ
′′

1 + λcφ1 = 0, (3.25)

which corresponds exactly to the linearization (3.20), and the associated boundary con-
ditions. Thus,

φ1 = A sin(πs/2l), (3.26)

having taken into account the definition (3.22) of λc. The terms of order ξ2 give

B1φ
′′

2 + λcφ2 + λ1φ1 = 0. (3.27)

There is no solution φ2 that satisfies the boundary conditions unless λ1 = 0. Then with
this condition, φ2 has the same form as φ1 and nothing is lost if it is specified that
φ2 = 0. The terms of order ξ3 now give

B1φ
′′

3 + λcφ3 + 3B3φ
′2
1 φ′′

1 + λ2φ1 − 1

6
λcφ

3
1 = 0. (3.28)

The condition for consistency of this equation, with φ3 satisfying the required boundary
conditions, is obtained in exactly the same way as in Section 3. The analogue of the left
eigenvector is the function sin(πs/2l). Multiplying equation (3.28) by sin(πs/2l) and
integrating from 0 to l gives, necessarily,

∫ l

0
sin(πs/2l){3B3φ

′2
1 φ′′

1 + λ2φ1 − 1

6
λcφ

3
1}ds = 0, (3.29)

since integration by parts and use of the boundary conditions cancels out the terms
involving the still-unknown φ3. Changing the variable of integration to u = πs/2l and
substituting explicitly for φ1 gives

∫ π/2

0
sin u

{

A3

[

−3B1π
4

16l4
cos2 u sin u − 1

6
λc sin3 u

]

+ Aλ2 sin u

}

du = 0. (3.30)

The required integrals are

∫ π/2

0
sin2 udu = π/4,

∫ π/2

0
sin4 u du = 3π/16,

∫ π/2

0
cos2 u sin2 u du = π/16. (3.31)

Thus,

Aλ2 − A3

{

λc

8
+

3B3π
4

64l4

}

= 0. (3.32)
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Fig. 3.3. Imperfect structure.

(a) Beam vertical, load off-vertical, (b) Beam off-vertical, load vertical.

Therefore, if A 6= 0, then A and λ2 must be related so that

λ2 = A2

{

λc

8
+

3B3π
4

64l4

}

. (3.33)

This equation is the analogue of (2.25) for the problem of the Euler column.

The effect of an imperfection

One obvious possible imperfection is that the beam may not be exactly straight.
Analysis of this would require the development of equations of equilibrium (and also
of motion) for such a beam. This is avoided here by considering an alternative simple
model: the direction of the load λ is not exactly vertical but instead makes an angle
ε with the downward vertical, as shown in Fig. 3.3(a). This is equivalent to vertical
loading of a beam whose unloaded configuration is not quite vertical (as depicted in Fig.
3.3(b)), because gravity has already been disregarded in the discussion of the perfect
structure, and will continue to be ignored here.

Equations (3.12) and (3.13) still apply, but now their integration in conjunction with
specifying that the force at the end s = l has horizonal and vertical components λ sin ε
and −λ cos ε respectively gives

T = −λ(−x′ sin ε + y′ cos ε), N = −λ(x′ cos ε + y′ sin ε). (3.34)

Equivalently, with x′ and y′ expressed in terms of φ as in (3.18),

T = −λ cos(φ + ε) ∼ −λ cos φ + λε sin φ,

N = −λ sin(φ + ε) ∼ −λ sin φ − λε cos φ, (3.35)
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having retained only the perturbation of order ε. This perturbation generates a term
additional to those displayed in equation (3.19). The perturbed equation is

(B1 + 3B3φ
′2 + · · ·)φ′′ + λ sin φ + λε cos φ ∼ 0. (3.36)

The perturbation of the primary solution φ = 0 due to the perturbation, when λ is
close to λc, can be investigated by again postulating the expansions (3.23), and now
substituting into (3.36). It is necessary to decide how to relate ε to ξ. If it is assumed
that they are of the same order, then the term of order ξ in (3.37) gives

B1φ
′′

1 + λcφ1 + λcε/ξ = 0. (3.37)

This equation has no solution φ1 satisfying the boundary conditions unless the last term
is zero. Equivalently, ε is (at least) of order ξ2. Once this is assumed, it follows that
φ1 = sin(πs/2l), exactly as before. The equation that results from considering the term
of order ξ2, subjected to similar reasoning, leads to the conclusion that ε should be of
order ξ3, if the perturbation expansion is to succeed. Then, φ2 can be taken to be zero,
without loss. The coefficient of ξ3 now gives

B1φ
′′

3 + λcφ3 + 3B3φ
′2
1 φ′′

1 + λ2φ1 − 1

6
λcφ

3
1 + λcε/ξ

3 = 0. (3.38)

The condition for consistency is obtained by multiplying the equation by sin(πs/2l) and
integrating from 0 to l. There is one additional term in comparison with (3.29). This is

λcε

ξ3

∫ l

0
sin(πs/2l) ds =

(

2l

π

)

λcε

ξ3
. (3.39)

It follows that

Aλ2
π

4
− A3

{

λcπ

32
+

3B3π
5

256l4

}

+
λcε

ξ3
= 0. (3.40)

The equilibrium path for the imperfect structure, close to the critical point, therefore
has the asymptotic form

φ ∼ (Aξ) sin(πs/2l), λ − λc ∼ − 4λcε

π(Aξ)
+

{

λc

8
+

3B3π
4

64l4

}

(Aξ)2. (3.41)

A maximum load is indicated, if the term in curly brackets is negative. In this case, the
maximum load is smaller than λc by an amount of order ε2/3.
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3.3 Stability

The Dirichlet condition

The system under discussion is conservative. Therefore, one of the elementary ways to
consider the stability of an equilibrium path is to investigate whether the configuration
realises a local energy minimum (the Dirichlet condition). The energy is

E =
∫ l

0
[ 1

2
B1φ

′2 + 1

4
B3φ

′4 + · · ·] ds + λy(l), (3.42)

where

y(l) =
∫ l

0
cos φ ds. (3.43)

The requirement is to compare the energy evaluated at the solution with the energy
evaluated for a neighbouring configuration. For a point on the primary path φ = 0, the
energy of a neighbouring configuration is given by (3.42), expanded to lowest non-trivial
order when φ is small. The energy difference is, asymptotically,

∆E = E(φ) − E(0) ∼ 1

2

∫ l

0
[B1φ

′2 − λφ2] ds. (3.44)

The only restriction on φ(s) is that φ(0) = 0. Now we investigate whether there is
any function φ (with φ(0) = 0) for which ∆E is negative. Since ∆E is homogeneous of
degree 2 it suffices to restrict φ further so that

∫ l

0
φ2 ds = 1.

It is necessary then to introduce a Lagrange multiplier, µ say, which has the effect of
replacing λ by λ + µ in the functional (3.44). Candidate minimizers, subject to this
constraint, can be found by perturbing φ to φ + δφ. The functional is stationary if

∫ l

0
[B1φ

′δφ′ − (λ + µ)φδφ] ds = 0 (3.45)

for all allowed δφ. Integrating the first term by parts and imposing the boundary
condition gives

φ′(l)δφ(l) −
∫ l

0
[B1φ

′′ + (λ + µ)φ]δφ ds = 0 (3.46)

for all allowed δφ. It follows that φ must satisfy

B1φ
′′ + (λ + µ)φ = 0,
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and φ′(l) = 0 in addition to φ(0) = 0. There is no such stationary point (apart from
φ = 0) unless µ satisfies

(λ + µ)/B1 = (2k + 1)2π2/4l2

for some integer k. The corresponding φ is

φ(s) = (2/l)1/2 sin[(2k + 1)πs/2l].

The stationary value of ∆E then follows as

1

2

[

π2(2k + 1)2B1

4l2
− λ

]

.

This is positive – and so the solution φ = 0 is stable – for 0 ≤ λ < λc.

Linearized dynamics

The study of dynamics requires a return to the system of equations (3.3)-(3.5) and (3.7)-
(3.9). Linearized about the equilibrium solution x = 0, y = s, T = −λ, N = 0, they
give

(−λx̂′ − N̂)′ = m¨̂x, (3.47)

N̂ − B1x̂
′′′ = 0, (3.48)

the quantities x̂, etc. representing the perturbations. There is no equation for ŷ because
the constraint of inextensibility gives ŷ ∼ 0. Elimination of N̂ gives

−λx̂′′ − B1x̂
′′′′ = m¨̂x. (3.49)

The boundary conditions (3.10) imply that

x̂(0, t) = x̂′(0, t) = x̂′′(l, t) = λx̂′(l, t) + B1x̂
′′′(l, t) = 0. (3.50)

Normal mode solutions may now be sought by assuming exp(iωt) time dependence. The
partial differential equation (3.49) then implies

B1x̂
′′′′ + λx̂′′ − mω2x̂ = 0. (3.51)

The solution of this fourth order ordinary differential equation, together with the
boundary conditions (3.50), is algebraically complicated. It will not be pursued further,
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except to remark that the problem so defined is an eigenvalue problem, since the dif-
ferential equation and boundary conditions are homogeneous, and that any eigenvalue
mω2 must be real, because the problem is self-adjoint. To see this, multiply equation
(3.51) by a function u and integrate from 0 to l. This gives, employing integration by
parts,

∫ l

0
uLx̂ ds ≡

∫ l

0
u[B1x̂

′′′′ + λx̂′′ − mω2x̂] ds

=
∫ l

0
[B1x̂

′′u′′ − λx̂′u′ − mω2x̂u] ds − [B1x̂
′′u′ − (λx̂′ + B1x̂

′′′)u]
l
0 ,

(3.52)

having called the differential operator L. Thus, if both x̂ and u satisfy the boundary
conditions (3.50), the form on the right side of (3.52) is symmetric and it follows that

∫ l

0
uLx̂ ds =

∫ l

0
x̂Lu ds. (3.53)

It is easy to deduce from this symmetry – just as for symmetric matrices – that eigenval-
ues mω2 must be real. The primary solution is thus stable so long as all eigenvalues are
positive, and this requirement is first lost when the smallest eigenvalue becomes zero. It
is known already, from the preceding subsection, that this occurs when λ = λc.

Weakly-nonlinear dynamics

It is interesting to observe that, even though exact linearized analysis is complicated, asymptotic analysis
close to the critical point is relatively easy, and furthermore nonlinear terms can be retained. The pattern
follows that already established in Section 3. Let

x = ξx1 + ξ2x2 + · · · ,
y = s + ξy1 + ξ2y2 + · · · ,
T = −λc + ξT1 + ξ2T2 + · · · ,
N = ξN1 + ξ2N2 + · · · ,
λ = λc + ξ2λ2,

τ = ξt. (3.54)

Note that here, a decision has been taken from the outset to define the parameter ξ in terms of the
departure of the load λ from its critical value. The functions xr etc. are regarded as functions of
s and τ . To save introducing more notation, in the equations to follow a superposed dot will mean
differentiation with respect to τ .
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The governing equations now become

ξ3m(ẍ1 + ξẍ2 + · · ·) =
{

(−λc + ξT1 + ξ2T2 + · · ·)(ξx′
1 + ξ2x′

2 + ξ3x′
3 + · · ·)

−(ξN1 + ξ2N2 + · · ·)(1 + ξy′
1 + ξ2y′

2 + · · ·)
}′

, (3.55)

ξ3m(ÿ1 + ξÿ2 + · · ·) =
{

(−λc + ξT1 + ξ2T2 + · · ·)(1 + ξy′
1 + ξ2y′

2 + · · ·)

+(ξN1 + ξ2N2 + · · ·)(ξx′
1 + ξ2x′

2 + · · ·)
}′

, (3.56)

(ξN1 + ξ2N2 + ξ3N3 + · · ·) + B1

{

(ξy′′
1 + ξ2y′′

2 + · · ·)(ξx′
1 + ξ2x′

2 + · · ·)

− (1 + ξy′
1 + ξ2y′

2 + · · ·)(ξx′′
1 + ξ2x′′

2 + · · ·)
}′

+ 3B3ξ
3(x′′

1)2(−x′′′
1 ) = 0. (3.57)

The boundary conditions (3.10) and the remaining equation (3.7) are expanded similarly. The coeffi-
cients of successive powers of ξ are now set to zero. First, the terms of order ξ give

(−λcx
′
1 − N1)

′ = 0,

(−λcy
′
1 + T1)

′ = 0,

N1 − B1x
′′′
1 = 0. (3.58)

The constraint (3.7) implies that y′
1 = 0. Therefore,

T1 = 0, N1 = −λcx
′
1, −λcx

′
1 − B1x

′′′
1 = 0. (3.59)

It follows (upon use of the boundary conditions) that

x′
1 = A(τ) sin(πs/2l), (3.60)

the slowly-varying amplitude A(τ) being so far undetermined. Next, the terms of order ξ2 give

(−λcx
′
2 − N2)

′ = 0,

(−λcy
′
2 + T2 + N1x

′
1)

′ = 0,

N2 + B1(−x′′
2)′ = 0. (3.61)

The constraint (3.7) gives
y′
2 = −x′2

1 /2. (3.62)

It follows that N2 = −λcx
′
2, T2 = −λ2 + λcx

′2
1 /2 and then −λcx

′
2 − B1x

′′′
2 = 0. Thus, x′

2 has the same
form as x′

1, and can without loss be set to zero. Now considering terms of order ξ3,

mẍ1 = (−λcx
′
3 + T2x

′
1 − N3 − N2y

′
1 − N1y

′
2)

′,

mÿ1 = (−λcy
′
3 + T3 + N2x

′
1 + N1x

′
2)

′,

N3 + B1(y
′′
2x′

1 − x′′
3 − y′

2x
′′
1)′ − 3B3(x

′′
1)2x′′′

1 = 0. (3.63)
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The second of these equations implies that T3 = 0, since y1 = 0, x′
2 = 0, so N2 = 0 and the constraint

gives y′
3 = 0. The first and third equations simplify correspondingly:

mẍ1 = (−λcx
′
3 − λ2x

′
1 − N3)

′,

N3 − B1x
′′′
3 − 3B3(x

′′
1)2x′′′

1 − 1

2
B1(x

′2
1 x′′

1)′ = 0. (3.64)

Therefore, eliminating N3,

mẍ1 + λ2x
′′
1 +

{

B1(x
′2
1 x′′

1)′/2 + 3B3(x
′′
1)2x′′′

1

}′

= −λcx
′′
3 − B1x

′′′′
3 . (3.65)

The boundary conditions for x3 are

x3(0, τ) = x′
3(0, τ) = x′′

3(l, τ) = 0, λcx
′
3(l, τ) + B1x

′′′
3 (l, τ) = −λ2x

′
1(l, τ) − 1

2
B1[{x′

1(l, τ)}2x′′
1(l, τ)]′.

(3.66)
The consistency condition for the existence of x3 is obtained by multiplying by the eigenvector x1 and
integrating from 0 to l. Substituting the expression (3.60) for x′

1 and integrating by parts as appropriate,
the consistency condition becomes (with the change of variable u = πs/2l)

(

2l

π

)3

mÄ

∫ π/2

0

(1 − cos u)2 du +
λ2Al

2

+ A3

{

πB1

4l

∫ π/2

0

sin u[2 sin u cos2 u − sin3 u] du − 3B3

( π

2l

)3
∫ π/2

0

sin2 u cos2 u du

}

= 0.

(3.67)

Evaluating the integrals gives, finally,

(

3π

8
− 1

)

mÄ +
π3

8l2
A

{

λ2 − A2

[

B1π
2

32l2
+

3B3π
4

64l4

]}

= 0. (3.68)

The equilibrium post-buckling relation (3.32) is recovered exactly by setting Ä = 0.

In conclusion of this discussion, it is remarked that the asymptotic analysis given above provides

information on “slow dynamics” near a critical point but does not necessarily provide the complete

picture. Depending on the details of the system, there could be other dynamical solution branches

nearby, and nonlinear terms neglected in the low-order asymptotics could couple these to the motion

calculated and introduce significant deviations, even where equation (3.68) predicts a periodic solution.

Of course, if the equation predicts an unbounded solution, its validity is in any case restricted to the

régime where A(τ) is of order unity. Equation (3.68) should therefore be interpreted as showing just

how the system may first respond to a small departure from the primary solution path, close to the

critical point.
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4 Stability of continua

Considerations of the type described in Sections 2 and 3 apply also to bodies that have
to be modelled as two- or three-dimensional continua. It has been remarked already that
problems for continua are most usually approached by performing a discretization. There
is, nevertheless, some advantage in discussing continua directly, for basic understanding
and also because another phenomenon – that of localisation of deformation – is possible
in a continuum. When this is likely to occur, it is important that any discretization
should be designed so that it can track the deformation with sufficient accuracy. It
is also important to understand when a problem is “ill-posed”. Further comment will
be made when localisation is discussed. First, however, the same basic sequence of
reasoning as has already been seen in the preceding sections will be followed through.

4.1 Notation

A brief self-contained summary of nonlinear continuum mechanics – not, strictly, part
of this course – is given in Section 6. This subsection simply records the main notation
that is employed.

Under a deformation, a point initially at position X, with Cartesian components
{Xα}, moves to x, with Cartesian components {xi}. The deformation gradient matrix
A has components

Aiα =
∂xi

∂Xα

.

Principal stretches λr, r = 1, 2, 3, are defined so that the symmetric matrix ATA has
eigenvalues λ2

r.
A strain measure ef is defined, relative to a function f , to have the same principal

axes as ATA, and eigenvalues f(λr). The function f is monotone increasing, f(1) = 0
and f ′(1) = 1. Green strain corresponds to

f(λ) = 1

2
(λ2 − 1).

The corresponding strain measure, denoted by E, is

E = 1

2
(ATA − I),

where I denotes the identity.
The stress Tf , conjugate to the strain ef , is defined so that T f

αβ ėf
αβ is the rate

of working of the stress per unit initial volume, during the deformation. For an elastic
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medium, with energy density function per unit initial volume W , expressed as a function
of ef , it follows that

T f
αβ =

∂W

∂ef
αβ

.

The stress T(2) that is conjugate to E is the second Piola–Kirchhoff stress tensor. It
is also convenient to introduce S, with components Sαi, as the nominal stress tensor. Its
transpose is also called the first Piola–Kirchhoff stress tensor, or the Boussinesq tensor.
It has the property that the rate of working of the stress, per unit initial volume, is
SαiȦiα, and it follows that

Sαi =
∂W

∂Aiα

.

4.2 Equilibrium

A three-dimensional body, in equilibrium under some system of loading, adopts a con-
figuration that satisfies the equations of equilibrium

Sαi,α + ρ0bi = 0, X ∈ B0. (4.1)

This is simply the time-independent version of the equations of motion (c.f. (6.12)).
The loading comprises the body-force b, together with boundary conditions. At each
point of ∂B0, three conditions must be given. For instance, all three components xi of
x may be prescribed, or all three components NαSαi of surface traction may be given
as functions of X, or some mixture, such as the normal component of traction and the
tangential components of x. In addition, it may be that a component of traction is
specified as a function not only of X, but also of x and A. It is possible, also, that
the body-force b could depend on the current position x of the material point if, for
example, it were applied via a non-uniform magnetic field.

In any case, it will be assumed here that body-force, and the given combination
of surface displacements and surface tractions depend on a parameter λ, so that λ = 0
corresponds to no loading and the loading increases in some sense with λ. As in previous
sections, there may be more than one solution branch, but for the branch being followed,
first the question of uniqueness of the increment of solution associated with an increment
of λ will be addressed. As previously, it is convenient to discuss rates of change in place of
increments, while disregarding inertia. These must conform to the equilibrium condition

Ṡαi,α + ρ0ḃi = 0, X ∈ B0, (4.2)
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which is the rate equation corresponding to (4.1), together with rate forms of the bound-
ary conditions. In the most general configuration-dependent case (c.f. (6.73)), these
would take the form

NαṠαi = fi + kijẋj + Ciβjẋj,β (4.3)

wherever NαSαi is given. Here, fi = ∂ψi/∂t, kij = ∂ψi/∂xj and Ciβj = ∂ψi/∂Ajβ. In
addition, ḃi could contain a term (∂bi/∂xj)ẋj.

It is also necessary to specify the constitutive relation of the body, in rate form.

Elastic body, simple boundary conditions

First, consider an elastic body, subjected to a combination of dead loading and given
boundary displacements, as considered in Section 2.3. Thus, in (4.3), kij = Ciβj = 0.
The body force b is similarly assumed to be of dead-loading type. The elastic constitutive
relation (2.41), in rate form, gives

Ṡαi = cαiβjẋj,β, (4.4)

where

cαiβj =
∂2W

∂Aiα∂Ajβ

(4.5)

(c.f. (6.47)). We wish now to examine the uniqueness of the solution of the equilibrium
equations (4.2) (in which ḃ is given as a function of X), together with the constitutive
relation (4.4) and boundary conditions.

The usual way to discuss uniqueness is to assume that there are two different so-
lutions. Then their difference, denoted with the prefix ∆, satisfies the corresponding
system of homogeneous equations. Thus,

∆Ṡαi,α = 0, X ∈ B0, (4.6)

where
∆Ṡαi = cαiβj∆ẋj,β, (4.7)

together with homogeneous boundary conditions.
Now multiply equation (4.6) by ∆ẋi, sum over i and integrate over B0. This gives

0 =
∫

B0

[∆ẋicαiβj∆ẋj,β],α dX −
∫

B0

∆ẋi,αcαiβj∆ẋj,βdX

=
∫

∂B0

∆ẋiNαcαiβj∆ẋj,βdS0 −
∫

B0

∆ẋi,αcαiβj∆ẋj,βdX

= −
∫

B0

∆ẋi,αcαiβj∆ẋj,βdX, (4.8)
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having employed the divergence theorem and made use of the fact that the boundary
conditions are homogeneous.

Uniqueness of ẋi,α is guaranteed if

∫

B0

∆ẋi,αcαiβj∆ẋj,βdX > 0 (4.9)

for all ∆ẋi not identically zero, that are consistent with the boundary conditions. That is,
∆ẋi must be zero wherever on the boundary xi is prescribed. Furthermore, ẋi is unique
provided it is prescribed at some point of the boundary. (Negative-definiteness of the
quadratic form would do equally well, but it will be seen later that positive-definiteness
is needed for stability).

A sufficient condition for (4.9) to hold is that

aiαcαiβjajβ ≥ 0,∀X ∈ B0, (4.10)

with equality only if aiα = 0. It is also necessary for (4.9) in some cases. All-round
dead loading, generating uniform stress and deformation, is an example. It is, however,
possible that (4.9) may hold for all ∆ẋi,α allowed by other boundary conditions, even
if (4.10) does not hold. Suppose, conversely, that the minimum value of the quadratic
form (4.9) is zero, and that it is attained for some ∆ẋi not identically zero. Then ∆ẋi

satisfies the equilibrium equations (4.6), and hence the solution is not unique. Such a
field is called an eigenmode.

Relation to work-conjugate variables

Insensitivity of the energy function W to rigid rotations implies that W can only depend
on the deformation gradient A through some measure of strain, such as ef . Perhaps the
simplest of these is the Green strain, e(2) ≡ E = 1

2
(ATA − I). It follows from the chain

rule for partial differentiation that

Sαi = Aiγ
∂W

∂Eαγ

. (4.11)

Therefore,

Ṡαi = Aiγ
∂2W

∂Eαγ∂Eβδ

AjδȦjβ + δij
∂W

∂Eαγ

Ȧiγ. (4.12)

Hence,
cαiβj = AiγLαγβδAjδ + δijSαkBkβ, (4.13)
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where

Lαγβδ =
∂2W

∂Eαγ∂Eβδ

(4.14)

and BT is the inverse of A, so that Bkα = ∂ξα/∂xk, AjαBkα = δkl. The formula (4.13)
is derived in Section 6 in the wider context of inelastic deformations.

It is plausible, for example, that the quadratic form eαγLαγβδeβγ may be positive-
definite with respect to symmetric eαγ. The form (4.13) can be expressed

aiαcαiβjajβ = bik{AiγAkαLαγβδAjδAlβ + det(A)δijTkl}bjl, (4.15)

where aiα = bikAkα or, equivalently, bik = aiαBkα. T is Cauchy stress. Evidently, the
quadratic form (4.10), or (4.15), cannot be positive-definite if any of the principal Cauchy
stresses are negative (this can be demonstrated by choosing bik to be skew-symmetric).
Tensile stress, on the other hand, enhances the positive-definiteness. Therefore, in the
presence of tensile stress, bifurcation from a uniform state of deformation, maintained by
all-round dead loading, would need to be associated with the quadratic form generated
from Lαγβδ, becoming indefinite by a sufficiently large amount. This form is a property
of the energy function W . It is remarked, however, that there is nothing special about
the choice of the Green strain tensor E, except that it made the calculations simple. If
some other strain measure were employed, a formula of the same general form would
result, but Lαγβδ would be different, and the difference would be accounted for by an
additional term involving the current stress. The formula (6.35) provides this additional
term.

General boundary conditions

If the boundary conditions are of the general configuration-dependent form discussed
above, it is still possible to write down the system of linear partial differential equations
and boundary conditions that govern any possible ∆ẋi. Since the system is homogeneous,
an eigenvalue problem for the loading parameter λ is defined, and any solution is again
an eigenmode. No further discussion is given here.

Post-bifurcation behaviour

It is possible to study the initial post-bifurcation path, by following the pattern already
established in Sections 2 and 3. An elementary example will be presented in the context
of weakly-nonlinear dynamics.
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4.3 Localisation

In contrast to the type of bifurcation which was envisaged above, we introduce now
the notion that material may become locally unstable, in the sense of admitting the
development of a discontinuity in the velocity field. If such a discontinuity survives
for any finite time, a discontinuity in displacement ensues if the surface across which
the discontinuity exists remains stationary; otherwise, it moves through the material,
forming a shock. The formation of a stationary discontinuity is called localisation. In
practice, discontinuities are not realised exactly. There will be some fine structure. This,
however, is not captured by the simple constitutive description adopted so far. Although
much is already known, understanding is still far from complete for inelastic solids. Here,
we confine attention to the possible onset of localisation by identifying conditions under
which the rate equations of equilibrium (4.2) permit the development of discontinuities
in rates of stress and deformation gradient.

Suppose, therefore, that velocity is continuous but that stress-rate is discontinuous
across a surface S0 in the reference configuration, which maps onto the surface S in the
current configuration. If velocity is continuous across S0, the tangential components of
its gradient must be continuous. Therefore, at most,

[ẋi,α] = aiNα (4.16)

for some vector a8. Here, N is the normal to S0 and the square brackets denote the
jump across S0 of the quantity enclosed. The equations of equilibrium (4.2) cannot hold
at S0 but equilibrium still requires that

[NαṠαi] = 0. (4.17)

This condition can be interpreted as an enforcement of (4.2) in the weak sense. Now
substituting the constitutive relation (4.4) gives

cαiβjNαNβaj = 0. (4.18)

This is the condition for localisation: equation (4.18) should have non-trivial solution a

for some direction N.
Note that if the quadratic form given in (4.10) is positive-definite, then

cαiβj(aiNα)(ajNβ) > 0 (4.19)

8In fact, from (4.16), a is the jump in the normal derivative of ẋ, ai = [Nαẋi,α].
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for all a and N, and localisation is impossible. The condition (4.19) is the condition
for strong ellipticity of the system of partial differential equations (4.2) with (4.4). It
is weaker than the condition (4.10) – and therefore it is possible that the onset of
bifurcation may occur before the onset of localisation. There is, however, a result called
Van Hove’s theorem, that states that if displacements are prescribed over the whole of
the boundary, then the solution of the rate problem is unique if (4.19) is satisfied. For
this particular problem, therefore, bifurcation does not precede localisation.

Recall, again, that the constants cαiβj that appear in (4.19) depend explicitly as well
as implicitly on the current level of stress.

4.4 Linearized dynamics

Now suppose that the fundamental equilibrium solution, denoted with a superscript
zero, is perturbed dynamically, with the loading held fixed. Denote the perturbed stress
and perturbed position

Sαi = S0
αi + sαi, xi = x0

i + ui. (4.20)

Then, the linearized equations of motion give

sαi,α = ρ0üi, (4.21)

together with homogeneous boundary conditions, and (still considering an elastic body)
the constitutive relations

sαi = cαiβjuj,β. (4.22)

Normal mode solutions have the time-dependence exp(iωt) and satisfy the system of
equations

(cαiβjuj,β),α + ρ0ω
2ui = 0. (4.23)

For the simple types of boundary conditions considered above, these equations are self-
adjoint and all eigenvalues ω2 are real9. For sufficiently small loads, it is reasonable to
expect that the equilibrium configuration is stable, and therefore that the eigenvalues ω2

are all positive. Instability first becomes possible when the smallest eigenvalue is zero.
The usual argument, involving multiplication of the equation by ui and integrating over
B0, gives

ω2
∫

B0

ρ0uiuidX =
∫

B0

ui,αcαiβjuj,βdX. (4.24)

9The proof is very similar to that given in detail for the Euler column.
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Thus, the smallest eigenvalue becomes zero at the value of λ for which

min
∫

B0

ui,αcαiβjuj,βdX = 0, (4.25)

the minimum being taken over fields ui that are compatible with any given displacements
on the boundary, and for which

∫

B0
ρ0uiui dX = 1. Equation (4.25) defines u as an

eigenmode, as introduced in the context of static bifurcation.
It may be noted that the potential energy of the system is given by (6.51). Therefore,

the difference in energy, between the configurations x and x0, is

∆E =
∫

B0

[

W (x0
i,α + ui,α) − W (x0

i,α) − ρ0biui

]

dX −
∫

∂B0

NαS0
αiui dS0. (4.26)

Expanded to second order in ui,α, this gives

∆E ∼
∫

B0

1

2
ui,αcαiβjuj,β dX. (4.27)

The term linear in ui and ui,α vanishes because the energy is stationary at x0. The
configuration x0 is stable (all eigenvalues ω2 are positive) if ∆E, as given by (4.27), is
positive-definite. This is the Dirichlet condition for stability; it coincides exactly with
the condition (4.9).

Wave propagation

Consider now an infinitesimal plane wave disturbance, propagating through uniform
material, uniformly pre-deformed to the level defined by S0 and x0. The general plane
wave has the form

ui = aif(t − NαXα/c), (4.28)

where a is the amplitude of the wave and c is its speed. Substituting this form into the
equations of motion (4.21) gives

[cαiβjNαNβ − ρ0c
2δij]ajf

′′(t − N · X/c) = 0. (4.29)

This is satisfied, for any wave-form f , if

[cαiβjNαNβ − ρ0c
2δij]aj = 0. (4.30)

The matrix cαiβjNαNβ is symmetric and therefore has real eigenvalues. The corre-
sponding wave speeds are real so long as the eigenvalues are positive. This is precisely
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the condition for strong ellipticity of the static equations, which precludes localisation.
There is an obvious sense in which the material can be regarded as locally stable: there
should exist three real wave speeds10. Conversely, localisation of deformation occurs
when some disturbance cannot propagate, and therefore has no alternative but to build
up. cαiβjNαNβ is also called the acoustic tensor, or the Christoffel tensor. If it has
three positive eigenvalues, the equations of motion (4.21) are called totally hyperbolic.
It should be noted that, when the equations of motion are not totally hyperbolic, the
“usual” problem in which initial values of u and u̇ are prescribed, becomes ill-posed.
Conversely, when the condition (4.30) for localisation is met, the corresponding prob-
lems for equilibrium fail to be elliptic, and problems with the usual kinds of boundary
conditions become ill-posed. The correct resolution must be to admit into the physical
model features so far neglected: viscosity, dependence of stress on higher-order gradients
of deformation, etc. This should be reflected in any finite-element representation. If it is
not, the discretized problem will have a solution but it is unavoidably mesh-dependent.
Arbitrary choice of any particular mesh is equivalent to the injection of some additional
physics. If this is not identified explicitly, there is no reason to suppose that the finite-
element model will reflect physical reality. It has to be remarked that this expedient is
nevertheless frequently adopted by practitioners!

4.5 Weakly-nonlinear dynamics

The dynamics of the system will now be investigated, at a load close to that which produces bifurcation.
Towards this end, let the primary solution be x

0, and let the given tractions and body-forces be t0i and
b0
i . These all depend on the parameter λ. The bifurcation level is given the superscript c in place of 0.

Now modify the applied loading, so that

bi = bc
i + ξb

(1)
i + ξ2b

(2)
i , (4.31)

and any given components of displacement or traction on the boundary have the forms

xi = xc
i + ξx

(1)
i + ξ2x

(2)
i , ti = tci + ξt

(1)
i + ξ2t

(2)
i , X ∈ ∂B0. (4.32)

It is important that the quantities with superscript “(1)” should be directed tangentially to the original

loading path (that is, b
(1)
i is proportional to db0

i /dλ, etc.), but the quantities with superscript “(2)” are
unrestricted. Let the perturbation u have the expansion

u = ξu(1) + ξ2
u

(2) + · · · . (4.33)

10Counting multiplicity: it does not matter if two wave speeds coincide, as in the case
of an unstressed isotropic material.
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The perturbed stress satisfies

sαi
= cαiβjuj,β + dαiβjγkuj,βuk,γ + · · · , (4.34)

where

dαiβjγk = 1

2

∂3W

∂Aiα∂Ajβ∂Akγ
(A0). (4.35)

The equation of motion governing the perturbation is

sαi,α + ρ0(ξb
(1)
i + ξ2b

(2)
i ) = ρ0üi, (4.36)

exactly. Assume that the fields with the superscripts “(1)” or “(2)” depend on time only through the
“slow” variable

τ = ξ1/2t.

Then the equations of motion give, upon substituting the series,

[cαiβj(ξu
(1)
j,β + ξ2u

(2)
j,β ],α + ξ2[dαiβjγku

(1)
jβ u

(1)
k,γ ],α + ρ0(ξb

(1)
i + ξ2b

(2)
i ) = ρ0ξ

2u
(1)′′
i + O(ξ3), (4.37)

where the prime denotes differentiation with respect to τ . The boundary conditions are, to order ξ2,
that

either ξu
(1)
i + ξ2u

(2)
i = ξx

(1)
i + ξ2x

(2)
i

or Nα[cαiβj(ξu
(1)
j,β + ξ2u

(2)
j,β) + ξ2dαiβjγku

(1)
j,βu

(1)
k,γ ] = ξt

(1)
i + ξ2t

(2)
i , X ∈ ∂B0. (4.38)

Equating terms of order ξ gives

[cαiβju
(1)
j,β ],α + b

(1)
i = 0, (4.39)

together with the corresponding boundary conditions. Now by hypothesis, this system does have a

solution, which continues the primary branch. Call this û
(1)
i . It is not unique, however. Therefore,

u
(1)
i = û

(1)
i + A(τ)v

(1)
i (4.40)

for some function A(τ), where here the eigenmode has been designated v
(1). Now equating terms of

order ξ2,

[cαiβju
(2)
j,β + dαiβjγk(û

(1)
j,β + Av

(1)
j,β)(û

(1)
k,γ + Av

(1)
k,γ)],α + b

(2)
i = ρ0A

′′v
(1)
i . (4.41)

Here, it has been assumed that the terms with superscript “(1)” are independent of τ . Differentiation
with respect to τ is indicated by a prime. The corresponding boundary conditions are

either u
(2)
i = x

(2)
i

or Nα[cαiβju
(2)
j,β + dαiβjγk(û

(1)
j,β + Av

(1)
j,β)(û

(1)
k,γ + Av

(1)
k,γ)] = t

(2)
i , X ∈ ∂B0. (4.42)

The condition of consistency, for a solution u
(2) to exist, can be found by multiplying equation (4.41)

by v
(1)
i and integrating over B0. This gives, upon use of the divergence theorem,

∫

B0

{

v
(1)
i (b

(2)
i − ρ0A

′′v
(1)
i ) − v

(1)
i,αdαiβjγk(û

(1)
j,β + Av

(1)
j,β)(û

(1)
k,γ + Av

(1)
k,γ)

}

dX

+

∫

∂B0

[v
(1)
i t

(2)
i − v

(1)
i,αcαiβjNβx

(2)
j ]dS0 = 0. (4.43)
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The first term in the surface integral only involves the given components t
(2)
i because v

(1)
i satisfies

homogeneous boundary conditions and therefore is zero wherever t
(2)
i is not given. The symmetry

cαiβj = cβjαi

of the elastic constants ensures that the second term similarly involves only the prescribed components

x
(2)
j . This symmetry also ensured that [v

(1)
i,αcαiβj ],β = 0, which was also exploited in the derivation.

Equation (4.43) is written more tidily as

A′′

∫

B0

ρ0v
(1)
i v

(1)
i dX + 2A

∫

B0

v
(1)
i,αdαiβjγkû

(1)
j,βv

(1)
k,γ dX + A2

∫

B0

v
(1)
i,αdαiβjγkv

(1)
j,βv

(1)
k,γ dX

=

∫

B0

(v
(1)
i b

(2)
i − v

(1)
i,αdαiβjγkû

(1)
j,βû

(1)
k,γ)dX +

∫

∂B0

(v
(1)
i t

(2)
i − Nαcαiβjv

(1)
j,βx

(2)
i ) dS0. (4.44)

Equilibrium points are found by setting A′′ = 0 in (4.44). The resulting algebraic equation embodies
the static post-bifurcation response. It is slightly different in form from equation (3.20) which was
derived for a system with a finite number of degrees of freedom for two reasons. One is that the
fundamental solution is here not identified as zero. The other is that the extra loading, described by
b

(2) etc., is somewhat more general, in that it may define some deviation from the loading path of the
primary solution.

If the term containing A2 should vanish (as it could if the system and its loading path had some
symmetry), then a different parameterisation would be needed: the preceding Section which dealt with
the Euler column provides a template.

The “health warning” given at the end of the corresponding discussion for the Euler column is

repeated here: the “weakly nonlinear” dynamics developed here are interesting and relevant but, de-

pending on the details of the problem, it is possible that there could be other solution branches nearby

whose analysis would require more sophisticated methods.

4.6 Inelastic media

This Section is concluded with a very brief discussion of inelastic media. The discus-
sion will be confined to equilibrium problems. The equation for continuing equilibrium
remains (4.2). Now, however, a different constitutive relation is adopted. The relation
(4.4) becomes nonlinear because the tangent moduli ciαjβ are homogeneous functions of
degree zero in Ȧ. The tangent moduli are, in fact, often taken to be piecewise constant

functions: for example, the plastic response of a single crystal is usually viewed as re-
sulting from slip on a definite set of slip systems, and the tangent moduli take constant
values which depend on which slip systems are activated. If, in addition, the moduli
have the symmetry

cαiβj = cβjαi,
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the relation between stress-rate and deformation-rate can be given in the form

Ṡαi = ∂U/∂Ȧiα, (4.45)

where
U(Ȧ) = 1

2
ȦiαcαiβjȦjβ. (4.46)

so long as certain other conditions are also met, to ensure that the potential (4.46) is
continuous and differentiable.

The constitutive response can be modelled for many materials by the relation (4.45),
where U is any homogeneous function of degree 2 in Ȧ. This model will be assumed in the
discussion to follow. It is justified at least for the usual model of single crystal response,
and, in fact, then follows (from micromechanical considerations) for any polycrystalline
material whose individual crystals respond in this way.

Incremental uniqueness and bifurcation

Suppose that the rate equations of equilibrium admit two different solutions, with su-
perscripts 1 and 2. Then

Ṡk
αi,α + ρ0ḃi = 0, (k = 1, 2), (4.47)

where

Ṡk
αi =

∂U

∂Ȧiα

(Ȧk). (4.48)

The fields must also satisfy boundary conditions, which will be taken as a mixture of
prescribed displacements or dead-load tractions, as before. It follows that

∫

B0

(Ȧ1
iα − Ȧ2

iα)

(

∂U

∂Ȧiα

(Ȧ1) − ∂U

∂Aiα

(Ȧ2)

)

dX = 0. (4.49)

This result follows from the use of the divergence theorem and the equations of equilib-
rium, coupled with the fact that both fields satisfy the same boundary conditions.

Suppose first that U is a strictly convex function of Ȧ: this is a generalisation of the
condition (4.10). It is a general property of a strictly convex function (of Ȧ) that, for
any Ȧ1 and Ȧ2,

(Ȧ1
iα − Ȧ2

iα)

(

∂U

∂Ȧiα

(Ȧ1) − ∂U

∂Aiα

(Ȧ2)

)

≥ 0, (4.50)

with equality only if Ȧ1 = Ȧ2. It follows that the solution of the rate problem is unique
if U is strictly convex.
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Now introduce a “comparison potential”

U0(Ȧ) = 1

2
Ȧiαc0

αiβjȦjβ, (4.51)

where the c0
αiβj are constants, with the symmetry specified above. Suppose now that the

function U − U0 is convex. It follows that

(Ȧ1
iα − Ȧ2

iα)

(

∂(U − U0)

∂Ȧiα

(Ȧ1) − ∂(U − U0)

∂Ȧiα

(Ȧ2)

)

≥ 0, (4.52)

and hence that

∫

B0

(Ȧ1
iα − Ȧ2

iα)

(

∂U

∂Ȧiα

(Ȧ1) − ∂U

∂Aiα

(Ȧ2)

)

dX ≥
∫

B0

(Ȧ1
iα − Ȧ2

ıα)c0
αiβj(Ȧ

1
jβ − Ȧ2

jβ)dX.

(4.53)
Uniqueness is assured if the quadratic form on the right side of (4.53) is positive-definite
for all ∆Ȧ ≡ (Ȧ1 − Ȧ2) consistent with the boundary conditions. It is not necessary
that the function U0 should be convex. The advantage of the use of a comparison
potential is that the form on the right side of (4.53) can be investigated by studying
its “eigenmodes”, using standard methods of linear analysis. Positive-definiteness of
the form is sufficient for uniqueness of the rate problem for the actual material. The
prediction of bifurcation for the comparison medium does not, however, automatically
imply bifurcation for the actual medium. Whether or not it does depends (at least) on
the choice of comparison medium, and needs to be considered case by case. The device
of introducing a comparison potential was introduced by R. Hill, and the uniqueness
result that follows from (4.53) is referred to as “Hill’s comparison theorem”.

Localisation

Now consider again the possibility that rates of stress and deformation gradient may be
discontinuous across the surface which maps back to S0 in the reference configuration.
The relations (4.16) and (4.17) now imply that

Nα

(

∂U

∂Ȧiα

(Ȧ2) − ∂U

∂Ȧiα

(Ȧ1)

)

= 0, (4.54)

where
Ȧ2

iα = Ȧ1
iα + aiNα. (4.55)
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Multiplying (4.53) by ai and summing over i then yields

(Ȧ2
iα − Ȧ1

iα)

(

∂U

∂Ȧiα

(Ȧ2) − ∂U

∂Ȧiα

(Ȧ1)

)

= 0. (4.56)

It follows immediately that localisation cannot occur if the potential U is convex, for
then the convexity condition (4.50) together with (4.56) implies that a = 0. It may be
noted further that localisation is similarly excluded if (4.50) holds for all Ȧ1 and Ȧ2 that
satisfy (4.55). This states that Ȧ1 and Ȧ2 differ by a matrix of rank one (a matrix with
only one linearly independent row or column). The associated restriction on U is that
U is rank-one convex. Of course if a comparison medium is introduced, and localisation
cannot occur in that medium, then it cannot occur in the actual medium. However, there
is no advantage in introducing a comparison potential U0 just for discussing localisation,
since the criterion for localisation is purely algebraic.

Media not satisfying normality

If the tangent moduli of a material do not possess the symmetry cαiβj = cβjαi, it is pos-
sible for two real eigenvalues of the acoustic tensor ciαjβNαNβ to be real up to some level
of deformation at which they coalesce and then, for increased deformation, move into
the complex plane as complex conjugate pairs. It should be noted that the equations of
continuing equilibrium remain elliptic, because the determinant of the acoustic tensor
remains non-zero. Therefore, depending on the boundary conditions, it is possible that
the equilibrium path suffers no bifurcation. However, if any dynamic disturbance is con-
sidered, the corresponding equations of motion must be employed, and these cease to
be totally hyperbolic. The natural initial value problems become ill-posed. By analogy
with flutter, this particular type of material condition is called the flutter ill-posedness.
Exactly what to do about it is so far undecided. Analysis to date has been confined
almost exclusively to identifying when the condition might occur. Clearly features of
material response that are usually unimportant and so are neglected in the models dis-
cussed above need to be recognised and allowed for. These will include rate-dependence
(for which systematic descriptions exist) and non-local response, upon which there is as
yet no universal agreement.
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4.7 Illustrative example

The formulae derived above will now be developed more explicitly, for the constitutive
model (6.67). Thus, during plastic loading,

ė = MṪ + PQT Ṫ/h. (4.57)

Here, T and e are conjugate measures of stress and strain; a particular choice will be
made below.

The first task is to invert the relation (4.57). Elementary algebra yields

Ṫ = Lė − LPQTLė

QTLP + h
. (4.58)

Thus, during loading,

L = L − LPQTL
QTLP + h

. (4.59)

Now to be definite, take the conjugate stress and strain pair to be the second Piola-
Kirchhoff stress T(2) and the Green strain e(2) ≡ E. Then, the corresponding moduli
relating rates of nominal stress and deformation gradient are given by (6.71). If, in
addition, the current state is chosen as reference configuration, so that A = I at the
present instant, it follows that

ckilj = Lkilj + δijTkl −
LkipqPqpQrsLsrlj

PpqLqpsrQrs + h
. (4.60)

Here, since the reference configuration is the current one, Greek suffixes have been
dispensed with. Also, since at this instant all measures of stress coincide, T can be
viewed equally as second Piola-Kirchhoff stress, or nominal stress, or Cauchy stress. It
is important to remember, though, that the moduli ckilj relate the nominal stress-rate,
given by (6.38) with (6.36), to the rate of deformation.

Now specialise further, by taking

P = Q = T′/‖T′‖, (4.61)

where T′ is the deviatoric stress

T ′

ij = Tij − 1

3
δijTkk (4.62)
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and ‖T′‖ = (T ′

ijT
′

ji)
1/2. It is consistent with the implied isotropy to take

Lkilj = λδkiδlj + µ(δklδij + δkjδli). (4.63)

The relation (4.61) means that plastic strain-rate and deviatoric stress are “parallel” to
one another; volume change and hydrostatic stress are related elastically. The constitu-
tive relation so developed is a generalisation to finite deformations of the conventional
J2, or von Mises theory, which states that plastic deformation occurs when the mag-
nitude of the shear stress, ‖T′‖, reaches a critical value. The coefficient h defines the
amount of hardening: during simple shear, it relates the rate of increase of the shear
stress to the rate of increase of the plastic part of the strain-rate11. It should be em-
phasised that the constitutive relation that has been developed depends on the choice
of conjugate stress and strain measures. Any other choice would provide a different
generalisation of the small-deformation theory. It should be noted, however, that this
or any other choice of conjugate variables yields a tangent modulus tensor that displays
the symmetry ckilj = cljki exactly12.

The corresponding potential U now takes the form

U(Ȧ) = 1

2
Ȧik

{

Lkilj + δijTkl −
LkipqPqpPrsLsrlj

PpqLqpsrPrs + h
H(PabLbadcȦcd)

}

Ȧjl, (4.64)

where H denotes the Heaviside step function. Evidently, the potential U is rank-one
convex if (4.19) is satisfied, with ckijl taking their “inelastic” values. Substituting into
this condition, with a orthogonal to N (because it is already known that this model of
plasticity only allows for inelastic shear deformations), gives

aiNkckiljajNl = µ − 4µ2(aiTikNk)(NlTljaj)

(2µ + h)T ′
rsT

′
sr

+ NkTklNl > 0. (4.65)

Now suppose that T has the form






−p T12 0
T12 −p 0
0 0 −p





 .

11This description is accurate when the strains are infinitesimal. It is given only for the
purpose of motivation.

12It can be noted that, in contrast, the common assumption that the co-rotational or
Jaumann derivative of Kirchhoff stress is related to strain-rate through a set of moduli
of the form (4.59) introduces some asymmetry; it is also not compatible exactly with the
existence of an energy function, in the case of no plastic deformation.

49



Take ai = δi1 and Nk = δk2. The condition for avoidance of localisation then reduces to
h > 0. However, for more complicated patterns of stress, it is possible that localisation
might not occur even for (some) negative values of h. It is equally possible that the
onset of localisation could occur at some positive value of h.

Finally, an example of a simple model of “dilatant” plasticity is presented:

Pki = T ′

ki/‖T′‖ + αδki, Qki = T ′

ki/‖T′‖ + βδki. (4.66)

In this case, plastic yielding depends on the hydrostatic part of the stress as well as
on the shear, and the inelastic deformation likewise has a “dilatant” component. Soils
display this type of behaviour. There is, however, no universal agreement on the relative
values of the parameters α and β, except that they are most unlikely to be equal, so
that “flutter ill-posedness” is a potential problem.
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Fig. 5.1. (a) Sketch of the cross-section of a buckled pipe. (b) The one degree-of-freedom

model, with four hinges.

5 Propagating Instabilities

Considering small small departures from some equilibrium path as in previous sections
serves to identify bifurcation points, critical loads, and static or dynamic response close
to such points. Achievement of instability is most likely to lead to a large departure
from the configuration from which the instability commenced. Furthermore, there are
situations in which a local large perturbation can act as a trigger for an instability
that affects the whole structure, even though the loading that is applied is insufficient
to generate instability in the absence of the local perturbation. An example is the
propagation of a buckle along an undersea pipeline. The pipeline is modelled as a long
circular cylinder, subjected to external pressure loading. The essence of the phenomenon
is captured by a simple model, with just one degree of freedom. After buckling, the
cross-section of the pipe usually has the form depicted in Fig. 5.1(a). This motivates
considering the simple model shown in Fig. 5.1(b). Four quarter-circle segments of
radius a are joined by nonlinear hinges, each of which resists bending through an angle
ϕ by exerting a resisting couple of moment

M = f(ϕ). (5.1)
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The hinges may be elastoplastic but, since only monotonically increasing loads will be
considered, the moment M can be considered to be a single-valued function of ϕ. The
configuration of the cross-section is defined by the angle θ shown in Fig. 5.1(b). If
the pipe is initially circular, then θ = 0 defines its initial configuration. An initial
imperfection is modelled by taking θ = θ0 6= 0 prior to deformation.

5.1 The critical pressure

The response modelled by (5.1) can be treated as though it is elastic, even if it is not;
the difference would emerge only if unloading were considered. Therefore, it is possible
to define a potential “energy” per unit length of pipe

U(ϕ) =
∫ ϕ

0
f(q)dq. (5.2)

The external pressure has fixed magnitude p. The potential associated with this (per
unit length of pipe) is p times the area of cross-section of the pipe. This area, A(θ) say,
is 4 times the area enclosed by a curved segment, plus the area of the rhombus inside,
whose sides are of length

√
2a. Thus,

A(θ) = (πa2 − 2a2) + 2a2 cos(2θ), (5.3)

since the acute angle of the rhombus is π/2 − 2θ. The total energy (per unit length) of
the system is therefore

E(θ) = pA(θ) + 2U(2(θ − θ0)) + 2U(−2(θ − θ0)), (5.4)

since two hinges undergo the deflection ϕ = 2(θ − θ0) while the other two undergo the
deflection ϕ = −2(θ − θ0). Equilibrium requires that E(θ) should be stationary. Thus,
by differentiating (5.4) with respect to θ,

4f(2(θ − θ0)) − 4f(−2(θ − θ0)) − 4pa2 sin(2θ) = 0. (5.5)

For the perfect structure, θ0 = 0. Therefore, since f(0) = 0, the symmetric configu-
ration θ = 0 is in equilibrium. It is stable so long as d2E(θ)/dθ2 > 0 when θ = 0. That
is,

p < pc, (5.6)

where
pc = 2f ′(0)/a2. (5.7)
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Fig. 5.2. Qualitative plots of pressure p versus deformation as measured by θ− θ0, for the

perfect structure (θ0 = 0) and an imperfect structure (θ0 > 0). The pressure can take any

value when θ = π/4, corresponding to contact of opposing faces.

Now to be more explicit, suppose that the hinges are elastic-perfectly plastic, so that

f(ϕ) =

{

kϕ, |ϕ| ≤ ϕy

kϕy, |ϕ| ≥ ϕy.
(5.8)

Then,

U(ϕ) =

{

1

2
kϕ2, 0 ≤ ϕ ≤ ϕy

1

2
kϕ2

y + kϕy(ϕ − ϕy), ϕ ≥ ϕy.
(5.9)

Also, U(ϕ) = U(−ϕ). The equilibrium condition (5.5) now gives

p

pc

=

{

2(θ − θ0)/ sin(2θ), 0 ≤ (θ − θ0) ≤ ϕy/2
ϕy/ sin(2θ), (θ − θ0) ≥ ϕy/2.

(5.10)

Only the case θ−θ0 ≥ 0 is considered. The form of the relation (5.10) is sketched in Fig.
5.2, for the perfect structure (θ0 = 0) and an imperfect structure (θ0 > 0). It suggests
that collapse will occur once the maximum pressure, defined by putting θ = θ0 +ϕy/2 in
(5.10), is attained. The maximum pressure is reduced by the presence of an imperfection.
There is, in fact, an upper limit to θ, given by θ = π/4. This corresponds to opposing
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Fig. 5.3. Schematic picture of a pipe buckled over part of its length. The pipe buckles

over an additional length d in going from configuration (a) to configuration (b). The

transition region between buckled and unbuckled parts retains its form but is translated

though distance d.

faces of the cylinder coming into contact, after which p may become arbitrarily large
without inducing further deformation in this model. This is what we mean by collapse.
Equivalently, the tube is said to have buckled.

5.2 Propagation of a buckle

If, for some reason, the pipe buckles (essentially as described above) over some limited
portion of its whole length, the deformation must be three-dimensional, since there must
be one or two regions of transition between the buckled and unbuckled configurations.
There is the possibility that the buckle may spread along the pipe, even if the pressure
is less than the critical pressure pc that is required to initiate a buckle in a perfect
section. Fortunately, the pressure required to propagate a buckle can be estimated,
at least approximately, without recourse to three-dimensional analysis. If the buckled
section is already long, the configurations shown in Fig. 5.3 may be considered. Figure
5.3(a) shows the buckle in a certain position and Fig. 5.3(b) depicts the configuration
after the buckle has propagated through a distance d. The transition region retains its
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form but has translated through a distance d. The work done by the pressure between
configurations (a) and (b) is just d times the difference in the energy per unit length
for the undeformed and the buckled sections. Thus, from (5.3), with θ = 0 for the
undeformed section, the work done is

W = 2a2pd, (5.11)

since θ = π/4 in the buckled configuration.
It is impossible for the buckle to have propagated, unless the work W is at least as

great as the work required to extend the buckle through the distance d. If the material
of the pipe is (nonlinearly) elastic (so that the work done within it is independent of
the loading path), this latter work is exactly d times the work done (per unit length)
against the hinges, in taking the tube from its initial state to its completely buckled
state, since the region over which the deformation is three-dimensional has translated
but the pattern of deformation within it is unchanged. Thus, for an elastic pipe, the
work done within the tube is exactly

2[U(π/2) + U(−π/2)]d. (5.12)

It is plausible, though no proof is offered, that, if the pipe is made of inelastic material,
the work done against the stresses must be at least this value. Thus, a plausible lower

bound for the pressure required to propagate the buckle is given by

pp = [U(π/2) + U(−π/2)]/a2. (5.13)

When U(ϕ) has the form given in equation (5.9),

pp = kϕy[π − ϕy]/a
2. (5.14)

If σ0 denotes yield stress of the pipe material in tension or compression, the most ele-
mentary estimate for the yield moment My = kϕy of a hinge is

My = 2
∫ t/2

0
σ0z dz = σ0t

2/4, (5.15)

where t denotes the thickness of the tube. Specializing also to rigid-perfectly plastic
response, so that ϕy → 0, the “lower-bound” critical pressure for propagation pp becomes

pp = πσ0(t/2a)2. (5.16)

This is very much smaller than the pressure pc required to initiate a buckle in a perfect
section of pipe, which formula (5.7) gives as twice the elastic bending stiffness, divided
by a2 and so is infinite in the rigid-perfectly plastic limit!
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5.3 Other propagating instabilities

There are other problems in which an instability, once started, can propagate along a
structure under a load much lower than that required to initiate it. One example, in
common experience, is provided by blowing up a long thin balloon: significant pressure
is required to achieve a large expansion over some portion of the balloon, but thereafter
it becomes relatively easy to blow up, at moderate pressure, by the mechanism of length-
ening of the inflated section. The equations are not presented, but again the key is to
recognise that the pressure versus radius relation has a form similar to that given for the
imperfect pipe in Fig. 5.2, with radius replacing the parameter θ − θ0. The “vertical”
part of the response shown in Fig. 5.2 is not vertical in the case of the balloon, but it
does rise steeply as radius increases beyond a certain value.

Materials that can undergo phase transformation can display a related phenomenon.
There is an impressive body of theory for phase-transforming materials that can be
modelled as (nonlinearly) elastic13. Problems involving more than one spatial dimension
are very far from trivial, and completely beyond the scope of this course. It is possible,
however, to give a brief outline for the one-dimensional case, realised by the tension or
compression of a bar. The stress-strain response is defined by the relation

σ = ∂W/∂e, (5.17)

where σ denotes nominal tensile stress (load divided by cross-sectional area prior to
deformation) and e is the tensile strain, e = ∂u/∂x, where u is displacement and x
is the Lagrangian coordinate along the bar. The energy function W has two or more
minima. The case of exactly two minima will be discussed, as depicted in Fig. 5.4(a).
At a minimum, ∂W/∂e = 0, and so there is zero stress. Different minima correspond
to different phases of the material. If e is measured relative to the unstressed state in
phase 0, then e = 0 defines the minimum in the energy associated with phase 0, and
some other strain, e = e1, defines the corresponding minimum for phase 1. The stress
is zero at e = 0 and e = e1, and each of these configurations is stable. There must
be, however, a maximum for W in between, at e = e∗ say, at which the stress is also
zero but the associated configuration is unstable. The stress-strain relation thus has the
general character depicted in Fig. 5.4(b). The stress-strain curve passes through the
origin, rises to a maximum value σmax at some strain between 0 and e∗, passes through
zero at e = e∗, then falls to a minimum value σmin at a strain between e∗ and e1, and

13There are, of course, also materials that undergo plastic deformation in addition to
phase transformation, for which theory is much less advanced.
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Fig. 5.4. (a) Energy function of a material that can exist in two phases, 0 and 1. (b) The

corresponding stress-strain relation.

thereafter rises. Suppose that the bar is subjected to end displacements that produce
nominal stress σ, and that the bar is initially in phase 0, with zero strain. The relative
displacement of the ends of the bar is e times its length, where e is the mean tensile
strain. As e increases from zero, the strain is uniform along the bar and has value e,
up to the level at which σ = σmax. Thereafter, the stress σ lies between σmax and σmin,
but the material has a choice: it can either adopt the uniform strain e along its entire
length, corresponding to the point C in Fig. 5.4(b), or it can adopt the strain eC over a
fraction f of its length, and the strain eA over the remaining fraction, (1 − f), so that

(1 − f)eA + feC = e. (5.18)

If it adopts a configuration of this latter type, then at least each part of the bar corre-
sponds to a state of stress and strain that is stable. The material at strain eA is in phase
0 and the material at strain eC is in phase 1. There are infinitely many configurations
of this type. Even the level of the line ABC is not fixed, except that σ must lie between
σmax and σmin. Exactly what happens will depend upon how deformation past the point
corresponding to σmax may be triggered.

Suppose now that, for some reason, the bar (which occupies the region 0 < x < L
before deformation) adopts the strain eC for 0 < x < fL and the strain eA for fL <
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x < L: the phase transformation has spread from the end x = 0. If the mean strain
is increased by an amount δe, the transformation will spread further along the bar, a
distance δx = δfL, say, and eA and eC will undergo changes δeA, δeC . These changes
are related so that they are consistent with (5.18):

δe = δf(eC − eA) + (1 − f)δeA + fδeC . (5.19)

Also, since the stress has to be constant along the bar, for equilibrium, σ = W ′(eA) =
W ′(eC).

The work done on the bar during this process must at least suffice to provide the
additional strain energy in the bar. The former is Lσδe, while the latter is

δU = L {δf [W (eC) − W (eA)] + (1 − f)W ′(eA)δeA + fW ′(eC)δeC}
= L {δf [W (eC) − W (eA)] + σ[δe − δf(eC − eA)]} , (5.20)

having used (5.19). Thus, propagation is not possible unless

σ = W ′(eA) = W ′(eC) ≥ W (eC) − W (eA)

eC − eA

=: σM . (5.21)

The level at which equality is achieved in (5.21) defines the Maxwell stress σM . It
corresponds to equality of the areas shown hatched in Fig. 5.4(b). The inequality states
that the stress required to propagate the phase transformation must equal or exceed
the Maxwell stress. This is exactly analogous to the lower bound pp for the pressure
required to propagate a buckle along a pipe. Estimation of the precise value of the stress
at which a phase transformation front may propagate would require a detailed model of
the kinetics of the phase transformation process. This is analogous to the need to model
the three-dimensional deformation in the transition region in the buckle propagation
problem – but no microscopic model of the phase transformation process has yet found
wide acceptance.
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Fig. 6.1. Sketch of a body in undeformed and deformed configurations.

6 Review of Nonlinear Solid Mechanics

This section presents a quick overview of continuum mechanics, as applied to solids. It
is not strictly part of the course but serves to make these notes self-contained.

6.1 Deformation and Stress

An outline of the basic notions of deformation and stress, relevant to all materials,
is presented here. A wide variety of notations is in current use; here, the arbitrary
choice has been made to follow that used in the book by R.W. Ogden (Nonlinear Elastic

Deformations, Ellis Horwood, Chichester 1984).

Deformation

The deformation of a body is depicted in Fig. 6.1. It occupies a domain B0 in its
reference configuration and B1 currently; if the deformation varies with time t, then
B1 depends on t. A generic point of the body has position vector X ∈ B0 initially,
and x ∈ B1 at time t, relative to origins O and o respectively. Relative to Cartesian
bases {Eα} for the initial configuration and {ei} currently, the vectors X and x have
coordinate representations

X = XαEα and x = xiei, (6.1)

with implied summation over the values 1,2,3 for the repeated suffixes.
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The deformation is defined by an invertible map from B0 to B1. In terms of X and
x,

x = χ(X, t) (6.2a)

or, in components,
xi = χi(X, t). (6.2b)

The deformation gradient A is then defined as

A = Aiαei ⊗ Eα, (6.3)

where

Aiα =
∂xi

∂Xα

. (6.4)

Then, an infinitesimal line segment dX deforms into the segment dx, where

dx = AdX, dxi = AiαdXα. (6.5)

Strain tensors relate lengths and angles before and after deformation. If infinitesimal
line segments dX and dY transform respectively into dx and dy, then

dx.dy = dxTdy = dXTATAdY. (6.6)

All information on length and angle changes is thus contained in ATA. Perhaps the
simplest strain measure – the Green strain – is then

E = 1

2

(

ATA − I
)

, or Eαβ = 1

2
(AiαAiβ − δαβ) . (6.7)

A general class of strain measures is obtained by first defining the eigenvalues and
normalized eigenvectors of ATA as λ2

i and u(i), so that

ATA =
3

∑

i=1

λ2
i u

(i) ⊗ u(i). (6.8)

Then, if f is any monotone increasing function for which f(1) = 0 and f ′(1) = 1, a
strain tensor e is defined as

e =
3

∑

i=1

f(λi)u
(i) ⊗ u(i). (6.9)

60



The strain tensor (6.7) fits this pattern, with f(λ) = 1

2
(λ2 − 1).

The polar decomposition theorem

A result needed later, related to (6.8), is the polar decomposition theorem. Define

U =
3

∑

i=1

λiu
(i) ⊗ u(i)

and then set

R = AU−1 = A
3

∑

i=1

λi
−1u(i) ⊗ u(i).

It follows that R represents a rotation (so that RTR = I), while U is symmetric. The
representation

A = RU

is the required result.

Stress and equations of motion

Suppose the body is acted upon by surface and body forces, which may vary with
time t. These forces can be represented either as functions of x and t, relative to the
current configuration, or as functions of X and t, relative to the initial configuration, to
which the current configuration is related by (6.2). Since the mapping χ is usually not
known in advance of solving the problem, we choose to employ the latter representation.
Thus, with the mass density of the body given as ρ0 per unit volume in the reference
configuration, the body force b per unit mass can equivalently be expressed as ρ0b

per unit initial volume. Since the force is actually applied to the body in its current
configuration, it is usual to express b, in components, as

b = biei.

The forces applied to the surface are defined similarly, per unit of surface area in the
reference configuration. Thus, if an element of surface dS0 is mapped by (6.2) into a
surface element ds, the force applied to ds is

df = tdS0,

where t is the force per unit reference area and dS0 denotes the magnitude of dS0.
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Fig. 6.2. Element of volume employed for deriving (6.11).

Balance of linear momentum then requires that

d

dt

∫

B0

ρ0vdX =
∫

B0

ρ0bdX +
∫

∂B0

t dS0, (6.10)

where v = dx/dt is the particle velocity and ∂B0 denotes the surface of B0. A similar
relation must apply to any part of B0. In particular, by taking a small volume element
of the type shown in Fig. 6.2, it follows that t has the representation

t = STN, or ti = SαiNα, (6.11)

where N denotes the unit normal to the surface element dS0
14. If the representation

(6.11) is now substituted into (6.10) (applied to any part of B0), the divergence theorem
then yields the equation of motion

Sαi,α + ρ0bi = ρ0dvi/dt, X ∈ B0. (6.12)

It may be noted that (6.12) is exactly like the more usual equation involving Cauchy
stress, but ρ0 and B0 are known; the equation is thus linear, even though it is exact.

Balance of moment of momentum requires that

d

dt

∫

B0

εijkxj(ρ0vk)dX =
∫

B0

εijkxj(ρ0bk)dX +
∫

∂B0

εijkxj(SαkNα)dS0.

14The ‘derivation’ of (6.11) can, if preferred, be by-passed by treating (6.11) as a
postulate.
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Transformation of the surface integral to one over B0 by the divergence theorem, followed
by use of (6.12) and the recognition that B0 may be chosen arbitrarily gives the result
εijkAjαSαk = 0. Equivalently,

AiαSαj = AjαSαi, or AS = (AS)T . (6.13)

In view of its reference to initial area, S is called the tensor of nominal stress; its
transpose is called the first Piola-Kirchhoff stress tensor. It can be shown that Cauchy
stress T is related to S by

T = AS/det(A).

Work-conjugate stresses and strains

The rate of working of the forces applied to the body is obtained by multiplying forces
by velocities; thus, the total rate of working is

∫

B0

ρ0bividX +
∫

∂B0

NαSαivi dS0 = ẇ, say.

Application of the divergence theorem and use of the equation of motion (6.12) trans-
forms this to

ẇ =
∫

B0

[(

d

dt

)

1

2
ρ0vivi + Sαivi,α

]

dX. (6.14)

The last term in the integrand represents the rate of working, per unit reference volume,
of the stresses. It can also be written

Sαivi,α = SαiȦiα. (6.15)

(The superposed dot means d/dt.)
Now consider the strain tensor obtained by taking f(λ) = λ − 1, so that e = U− I.

Employing in (6.15) the polar decomposition of A gives

SαiȦiα = SαiṘiβUβα + SαiRiβU̇βα

= SαiRiβU̇βα.

The term involving Ṙ is zero. This can be seen by noting that

SαiṘiβUβα = SαiṘiβRjβRjγUγα = AjαSαiṘiβRjβ,
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and invoking the symmetry (6.13) together with the antisymmetry ṘRT = −RṘT .
Hence, exploiting the symmetry of U,

SαiȦiα = T
(1)
αβ ėβα, (6.16)

where
T

(1)
αβ = 1

2
[SαiRiβ + SβiRiα] . (6.17)

The tensor T(1) is the stress which is conjugate to the strain e.
The same idea applies to other measures of strain. Another simple example is pro-

vided by the Green strain (6.7). The associated conjugate stress is T(2), where

T
(2)
αβ = SαiBiβ, (6.18)

with the notation
BT = A−1. (6.19)

The stress tensor T(2) is the second Piola-Kirchhoff stress tensor; it is symmetric, since
(6.13) gives

SB = BTASB = BTSTATB = BTST .

Convected coordinates

Suppose a coordinate net is scribed into the initial configuration. It is rectilinear initially
but, after deformation, an infinitesimal segment EαdXα is transformed into a segment
eiAiαdXα = eαdXα, say. The vectors {eα} form a basis, but this is not orthonormal;
it is associated instead with curvilinear coordinates {Xα} in the current configuration.
Now we can associate with T(2), for example, a tensor

T̂(2) = T
(2)
αβ eα ⊗ eβ = T̂

(2)
ij ei ⊗ ej, (6.20)

where
T̂

(2)
ij = AiαAjβT

(2)
αβ . (6.21)

The components T
(2)
αβ can be viewed as the contravariant components of the tensor T̂(2),

relative to the basis {eα}. It can be checked by calculation that T̂
(2)
ij = det(A)Tij (T

denoting Cauchy stress). The tensor T̂(2) is called the Kirchhoff stress.
Similar constructions could be based upon the components of other stress tensors;

there is no particular advantage to this, but the discussion presented perhaps explains
the source of the wide variety of possible descriptions of stress.

It should be noted, finally, that all of the measures of stress that have been discussed

coincide, when the reference configuration is chosen as the current configuration at the

instant of interest.

64



Stress rates

The subject of stress rates will only be touched upon during the lectures. The account
to follow, though itself only a sketch, is included so that the exposition in these notes is
in a sense complete.

First we establish some notation. The strain measure (6.9), constructed with the
function f , will be denoted ef :

ef =
3

∑

r=1

f(λr)u
(r) ⊗ u(r) or in suffix notation, ef

αβ =
3

∑

r=1

f(λr)u
(r)
α u

(r)
β . (6.22)

The conjugate stress is now denoted Tf , with components T f
αβ. The corresponding stress

rate is nothing other than Ṫf , with components Ṫ f
αβ. As was discussed above for the

second Piola-Kirchhoff stress T(2), another tensor, T̂f , can be formed by taking T f
αβ to

be its contravariant components on the basis {eα}, so that its Cartesian components are
given by a formula exactly like (6.21). Then, the components Ṫ f

αβ can be employed to

form a certain rate for the tensor T̂f , say

δT̂f

δt
= Ṫ f

αβeα ⊗ eβ, or
δT̂ f

ij

δt
= AiαAjβṪ f

αβ. (6.23)

It is of interest to express the stress-rate δT̂f/δt in terms of the components T̂ f
ij and

their derivatives, particularly in the case when the current configuration is taken as the
reference configuration, so that A = I. Relative to this configuration, it has already
been remarked (and will be proved below) that all stress measures become identical. So
also, do all strain-rates, but the same is not true of the stress-rates.

To begin, the strain-rate corresponding to e
f has components

ėf
βγ =

3
∑

r=1

[f ′(λr)λ̇ru
(r)
β u(r)

γ + f(λr)(d/dt)(u
(r)
β u(r)

γ )]. (6.24)

(Here and elsewhere, d/dt has the same meaning as a superposed dot, either representing the time

derivative at a fixed material point, so that X is kept fixed.) The stress components T f
αβ are related to

those of the nominal stress through

SαiȦiα = T f
βγ ėf

βγ = T f
βγ

∂ef
βγ

∂Aiα
Ȧiα. (6.25)

Thus,

Sαi = T f
βγ

∂ef
βγ

∂Aiα
. (6.26)
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An expression for ∂ef
βγ/∂Aiα is therefore required. A calculation summarised in Appendix 2A gives

∂ef
βγ

∂Aiα
=

3
∑

r=1

{

f ′(λr)

λr
u

(r)
β u(r)

γ u(r)
α Aiµu(r)

µ

+
∑

s 6=r

f(λr)

λ2
r − λ2

s

(u
(r)
β u(s)

γ + u
(s)
β u(r)

γ )(u(r)
α Aiµu(s)

µ + u(s)
α Aiµu(r)

µ )

}

. (6.27)

This formula is somewhat inconvenient for investigating the case when A = I, because it requires a
limiting operation. Appendix 2A derives this limit directly. It involves the Eulerian strain-rate Σij ,

which is the symmetric part of the Eulerian deformation-rate Γij = ∂ẋi/∂xj = ȦiαBjα, which reduces

to Ȧiαδjα when A is the identity, Aiα = δiα. The time derivative of λr, and the eigenvector u
(r), satisfy

Σijδjαu(r)
α = λ̇rδiαu(r)

α . (6.28)

Thus,

Σij =
3

∑

r=1

λ̇rδiαδjβu(r)
α u

(r)
β . (6.29)

This demonstrates explicitly, by comparison with (6.24) when λr = 1, that all stress-rates coincide with
the Eulerian strain-rate when the current configuration is chosen as reference. Expressed differently,
when A = I,

ėf
βγ =

∂ef
βγ

∂Aiα
Ȧiα = δjβδkγΣjk = 1

2
(δjβȦjγ + δjγȦjβ). (6.30)

It follows that
∂ef

βγ

∂Aiα
= 1

2
(δiβδαγ + δiγδαβ), (6.31)

and hence that
Siα = δiβT f

βα. (6.32)

Thus, relative to the current configuration, all measures of stress coincide, and may be identified with

a single stress Tαβ which in fact is also coincident with the Cauchy stress.
Relations between different stress-rates are now investigated by differentiating (6.26) to give

Ṡαi = Ṫ f
βγ

∂ef
βγ

∂Aiα
+ T f

βγ

∂2ef
βγ

∂Aiα∂Ajν
Ȧjν . (6.33)

It is shown in Appendix 2A that, when A = I,

∂2ef
βγ

∂Aiα∂Ajν
= 1

2

{

1

4
(f ′′(1) − 1)(δαβδijδγν + δαγδijδβν + δαβδiνδjγ + δjαδβνδiγ

+δjαδiβδγν + δjβδiνδαγ + δiβδjγδαν + δjβδανδiγ)

+
∑

r

u
(r)
β u(r)

γ u
(r)
λ u(r)

µ δij(δλνδαµ + δαλδµν)

+ 1

2

∑

r

∑

s 6=r

(u
(r)
β u(s)

γ + u
(s)
β u(r)

γ )δij(δλνδαµ + δαλδµν)
}

. (6.34)
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The desired relation between Ṡαi and Ṫ f
βγ now follows by substituting (6.31) and (6.34) into (6.33). This

is not written out explicitly, but it is noted that the rate associated with T
f depends on the function

f only through the term multiplying the coefficient (f ′′(1) − 1). It is now not difficult to conclude, for

T̂
f and T̂

g (the latter being defined with the function g replacing f), that

δT̂ f
ij

δt
=

δT̂ g
ij

δt
− 1

2
[f ′′(1) − g′′(1)](ΣikT̂kj + T̂ikΣkj), (6.35)

where T̂ denotes either of T̂
f or T̂

g, since these coincide when the current configuration is taken as

reference.

All that remains now is to evaluate one particular stress-rate. This is easy to do for
the tensor T̂(2). Differentiating (6.21) and then setting A = I gives

dT̂
(2)
ij

dt
= δiαδjβṪ

(2)
αβ + (Ȧiαδjβ + δiαȦjβ)T

(2)
αβ , (6.36)

whence it follows that
δT̂

(2)
ij

δt
=

dT̂ij

dt
− ΓikT̂kj − ΓjkT̂ki. (6.37)

It is also of interest, for later use, to derive an expression for the nominal stress-rate.
The simplest course is to differentiate the relation (6.18). This gives (when A = I)

Ṫ
(2)
αβ = Ṡαiδiβ − SαiδiγȦkγδkβ.

This delivers the nominal stress-rate

δjαṠαi =
δT̂

(2)
ji

δt
+ ΓikT̂kj =

dT̂ji

dt
− ΓjkT̂ki. (6.38)

It is remarked finally that the Cauchy stress tensor, previously introduced as T

with components Tij, is not conjugate to any strain measure. However, the relation

T̂(2) = det(A)T between Kirchhoff stress and Cauchy stress implies, when A = I, that

dT̂ij

dt
=

dTij

dt
+ ΓkkTij. (6.39)

6.2 Elastic constitutive equations

This section records the constitutive relations of finite-deformation elasticity and then
their specialization, first to ‘incremental’ deformation and then, further, to classical
linear elasticity (which may be viewed as an increment of deformation from an unstressed
reference configuration).

67



The general elastic constitutive relation

An elastic body is taken as one which stores any energy that is put into it. If thermal
effects are disregarded, any mechanical work done on the body must either generate
kinetic energy or else be stored within the body as strain energy. The energy that is
stored, per unit reference volume, is W , which is a function, W (A), of the local deforma-
tion gradient. If the deformation is sufficiently slow for isothermal conditions to prevail,
then W is the free energy function, with the temperature fixed at its ambient value.
More generally, energy accounts must be performed, making allowance for temperature
(and entropy) variations and the input of heat, but this is not discussed further.

The total rate of input of mechanical work has already been given, as ẇ, in equation
(6.14). The statement just made translates into the equation

ẇ =

(

d

dt

)

∫

B0

[ 1

2
ρ0vivi + W (A)]dX. (6.40)

Comparison of (6.14) and (6.40) (both of which also apply when B0 is replaced by any
part of B0) shows that

SαiȦiα =
dW (A)

dt

=
∂W

∂Aiα

Ȧiα.

Since this equation remains true for any motion15, it follows that

Sαi =
∂W

∂Aiα

. (6.41)

Equation (6.41) is the constitutive equation for finite-deformation elasticity.
There is, however, a restriction on the form of the function W : it has to be ‘objective’.

It is common experience that the stored energy of an elastic body undergoes no change if
it is subjected to a rigid motion. Hence, W can depend on A only in some combination
that recognises only length and angle changes – that is, A must appear only through
some measure of strain. All are equivalent, since all can be constructed from (6.8) or
from U, but not all are equally convenient. If, however, W is expressed as a function of

15It is a simple exercise to construct deformations which are independent of X, for which
A and Ȧ take chosen values at some specific time.
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some particular strain ef , it follows immediately from the definition of work-conjugacy
that the associated stress, Tf , is given by

T f
αβ =

∂W

∂ef
αβ

. (6.42)

Incremental deformations

This discussion is restricted to the case of a small, possibly dynamic, perturbation of a
static finite deformation, defined by a deformation gradient A0, say, and corresponding
nominal stress S0, so that

S0
αi =

∂W

∂Aiα

(A0).

This initial deformation is maintained by body force b0, so that, from the equation of
motion (6.12) in the case of no time-dependence,

S0
αi,α + ρ0b

0
i = 0. (6.43)

Some boundary condition must also be specified; for simplicity we assume that x =
χ0(X) is prescribed for X ∈ ∂B0.

Now change the body force to b0 + f and displace the boundary to χ0 + w, where
f and w are small, but possibly depend on time t. The body undergoes an increment
of displacement u and the total deformation gradient and nominal stress now have
components

Aiα = A0
iα + ui,α and Sαi = S0

αi + sαi, say.

The equation of motion (6.12) now implies, on taking account of (6.43),

sαi,α + ρ0fi = ρ0
d2ui

dt2
(6.44)

and the boundary condition gives

u = w, X ∈ ∂B0. (6.45)

The system (6.44), (6.45) is completed by appending an incremental version of the
constitutive equation (6.41). This is

sαi = cαiβjuj,β, (6.46)
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where

cαiβj =
∂2W

∂Aiα∂Ajβ

(A0). (6.47)

It should be noted that, although the tensor c does not have all of the usual symmetries
assigned to elastic moduli, it does have the crucial symmetry

cαiβj = cβjαi, (6.48)

which renders the equations self-adjoint. These equations form the basis for analy-
ses of stability and, when their solution is unique, most of the standard techniques of
linear elasticity can be deployed for their solution. Computational schemes for static
finite-deformation problems are also usually approached by an incremental formulation,
equivalent to the one given here.

Linear elasticity

Classical linear elasticity is a special case of small deformations superposed on a finite
deformation: it is necessary only to choose the special values b0 = 0, A0 = I, S0 = 0.
The coordinate bases {Eα} and {ei} can be taken to coincide and it is usual to take the
coordinates to be {xi} and avoid the use of Greek suffixes. All stress tensors coincide –
and increments too, in the absence of pre-strain – and can be regarded as Cauchy stress,
with components Tij. All strain tensors likewise reduce to the infinitesimal strain tensor
– called e – with components

eij = 1

2
(ui,j + uj,i)

and, since the strain energy function W must depend upon e, the elastic moduli are
given by

cijkl =
∂2W

∂eij∂ekl

and have the symmetries
cijkl = cjikl = cklij.

(This is consistent with the symmetry (6.13) of the stress tensor S, which follows when
A = I.)

The energy function at zero strain is taken to be zero, and zero strain is taken to
correspond to zero stress (unless pre-stress was a feature to be modelled). Hence, for
small strains, the energy function becomes

W (e) = 1

2
cijkleijekl. (6.49)
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Since the energy at any non-zero level of strain should be positive, a restriction on the
quadratic form (6.49) is that it should be positive-definite.

In the special case of isotropy, the tensor of elastic moduli c takes the form

cijkl = λδijδkl + µ (δikδjl + δilδjk) . (6.50)

The energy function (6.49) can be written

W (e) = 1

2
λeiiekk + µeijeij

= 1

2
κeiiekk + µe′ije

′

ij,

where
κ = λ + 2

3
µ

and
e′ij = eij − 1

3
ekk.

Positive-definiteness of (6.49) is then equivalent to the inequalities

κ > 0, µ > 0.

6.3 Some Energy Considerations

This section deals with the classical energy principles. Also, just to finish off, a discussion
of energy flux is included; this can equally well be done for a general continuum and
specialized to elasticity afterwards, so this sequence is followed. The topics have some
fundamental significance. In particular, they have significant bearing on the theory of
forces on defects.

The minimum energy principle

It is a reasonable physical postulate that an elastic body, when in equilibrium, adopts
the configuration that minimizes its total energy, allowing for the constraints to which
it is subjected16. This statement can be put into mathematical form, only once these
constraints have been made explicit. Although there are other possibilities, it will be
assumed here that the body is subjected to body force b(X) per unit mass and that, at
each point of its boundary ∂B0, one of the pair {xi, ti} is prescribed, for each i, where ti

16Of course this can apply only to constraints which can be associated with a potential
energy.
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denotes a prescribed value for NαSαi. Thus, any loads that are prescribed are of ‘dead
loading’ type; configuration-dependent loads (that depend on x) are more complicated.
The energy of the system comprising the body and its loading mechanism is now

E(x(X)) =
∫

B0

[W (A) − ρ0bixi]dX −
∫

∂B0

{tixi} dS0, (6.51)

where the curly bracket implies evaluating the sum at any point X only over those values
of i for which ti is prescribed. The physical postulate that the body selects for itself the
function x(X) that minimizes E, subject to its components xi taking any values that may
be prescribed for X ∈ ∂B0, is hard to verify mathematically (and, when W has several
minima corresponding to phase transformations, is a subject of active research) but it
is easy to verify that the equations of equilibrium are satisfied when E is stationary. To
see this, let x(X) be the solution and let u be any admissible variation. The statement
that, to first order,

E(x + u) = E(x)

implies
∫

B0

[

∂W

∂Aiα

ui,α − ρ0biui

]

dX −
∫

∂B0

{tiui}dS0 = 0. (6.52)

An application of the divergence theorem gives

∫

∂B0

[NαSαiui − {tiui}] dS0 −
∫

B0

[Sαi,α + ρ0bi] uidX = 0. (6.53)

The requirement that (6.53) should hold for any u(X) for which ui(X) = 0 whenever
xi is prescribed, generates the equilibrium equation (the time-independent version of
(6.12)) and the traction boundary conditions.

In the case of linear elasticity, W is a convex function of e and it is easy to prove
that the stationary point is a minimum. This follows from the calculation

E(x̂) − E(x) =
∫

B0

[W (ê) − W (e) − bi(x̂i − xi)]dX −
∫

∂B0

{ti(x̂i − xi)}dS0,

where x̂ is any admissible field. It follows since W is convex that

W (ê) − W (e) ≥ (êij − eij)
∂W

∂eij

(e)

= (êij − eij)Tij.
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This inequality, coupled with an application of the divergence theorem, gives the desired
result, that

E(x̂) ≥ E(x).

Notice that the proof, in this form, requires W to be convex but not necessarily quadratic,
and so applies also to ‘physically nonlinear’ problems, under the assumption of small
deformations (the deformation theory of plasticity falls within this class).

The complementary energy principle

Although there is a stationary principle of complementary energy for finite deformations,
a minimum principle has only been established in the case of small deformations. Then,
W is a convex function of e and there is no difficulty in defining a complementary energy
density function

W ∗(T) = sup
e

[Tijeij − W (e)] . (6.54)

The supremum is attained when

Tij =
∂W

∂eij

;

the equality

eij =
∂W ∗

∂Tij

is satisfied simultaneously. The complementary energy principle states that

F (T) =
∫

B0

W ∗(T)dX −
∫

∂B0

{{NjTjixi}}dS0

is minimized by the actual stress field T, amongst stress fields that satisfy the equilibrium
equations and any prescribed traction boundary conditions (NjTji = ti). The double
curly bracket in (6.54) implies summation only over those values of i for which xi is
prescribed. The function W ∗ is convex and the proof follows that outlined for the
minimum energy principle.

Energy flux considerations

This section is valid for any continuum and even thermal effects are admitted; the
formulae can easily be specialized to elasticity. Suppose that (part of) a body occupies a
domain B0 in the reference configuration, as discussed earlier. It is subjected to surface
forces ti = NαSαi. In addition, there is a flux of heat out of B0 across the surface

73



∂B0, which is expressed as Nαqα per unit area in the reference configuration, so that q

represents a ‘nominal heat flux vector’. For simplicity, it is assumed that there is no
body force or direct input of heat from an external source, except through the boundary.
Since energy is conserved, the rate of energy input into B0 must equal the rate of increase
of energy within B0. Thus,

∫

∂B0

[NαSαivi − Nαqα]dS0 =
∫

B0

d

dt
[U + 1

2
ρ0vivi]dX, (6.55)

where U denotes the internal energy per unit reference volume (this will, in general, be
a function of the current state, as specified by the deformation gradient A, the entropy
and some set of internal variables). Application of the divergence theorem to (6.55),
coupled with the equation of motion (6.12) with b = 0, now implies the local energy
balance equation

Sαivi,α − qα,α = U̇ , (6.56)

since (6.55) must apply for any domain B0.
So far, the domain B0, once chosen, is fixed. It transforms, during the motion of

the body, to a domain B1, which depends upon t but always consists of the same set of
material points. Now consider, however, a more general case, where a domain B1(t) is
chosen a priori, restricted only so that it varies smoothly with t. Such a domain maps
back onto the reference configuration, through the inverse of the mapping (6.2), to a
domain B0(t), which now depends on t. Of course, B0(t) could be chosen first, to induce
a corresponding B1(t). The rate of change of energy within B1(t) becomes

(

d

dt

)

∫

B0(t)
[U + 1

2
ρ0vivi]dX

=
∫

B0(t)

d

dt
[U + 1

2
ρ0vivi]dX +

∫

∂B0(t)
[U + 1

2
ρ0vivi] (NαCα)dS0, (6.57)

where the components of the velocity of ∂B0 are Cα (these may depend on position
X ∈ ∂B0). Use of the divergence theorem, the local energy balance (6.56) and the
equation of motion shows that the volume integral on the right side of (6.57) satisfies
(6.56), even though B0 depends on t, and hence

(

d

dt

)

∫

B0(t)
[U + 1

2
ρ0vivi]dX =

∫

∂B0(t)
Nα [Sαivi − qα + Cα (U + 1

2
ρ0vivi)] dS0. (6.58)

The right side of (6.58) may thus be interpreted as the flux of energy across the moving
surface ∂B1(t), whose image in the reference configuration is ∂B0(t).
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6.4 Inelastic constitutive equations

The study of the response of solids which are not elastic of course is extremely broad.
This section just presents the briefest outline, sufficient for the purposes of these notes.

A rather general framework for discussing the response of solids is to postulate that
stress at some material point X and some time t depends on the entire history of the
strain at the point X, at all times before t, and including the time t. (“Non-local”
continua, in which stress depends on the strain in a neighbourhood of X are excluded for
the present.) Conversely, the strain at X at time t depends on the history of the stress.
We shall assume here that “stress” and “strain” are some chosen work-conjugate pair,
as discussed earlier.

No progress can be made unless some further structure is assumed. Here, we suppose
that the rate of strain at time t is expressible in the form

ėf = F(Tf , Ṫf , H), or ėf
αβ = Fαβ(Tf , Ṫf , H), (6.59)

where F is a (tensor-valued) function and H symbolically denotes the entire history of
the deformation at times prior to t, perhaps encapsulated in some set of parameters,
called “state variables”. A possible response to an imposed stress is displayed in Fig.
6.3. This depicts just a uniaxial stress S and the corresponding component e of strain17.
The stress increases from zero at O, up to a maximum at B, and then decreases down to
C. The noteworthy feature is that the response is linear from O to A. Then, it deviates
significantly from linear behaviour. Of course the entire curve that is shown will depend
not only upon the stress but also on its rate of change. That is, the figure actually
shows the curve obtained by eliminating the time t between the stress and the strain,
both obtained as functions of t.

It is common experience that the linear portion OA that is depicted really does exist
for the majority of solid materials, and that this portion is independent of the rate of
change of the stress. Thus, at low stress or strain, the material behaves according to
linear elasticity. The point A is not so easy to define rigorously. It is true that a rapid
deviation from linear elastic behaviour occurs in the vicinity of A. The phenomenon is
called “plastic yielding”. Exactly where it is considered to occur depends on the sensi-
tivity of the experiment. It is probably true to assert that there is some contamination
of the linear elastic response, even at very small stress or strain, but this is insignificant
until the point A is reached. Thus, the point A will be defined in practice as that point
beyond which the linear elastic approximation is no longer acceptable.

17S can be regarded as the 11 component of nominal stress and e as the proportional
elongation, λ1 − 1; these are natural observables in a simple tension test.
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Fig. 6.3. Representation of elastoplastic response.

Now consider the point B, at which the stress is reduced: the incremental response
again becomes linear, but if the stress were reduced to zero there would be some residual
strain. Again, exactly what happens near B will depend on the rate of change of the
stress, and some deviation from linearity will occur, though this can almost invariably
be ignored in practice.

Unless the rate of stress (or, equivalently, the strain-rate) is very large, it is found for
metals at moderate temperatures (less than one-third the melting point, for instance)
that the dependence on stress- or strain-rate is negligible. An example stress-strain
relation, in one dimension, that illustrates this is

ė = Ṡ/E + ėp, (6.60)

where the “plastic strain-rate” ėp is given by

ėp = A(|S|/S0)
NS/|S|, (6.61)

where E is an elastic modulus, S0 depends on the history H in some rate-independent
fashion (such as H =

∫ t
0 |ėp|dt) and N À 1. Since N is large, the stress will remain

close to S0 so long as S ≥ S0 and is increasing with time, since otherwise the strain-rate
would be large. Conversely, if |S| < S0, the plastic strain-rate is negligible. Thus, to
lowest approximation, the response (6.60) during continued loading can be expressed in
the form

ė =
(

1

E
+

1

h

)

Ṡ, (6.62)
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where h = S ′

0(H) if H =
∫ t
0 |ėp| dt. This approximation will not be uniform near the

point A, which requires the more complete relation (6.60, 2.61) for resolution.
However, for many practical purposes, the rate-independent idealisation is sufficient.

This is now developed more systematically. Some generic instant, at which the stress
and strain tensors have the values Tf , ef , is considered. There is an elastic domain in
stress space (and a corresponding domain in strain space). The stress lies either within
the elastic domain or on its boundary. The boundary is called the “yield surface”. If
the stress lies within the elastic domain, then increments of stress and strain are related
elastically: say

ėf
αβ = MαβγδṪ

f
γδ. (6.63)

The compliance tensor Mαβγδ may depend on whatever inelastic deformation has oc-
curred previously — that is, upon H. Its inverse, Lαβγδ, is the tensor of elastic moduli.
If the stress is currently at the boundary of the elastic domain — that is, on the yield
surface — the relation (6.63) still applies if the stress-rate is directed into the interior of
the elastic domain. This is assumed to be convex, so the appropriate restriction when
the stress is on the yield surface is that the stress-rate lies within a cone K in stress-rate
space, which locally defines the interior of the elastic domain. In the simplest case, the
yield surface is smooth in a neighbourhood of Tf ; then, K will have the form

K = {Ṫf : QαβṪ f
αβ ≤ 0}, (6.64)

where Q is symmetric and depends upon the local state of stress and strain (and history).
However, it is also possible that the yield surface might have a vertex. If Tf is on the
yield surface and its rate Ṫf lies outside the cone K, then Tf remains on the yield
surface which therefore, in general, moves as the stress changes. The strain-rate has a
plastic contribution as well, so that

ėf
αβ = MαβγδṪ

f
γδ + Fαβ(Ṫf , H), (6.65)

where Fαβ are homogeneous functions of degree one in Ṫf , and H represents history, as
before. Most models of plasticity, in fact, can be expressed, when the current stress is
on the yield surface,

ėf
αβ = MαβγδṪ

f
γδ if Ṫf ∈ K

= MαβγδṪ
f
γδ otherwise, (6.66)

where the tensor M is a homogeneous function of degree zero in Ṫf . The case described
as “otherwise” is referred to as “during plastic loading”, or “during plastic deformation”.
The elastic relation also applies when the stress is within the elastic domain.
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In the case that the cone takes the form (6.64) — at a smooth point on the yield
surface — the relation (6.66) is often given in the form

ėf
αβ = MαβγδṪ

f
γδ if QαβṪ f

αβ ≤ 0

= MαβγδṪ
f
γδ + Pαβ(QγδṪ

f
γδ)/h otherwise. (6.67)

Thus, in this case,
Mαβγδ = Mαβγδ + PαβQγδ/h. (6.68)

It is usual to normalise P and Q so that PαβPαβ = 1 (and similarly for Q).
Another very common assumption (good for metals but not applicable to granular

media, for instance) is that of “normality”: during loading, the increment of plastic
strain must lie within the cone of normals to the yield surface. In the simple case
represented by (6.68), this means simply that P = Q.

In summary, therefore, our theory of plasticity is as follows: the constitutive equation
will be taken to be (6.66). Usually, the instantaneous compliances Mαβγδ will have the
symmetry Mαβγδ = Mγδαβ. The stress-rate versus strain-rate relation will be assumed
to be invertible. Thus, when the stress is on the yield surface,

Ṫ f
αβ = Lαβγδė

f
γδ if Ṫ ∈ K,

= Lαβγδė
f
γδ if Ṫ /∈ K. (6.69)

The tensor L is homogeneous of degree zero in Ṫf . Equivalently, L may be considered
to be a homogeneous function of degree zero of ėf .

Three remarks will be made, in conclusion. The first is that nonlinear elastic response
can be described in the form Ṫ f

αβ = Lαβγδė
f
γδ, for any increment of stress. It is necessary

only to take

Lαβγδ =
∂2W

∂ef
αβ∂ef

γδ

(ef ),

which automatically has the symmetry given above. The second is that materials other
than those normally considered as elastic-plastic may have local constitutive response
with the form (6.66). The last is that, if the relation (6.66) is known for any conjugate
stress-strain pair, then the corresponding relation can be deduced for any other. Further-
more, a similar relation can be deduced for the relation between nominal stress and defor-
mation gradient, by use of (6.32), (6.33) and (6.34). In the particular case that Tf is the

second Piola-Kirchhoff stress, Sαi = AiβT
(2)
αβ from (6.18), and ė

(2)
αβ = 1

2
(ȦkαAkβ+AkαȦkβ).

Therefore,
Ṡαi = cαiβjȦjβ, (6.70)
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where

cαiβj = AiγLαγβδAjδ + δijSαkBkβ if Ṡ ∈ K′,

= AiγLαγβδAjδ + δijSαkBkβ if Ṡ /∈ K′, (6.71)

where K′ is defined so that Ṡ ∈K′ implies Ṫf∈K, and conversely.

6.5 Virtual work; relation to finite element computation

It has been seen in Section 2.3 that an elastic body subjected to loads of a certain fairly
general type is in equilibrium when it attains a minimum-energy configuration. In fact,
equation (6.53) was shown to generate the field equations and the boundary conditions.

Now consider the opposite reasoning, for a somewhat more general problem. Assume
the equations of motion (6.12), together with initial conditions

x = x0(X), ẋ = ẋ0(X), X ∈ B0, t = 0 (6.72)

and boundary conditions of the type considered in Section 2.3: one of the pair (xi, NαSαi)
is given at each point of the boundary, for each i, except that the traction component
NαSαi, where given, may be configuration-dependent,

NαSαi = ψi(x,A,X, t). (6.73)

The functions ψi are restricted so that they only involve derivatives of x in directions
tangent to the surface, so that they can be expressed in terms of surface values of x

alone.
Now multiply the equation of motion (6.12) by a “virtual displacement” wi(X, t),

sum over i and integrate over B0. Use of the divergence theorem then gives
∫

∂B0

NαSαiwidS0 =
∫

B0

[wi,αSαi − ρ0biwi + ρ0v̇iwi]dX. (6.74)

This is true for any field wi. Now restrict wi so that wi = 0 wherever xi is prescribed.
Then, the left side of (6.74) reduces to

∫

∂B0

{ψiwi}dS0 =
∫

B0

[wi,αSαi − ρ0biwi + ρ0v̇iwi]dX, (6.75)

where the curly bracket implies summation over only those values of i for which ψi is
given.
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The statement (6.75) permits the construction of finite-element approximations. The
field xi is approximated as

xi =
∑

K

UK
i (t)φK(X), (6.76)

where the functions {φK} take the value 1 at the node labelled K and are zero at all
other nodes. Thus, UK

i provides an approximation for ui, evaluated at the node K. Now
wi is given similarly:

wi =
∑

K

WK
i (t)φK(X). (6.77)

The requirement that (6.75) should be satisfied for all wi of the form (6.77) generates a
system of nonlinear equations for the nodal values {UK

i }. Formally, the system has the
structure

FKi(U) =
∑

L

MKLÜL
i , or F(U) = MÜ, (6.78)

together with initial conditions. The function (or functional) F cannot easily be given
explicitly in the general case. It requires that the nominal stress be expressed, through
the constitutive equation, in terms of the displacement field, in the approximation rep-
resented by (6.76). The boundary term ψi has to be similarly approximated, in terms
of the values of the displacements at the boundary nodes. The “mass matrix” has the
components

MKL =
∫

B0

ρ0φKφLdX. (6.79)

The practical implementation of the finite element method is beyond the scope of
this set of notes.

Appendix 6A: Calculations relating to stress- and strain-rates

The problem that is addressed is to calculate the rates of change of the principal stretches λr and the
corresponding principal directions u

(r) (r = 1, 2, 3). They satisfy the equations

A
T
Au

(r) = λ2
ru

(r), or AkβAkγu(r)
γ = λ2

ru
(r)
β . (6A.1)

Differentiating with respect to time gives

(ȦkβAkγ + AkβȦkγ)u(r)
γ + AkβAkγ u̇(r)

γ = 2λrλ̇ru
(r)
β + λ2

ru̇
(r)
β . (6A.2)

Now multiply (6A.2) by u
(r)
β and sum over β. This gives

2λrλ̇r = u
(r)
β (ȦkβAkγ + AkβȦkγ)u(r)

γ , (6A.3)
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since (6A.1) holds, and u
(r) is a unit vector. Substituting the now-known value of λ̇r back into (6A.2)

gives

(AkβAkγ − λ2
rδβγ)u̇(r)

γ = u
(r)
β [u(r)

ν (ȦkνAkγ + AkνȦkγ)u(r)
γ ] − (ȦkβAkγ + AkβȦkγ)u(r)

γ . (6A.4)

The matrix on the left side of this equation is singular, but a solution exists because the right side
is orthogonal to the eigenvector u

(r). It is rendered unique by the requirement that u̇
(r) must be

orthogonal to u
(r), since the latter must remain a unit vector. The explicit solution is obtained by

writing (6A.4) in the spectral representation

∑

s 6=r

(λ2
s − λ2

r)u
(s)
β u(s)

γ )u̇(r)
γ = u

(r)
β [u(r)

ν (ȦkνAkγ + AkνȦkγ)u(r)
γ ] − (ȦkβAkγ + AkβȦkγ)u(r)

γ . (6A.5)

Inversion is immediate. The matrix on the left, regarded as an operator on the subspace spanned by
the eigenvectors {u(s)} with s 6= r, has inverse with βγ component

∑

s 6=r

1

λ2
s − λ2

r

u
(s)
β u(s)

γ .

Thus,

u̇(r)
α =

∑

s 6=r

1

λ2
r − λ2

s

u(s)
α [u

(s)
β (ȦkβAkγ + AkβȦkγ)u(r)

γ ]. (6A.6)

These values may now be substituted into (6.24) to give

ėf
βγ =

∑

r

{

f ′(λr)

2λr
u

(r)
β u(r)

γ u
(r)
λ (ȦkλAkµ + AkλȦkµ)u(r)

µ

+
∑

s 6=r

f(λr)

λ2
r − λ2

s

(u
(r)
β u(s)

γ + u
(s)
β u(r)

γ )[u
(r)
λ (ȦkλAkµ + AkλȦkµ)u(s)

µ ]

}

. (6A.7)

Since

ėf
βγ =

∂ef
βγ

∂Aiα
Ȧiα,

a formal differentiation of (6A.7) with respect to Ȧiα yields the result (6.26).
The case A = I is degenerate, and it is easier to start again than to take the necessary limits.

Equation (6A.1) is satisfied identically. The eigenvectors u
(r) are arbitrary at the precise instant that

A = I, but it is sensible to require them to be continuous functions of time. The relation (6A.2) reduces
to

1

2
(Ȧkβδkγ + δkβȦkγ

)u(r)
γ = λ̇ru

(r)
β . (6A.8)

Equivalently,
Γijδjαu(r)

α = λ̇rδiαu(r)
α .

Thus, {λ̇r} (r = 1, 2, 3) are the eigenvalues of the Eulerian strain-rate tensor, and {u(r)} are the

corresponding eigenvectors, resulting in the spectral representation (6.29).
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Now differentiate (6A.2) with respect to time, and afterwards set A = I (and λr = 1). This gives

(Äkβδkγ + δkβÄkγ + 2ȦkβȦkγ)u(r)
γ + (Ȧkβδkγ + δkβȦkγ

)u̇(r)
γ = 2(λ̈r + λ̇2

r)u
(r)
β + 4λ̇ru̇

(r)
β . (6A.9)

Multiplying by u
(r)
β and summing over β gives

u
(r)
β (Äkβδkγ + δkβÄkγ + 2ȦkβȦkγ)u(r)

γ = 2(λ̈r + λ̇2
r). (6A.10)

Then, substituting back into (6A.9) gives

(Ȧkβδkγ + δkβȦkγ
− 2λ̇rδβγ)u̇(r)

γ = {[u(r)
λ (Äkλδkµ + δkλÄkµ + 2ȦkλȦkµ)u(r)

µ ]δkγ

− (Äkβδkγ + δkβÄkγ + 2ȦkβȦkγ)}u(r)
γ (6A.11)

This equation can be treated in the same way that (6A.5) was. It has solution

u̇(r)
α = 1

2

∑

s 6=r

1

λ̇r − λ̇s

u(s)
α u

(s)
β [ 1

2
(Äkβδkγ + δkβÄkγ) + ȦkβȦkγ ]u(r)

γ . (6A.12)

Now differentiating (6.24) with respect to time, and then setting A = I, gives

ëf
βγ =

∑

r

(f ′′(1)λ̇2
r + λ̈r)u

(r)
β u(r)

γ + 2λ̇r(u̇
(r)
β u(r)

γ + u
(r)
β u̇(r)

γ ). (6A.13)

Also,

ëf
βγ =

∂ef
βγ

∂Aiα
Äiα +

∂2ef
βγ

∂Aiα∂Ajν
ȦiαȦjν . (6A.14)

Therefore, the expressions (6A.12) for u̇
(r)
α and (6A.10) for λ̈r can be substituted into (6A.13), and

comparison of the resulting expression with (6A.14) will give ∂2ef
βγ/∂Aiα∂Ajν . It suffices for this

purpose to consider the special case Ä = 0. It is noted, too, that
∑

r λ̇2
ru

(r)
β u

(r)
γ can be given explicitly,

by exploiting the spectral representation of the operator in (6A.8): the sum is just that operator,

squared.
Implementing this plan gives the result

∂2ef
βγ

∂Aiα∂Ajν
ȦiαȦjν =

{

1

4
(f ′′(1) − 1)(Ȧkβδkδ + Ȧkδδkβ)(Ȧlγδlδ + Ȧlδδkγ)

+
∑

r

u
(r)
β u(r)

γ u
(r)
λ ȦkλȦkµu(r)

µ + 1

2

∑

r

∑

s 6=r

(u
(s)
λ ȦkλȦkµu(r)

µ )(u
(s)
β u(r)

γ + u
(r)
β u(s)

γ )
}

. (6A.15)

Formal differentiation of this result with respect to Ȧiα and Ȧjν gives twice ∂2ef
βγ/∂Aiα∂Ajν . The

result (6.34) follows directly.
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