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1 Basic notions

1.1 Introductory remarks

This course is concerned with the response to mechanical load of composite materials. Such
materials are nowadays in frequent use. “Low-tech” applications (yacht hulls, car body parts
etc.) most usually employ glass fibre-reinforced epoxy. This is light, sufficiently rigid, and
has low cost. Structures that require higher performance include yacht masts, tennis raquets,
aircraft panels, etc. Here, the material of preference is likely to be carbon fibre-reinforced
plastic.

It is fairly easy to visualise what is meant by a composite material, by considering the
examples just mentioned: they are particular examples of materials that are strongly hetero-
geneous on the microscopic scale and yet can be regarded as homogeneous, for the purpose
of application. For instance, the flexure of a yacht mast under wind loading of the sails that
it supports would be approached by assuming that the material was homogeneous. Fur-
thermore, beam theory (of sufficient generality: the beam would have to be tapered, and
allowance for torsion as well as bending would be needed) would most likely be employed.
Beam theory would not suffice for the more detailed analysis of the stresses in the region
where the mast is secured to the keel, or where it passes through the deck, but even here the
mast material would be treated as homogeneous. This is not to imply that the stress and
strain distributions agree exactly with those delivered by the calculation assuming homoge-
neous material: in fact, they will display large fluctuations, on the scale of the microstructure
of the material, about “local average” values which will agree, quite closely, with those ob-
tained from the “homogeneous” calculation. This statement in fact has a precise meaning
in terms of asymptotic analysis: the mathematical theory of “homogenization” considers
systems of partial differential equations whose coefficients oscillate, on a scale ε, while the
domain Ω over which the equation is defined has a size of order 1. The solution, uε(x), say,
depends on ε. A “homogenization theorem” (which certainly applies to problems of stress
analysis of the type under present consideration) states that, as ε → 0, uε(x) tends strongly
to a limit, u0(x) say, while its gradient tends weakly to the gradient of u0(x)1. The field
u0(x) satisfies a “homogenized” system of partial differential equations, corresponding in our
context to the equations of equilibrium for the homogeneous material. In the “engineering”
context, it is usual to discuss “effective properties” rather than coefficients of homogenized
equations, but the concept is the same. The basic problem treated in these lectures is the
determination of the “effective” properties, in terms of the properties of the constituent

1In the context of linear equations, the topology relative to which convergence is defined
would be that of L2(Ω). Details would be out of place here.
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materials and the microgeometry.
A great variety of materials display the same character as composites, in the sense that

they may be strongly heterogeneous relative to a microscale while appearing homogeneous
for the purpose of many applications. With the exception of exotic applications such as
some aero engine turbine blades, made from single-crystal nickel alloy, metal objects and
structures are composed of metal in polycrystalline form: the individual crystal grains are
homogeneous, anisotropic single crystals but the polycrystal is made of many grains, at differ-
ent orientations; thus, the polycrystal may be isotropic, though it could be anisotropic, if the
polycrystal displays “texture”, for instance as a result of rolling. Concrete provides another
example of a heterogeneous material. Depending on the mix, it may contain stones whose
diameter may be up to the order of centimetres. Such a material would appear homogeneous
on a sufficiently large scale, for a structure such as a dam, for which a “representative vol-
ume element” might have dimensions on the order of tens of centimetres. Testing laboratory
samples of such material presents a significant challenge, because any specimen whose size is
on the order of 5cm, say, would contain only a few heterogeneities, and different specimens
would have different responses. At the other extreme, carbon fibres typically have diameter
on the order of 10−2mm, and correspondingly a volume with dimension as small as a few
millimetres could be regarded as “representative”. The grain size in polycrystalline metal
may be of the order of 10−3mm. Thus, a “structure” as small as a paperclip can be regarded
as homogeneous.

Instead of pursuing this rather vague, qualitative discussion further, we now proceed to
some more precise concepts.

1.2 Definition of effective properties

Consider first material that is homogeneous. A way to determine the constitutive response
of homogeneous material is to perform a mechanical test, in which a specimen is subjected
to loading that produces a homogeneous field of deformation, and a corresponding homo-
geneous field of stress. Since these fields are both homogeneous, they can be determined
from measurements of their values on the surface of the specimen. The functional relation
between the two is the desired constitutive relation. Explicitly, in the case of linear elastic
response, the Cauchy stress tensor σ, with components σij, is related to the strain tensor ε,
with components εij, so that

σ = Cε, or in suffix notation, σij = Cijklεkl. (1.1)

A set of experiments in which the six independent components of strain are prescribed, while
the stress components are measured, fixes the elastic constant tensor C (whose components
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are Cijkl). Alternatively, experiments could be performed in which the six independent
components of stress were prescribed, while the strain components were measured. This
would yield, directly, a relation

ε = Sσ, or in suffix notation, εij = Sijklσkl. (1.2)

Here, S denotes the tensor of compliances, inverse to C in the sense that

SC = CS = I, or in suffix notation, SijklCklmn = CijklSklmn = 1

2
(δimδjn + δinδjm). (1.3)

Conceptually, one way to realise a uniform strain field in a homogeneous body is to impose
on the boundary of the specimen displacements that are consistent with uniform strains: if
the domain occupied by the body is Ω and its boundary is ∂Ω, impose the boundary condition

u = εx, or in suffix notation, ui = εijxj, x ∈ ∂Ω (1.4)

(there is no gain in allowing also a rotation). The uniform strain generated in this way is ε.
Conversely, a uniform stress field is generated in a homogeneous body by imposing the

boundary condition

t = σn = σn, or in suffix notation, ti = σijnj = σijnj, x ∈ ∂Ω. (1.5)

The uniform stress that is generated is σ.
In reality, there is no such thing as a homogeneous material: even a perfect crystal

is composed of atoms, and so is not even a continuum! The continuum approximation is
nevertheless a good one for virtually all engineering applications: the notional experiments
just described really could be carried out, and the sort of apparatus that is invariably used
would lack the sensitivity to register any deviation from the assumption that the specimen
is a continuum. The reason for making this rather trivial remark is to make more acceptable
the next comment. This is that “effective” properties can be assigned even to a specimen
that is made of material that is inhomogeneous.

Suppose now, that the body is inhomogeneous, but that the boundary condition (1.4) is
applied. It generates a displacement field u(x) and a corresponding strain field ε(x) that
is not uniform. Its mean value over Ω is nevertheless equal to ε. Conversely, if the body is
inhomogeneous and the traction boundary condition (1.5) is applied, the stress field σ(x)
is not uniform but nevertheless has mean value σ. These results are simple consequences of
the following
Mean Value Theorems:
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(a) The mean value ε over Ω of the strain field ε(x) is expressible in terms of the boundary
displacements as

εij :=
1

|Ω|
∫

Ω
εij(x)dx =

1

|Ω|
∫

∂Ω

1

2
(uinj + ujni)dS. (1.6)

(b) The mean value σ over Ω of the equilibrium stress field σ(x) is expressible in terms of
the boundary tractions, in the absence of body force, as

σij :=
1

|Ω|
∫

Ω
σij(x)dx =

1

|Ω|
∫

∂Ω

1

2
(tixj + tjxi)dS. (1.7)

Proof:
(a) follows directly from the divergence theorem.
(b) Substitute ti = σiknk into the surface integral. Then by the divergence theorem,

∫

∂Ω
tixjdS =

∫

Ω
(σikxj),kdx =

∫

Ω
(σik,kxj + σikδjk)dx =

∫

Ω
σijdx,

since for equilibrium, σik,k = 0. The result now follows immediately. [Strictly, the symmetric
form given in (1.7) is not necessary, but it is desirable at least for aesthetics.]

It should be noted that, if the boundary condition (1.4) is applied, then part (b) of the
theorem shows that the mean stress in the body can be obtained from measurements of
the surface traction t, even in the case that the body is heterogeneous. Conversely, if the
boundary condition (1.5) is applied, then part (a) of the theorem shows that the mean strain
in the body can be obtained from measurement of the surface displacements.

We are now in a position to define the effective response of a body, or a specimen.
(a) Linear boundary displacements. Apply the boundary condition (1.4) and measure the
associated mean stress. The effective tensor of elastic moduli Ceff,u is defined so that

σ = Ceff,uε. (1.8)

(b) Uniform boundary tractions. Apply the boundary condition (1.5) and measure the
associated mean strain. The effective tensor of compliances Seff,t is defined so that

ε = Seff,tσ. (1.9)

It should be noted that, in general, Ceff,u and Seff,t are not inverse to one another: the
prescription (a) generates an effective compliance Seff,u = (Ceff,u)−1, and prescription (b)
generates a tensor of effective moduli Ceff,t = (Seff,t)−1. If, however, the body or specimen
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is made of composite material that appears, “on average”2, as uniform, and the specimen is
large enough relative to the microstructure, then it is to be expected that the effective prop-
erties resulting from either boundary condition will coincide. In this case, the superscripts
‘u’ or ‘t’ become irrelevant, and will later be omitted.

A further interesting property follows rigorously, if either linear boundary displacements
or uniform boundary tractions are applied. Whereas, in general, the average of a product is
different from the product of the averages, either of these conditions gives the result

σijεij :=
1

|Ω|
∫

Ω
σijεijdx = σijεij. (1.10)

This result is commonly known as the Hill relation, because it was first discussed by Rodney
Hill, around 1951. The proof for the linear boundary displacement condition is as follows.

∫

Ω
σijεijdx =

∫

Ω

1

2
σij(ui,j + uj,i)dx

=
∫

Ω
σijui,jdx (by the symmetry of the stress tensor)

=
∫

Ω
(σijui),jdx (from the equilibrium equations)

=
∫

∂Ω
σijnjuidS =

∫

∂Ω
σijεikxknjdS, (1.11)

the last equality following from the boundary condition. The result follows by applying the
divergence theorem to express the last surface integral as a volume integral, remembering
now that ε is constant. The proof for the uniform traction condition is similar.

1.3 Representative volume element

It was noted in the introductory subsection that there is a rigorous asymptotic result, that
for a body of fixed size, and subject to fixed boundary conditions (and body forces), the
displacement field uε approaches, asymptotically, a field u0 as ε → 0, and that u0 satisfies a
set of equations which include a “homogenized” constitutive relation, which we now write as
σ = Ceffε. If the microscopic length is small enough – or, equivalently, the dimensions of the
body are large enough relative to the microstructure – then the same “effective modulus”
tensor will apply to all boundary value problems and so, in particular, the tensors which
we defined as Ceff,u and Ceff,t will coincide. A “representative volume element” must be at
least large enough for Ceff to be independent of boundary conditions, to some suitable level

2This will be discussed more fully later.
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of accuracy. If this is the case for all boundary conditions, then it has to be the case for
the linear displacement and uniform traction conditions. Thus, a minimal requirement for a
representative volume element is that Ceff,u = Ceff,t. Another, rather similar, requirement is
that the Hill relation (1.10) should hold for all (sufficiently smooth) boundary conditions. It
was in this context that Rodney Hill introduced the relation in 1951; the proof that it held
rigorously for certain boundary conditions was not given until 1963.

1.4 Other properties

The ideas presented above are applicable to properties other than elasticity. Any form of
conduction (thermal, electrical), and also magnetism, follows a similar pattern. A flux (now
a vector rather than a tensor) σ is related to a potential gradient ε, which in turn is derived
from a scalar function u which is the negative of the usual scalar potential. Then,

σ = Cε, or σi = Cijεj, with ε = ∇u or εi = u,i. (1.12)

The second order tensor C is the conductivity tensor (or dielectric tensor, or magnetic
permeability depending on context), and the equation of equilibrium is

divσ + f = 0, or σi,i + f = 0, x ∈ Ω, (1.13)

where f is the source term.
It is true also that the mean value theorems, and the Hill relation, do not rely on any

constitutive relation at all.3 Hence, they are equally available for exploitation for nonlinear
response. One such response, still for small deformations, is physically-nonlinear elasticity
(or deformation theory of plasticity), in which stress is related to strain via a potential
function W (ε) so that

σ = W ′(ε), or σij =
∂W (ε)

∂εij

. (1.14)

It is usual to assume that the function W (ε) is convex, the linear case being recovered when
W is a quadratic function.

The case of incremental plasticity (flow theory) can also be studied with the help of the
formulae developed above. Since the constitutive response depends on the path in strain or
stress space, it is necessary to treat such problems incrementally or, equivalently, in terms

3In particular, the Hill relation remains true when σ and ε have no relation to one
another, even being associated with different boundary value problems. This observation
will be exploited in a succeeding section.
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of rates of stress and strain. These also obey the relations given, with the formal addition
of a superposed dot to signify a rate of change. The complications presented by incremental
plasticity are sufficiently severe that these notes will contain very little discussion of the
subject.

The basic results given so far also generalise to large deformations. The theory goes
through, virtually as presented above, if a Lagrangian description is adopted, with the strain
ε replaced by the non-symmetric deformation gradient (usually called F ), and the Cauchy
stress σ replaced by the conjugate of F , the non-symmetric Boussinesq stress tensor B, also
called the Piola–Lagrange, or the first Piola–Kirchhoff stress tensor.
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Figure 1: A simple laminate, with interfaces x3 = const.

2 Theory of Laminates

2.1 An example

Figure 1 illustrates a simple laminated medium. It consists of a set of uniform laminae, with
alternating properties, bonded together across interfaces, all of which are planes x3 = const.
Suppose, for simplicity, that the two materials from which the laminae are composed are
isotropic, with Young’s moduli Er and Poisson’s ratios νr (r = 1, 2). The volume fractions
are cr (r = 1, 2), so that c1 + c2 = 1.

Our objective is to calculate the effective moduli of this laminate. Thus, we shall consider
a domain, filled with the laminated material, which is large enough relative to the scale of the
lamination to be regarded as a “representative volume element”. The effective moduli are
found by imposing boundary conditions that generate, “on average”, uniform stresses and
strains throughout the domain. Since by hypothesis we are dealing with a representative
volume element, the exact choice of boundary conditions is irrelevant. In fact, the con-
struction given below provides uniform mean stresses and strains, but the implied boundary
conditions are neither of (1.4), (1.5): imposition of either of these conditions would generate
fields that would differ from those that we shall construct, but only in a “boundary layer”
whose thickness would be on the order of the scale of lamination, so that volume averages
would be essentially unaffected.

Evidently, the effective response of this composite medium will display transverse isotropy,
with symmetry axis parallel to the x3-axis. The stress-strain relations for isotropic material
have the form

Eεij = (1 + ν)σij − νδijσkk. (2.1)
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The stress-strain relations for transverse isotropy can be given in the form

E1ε11 = σ11 − ν12σ22 − ν13σ33,

E1ε22 = σ22 − ν12σ11 − ν13σ33,

E1ε12 = (1 + ν12)σ12,

E3ε33 = σ33 − ν31(σ11 + σ22),

2G13ε13 = σ13, 2G13ε23 = σ23, (2.2)

with the interrelation ν13/E1 = ν31/E3.
Consider first the effective constant Eeff

3 . This is obtained by imposing upon the compos-
ite a mean stress whose only non-zero component is σ33. In fact, for equilibrium, it has to
follow that σ33 = σ33 throughout the composite. Poisson effects will generate non-zero values
for ε11 and ε22 which are equal, from symmetry, in each lamina. It is possible to find a field
such that these strains are constant in each lamina. In this case, necessarily, ε11 = ε22 = ε11,
since otherwise the displacement would not be continuous across interfaces. The value of ε11

is fixed by the requirement that the mean value of the stress component σ11 must be zero.
Now in any one of the laminae,

Eε33 = σ33 − 2νσ11, (2.3)

Eε11 = (1 − ν)σ11 − νσ33. (2.4)

The second of these equations gives

σ11 =
E

(1 − ν)
ε11 +

ν

(1 − ν)
σ33. (2.5)

The requirement that the mean value of σ11 must be zero gives

ε11 = −
〈

E

(1 − ν)

〉−1 〈

ν

(1 − ν)

〉

σ33. (2.6)

Here and in what follows, the angled bracket is employed as an alternative notation for the
mean value: 〈φ〉 = c1φ

1 + c2φ
2 in the case of a two-component laminate.

Comparison of the first of equations (2.2) with (2.6) gives, immediately,

νeff
13

Eeff
1

=

〈

E

(1 − ν)

〉−1 〈

ν

(1 − ν)

〉

=
νeff

31

Eeff
3

. (2.7)
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Substitution of (2.6) into (2.5) gives, with (2.3),

ε33 =







(1 − 2ν)(1 + ν)

E(1 − ν)
+

2ν

(1 − ν)

〈

E

(1 − ν)

〉−1 〈

ν

(1 − ν)

〉







σ33. (2.8)

The average of this gives, by definition, σ33/E
eff
3 . Thus,

Eeff
3 =

〈

(1 − 2ν)(1 + ν)

E(1 − ν)
+

2ν

(1 − ν)

〈

E

(1 − ν)

〉−1 〈

ν

(1 − ν)

〉〉−1

. (2.9)

Next, choose a mean stress with σ11 = σ22, all other components being zero. Correspond-
ingly, ε11 = ε22 = ε11 (this being so far unknown). Also, σ33 = 0. Thus,

Eε11 = (1 − ν)σ11, (2.10)

Eε33 = −2νσ11. (2.11)

It follows that

σ11 =
E

(1 − ν)
ε11 (2.12)

and therefore by averaging,
Eeff

1

(1 − νeff
12 )

=

〈

E

(1 − ν)

〉

. (2.13)

Also, from the equations above,

ε33 = − 2ν

(1 − ν)
ε11 (2.14)

and hence, by averaging and comparing with the corresponding transversely isotropic effec-
tive relation,

νeff
13

(1 − νeff
12 )

=

〈

ν

(1 − ν)

〉

. (2.15)

A further independent relation is obtained by imposing on the laminate a mean strain
whose only non-zero component is ε12. Then, continuity of displacements across interfaces
requires that ε12 = ε12 in each lamina. The stress component σ12 is therefore E/(1+ν) times
ε12. Hence, by averaging,

Eeff
1

(1 + νeff
12 )

=

〈

E

(1 + ν)

〉

. (2.16)
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Finally, prescribing σ13, which implies that σ13 takes that value throughout, with other
components equal to zero, gives ε13 = (1+ν)

E
σ13 and therefore, by averaging,

2Geff
13 =

〈

(1 + ν)

E

〉−1

. (2.17)

In concluding this subsection, it is remarked that, although the formulae were intro-
duced through considering a two-component composite, the reasoning applies unchanged to
a laminate made of any number of isotropic materials.

In practical applications, it is usual that the individual laminae will be anisotropic: each
lamina is often a fibre-reinforced composite, for example. The next subsection shows how
the algebra can be completed in a concise way, even in this case.

2.2 A more general discussion of simple laminates

Consider now a general two-component laminate, for which the direction of lamination is
defined by the common normal n of all of the interfaces. The elastic constant tensors Cr

(r = 1, 2) are allowed to be anisotropic. As in the previous subsection, solutions which deliver
Ceff can be constructed in which the stress and strain fields are piecewise constant. It is not
necessary that the lamination has to display periodicity: the formulae to be given remain
valid even if the laminate has a random structure. It is actually convenient to work in terms
of the displacement gradient4 d = ∇⊗ u rather than its symmetric part, ε. It is consistent
to assume that the displacement gradient in component r takes the constant value dr; the
stress in component r then takes the constant value σr = Crdr ≡ Crεr.5 The requirement
that the displacement should be continuous as well as piecewise-linear means that it must
comprise the sum of a linear function of x, ul say, and a continuous but piecewise-linear
function, up−l say, of the “normal” coordinate x · n. Correspondingly,

d = dl + n ⊗ (up−l)′, (2.18)

where the prime signifies differentiation with respect to x·n; the function (up−l)′ is piecewise-
constant. The requirement that the mean displacement gradient should have the value d

(with symmetric part ε) allows (2.18) to be reduced to the form

d1 = d − c2n ⊗ α, d2 = d + c1n ⊗ α, (2.19)

4The definition used here gives the transpose of the usual “∇u”, i.e. d has components
dij = (∂/∂xi)uj ≡ uj,i.

5The symmetry of the elastic constant tensor ensures that this expression only depends
on the value of the strain.
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where α is so far unknown.
The stresses σr (r = 1, 2) can now be given in the form

σ1
ij = C1

ijkl(εkl − c2αknl), σ2
ij = C2

ijkl(εkl + c1αknl). (2.20)

Finally, equilibrium requires that σr
ijnj is the same for all r, and so is equal to σijnj, in

which
σ = c1σ

1 + c2σ
2. (2.21)

Thus, with the notation
Kr

ik = Cr
ijklnjnl, (2.22)

considering the component 1,

njC
1
ijklεkl − c2K

1
ikαk = njσij. (2.23)

A similar relation applies to the component 2 but it carries the same information. Then, in
an obvious symbolic notation,

α = (c2)
−1(K1)−1[n(C1ε − σ)]. (2.24)

Therefore, substituting this into equations (2.19),

d1 = d − Γ1(n)C1ε + Γ1(n)σ,

d2 = d + (c2)
−1c1Γ

1(n)C1ε − (c2)
−1c1Γ

1(n)σ, (2.25)

where
Γr(n) = n ⊗ (Kr)−1 ⊗ n. (2.26)

It follows now that

σ = Cε − c1C
1Γ1(n)C1ε + c1C

2Γ1(n)C1ε + c1(C
1 − C2)Γ1(n)σ. (2.27)

In fact, because the elastic constant tensors, and the mean stress, display the usual sym-
metries, only the symmetrized part of the operator Γ1 participates in equation (2.27), and

hence Γ1 can be replaced by its symmetrized form, Γ̃
1

say6, which has components

Γ̃1
ijkl = 1

4
{Γ1

ijkl + Γ1
jikl + Γ1

ijlk + Γ1
jilk}. (2.28)

6This notation is chosen because the operator Γ̃
1

will emerge, from entirely different
considerations, in Section 6.
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Figure 2: (a) A rank-2 laminate, made by laminating “material 1” with
material which itself is a laminate of “material 1” with “material 2”, (b) a
magnified picture of the simple laminate.

Solving equation (2.27) for σ gives
σ = Ceffε, (2.29)

where

Ceff = [I + c1(C
2 − C1)Γ̃

1
(n)]−1{c1C

1 + c2C
2 + c1(C

2 − C1)Γ̃
1
(n)C1}

= [I + c1(C
2 − C1)Γ̃

1
(n)]−1{[I + c1(C

2 − C1)Γ̃
1
(n)]C1 + c2(C

2 − C1)}
= C1 + c2[I + c1(C

2 − C1)Γ̃
1
(n)]−1(C2 − C1). (2.30)

The expression for Ceff can be given in a variety of forms. For instance, the reasoning
could be repeated with the indices 1 and 2 interchanged. It is quite difficult to confirm,
algebraically, that the resulting Ceff is the same! It relies on the easily-verified identity

Γ1(n)(C1 − C2)Γ2(n) = Γ2 − Γ1. (2.31)

The same type of reasoning leads to an explicit expression for Ceff in the case of a laminate
with n components. This is not pursued because a very convenient formula will be developed
by use of more general methodology, in a later section.

2.3 Hierarchical laminates

Figure 2a shows a two-component laminate which is constructed by laminating one of the
media – medium 1 say – with another medium which itself is a laminate, a magnified version
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of which is shown in Figure 2b. Assuming that there is a separation of scales, the response
of the medium shown in Figure 2a can be calculated using equation (2.30), with the new
“medium 2”, now itself a laminate but on a much finer scale, treated as a homogeneous
medium with elastic constant tensor given by the appropriate realisation of (2.30). The
calculation is facilitated by placing the relation (2.30) in the form

(Ceff − C1)−1 = (c2)
−1(C2 − C1)−1 + (c2)

−1c1Γ̃
1
(n). (2.32)

Now we introduce the parameters defining the rank-2 laminate of Figure 2. First, the
simple laminate is composed by laminating medium 1, whose elastic constant tensor is C1,
with medium 2, whose elastic constant tensor is C2, at volume fraction c

(1)
2 ; the volume

fraction of medium 1 is then c
(1)
1 = 1− c

(1)
2 . The normal defining the direction of lamination

is n1. Then, the relation (2.32) shows that its effective elastic constant tensor Ceff,1 satisfies

(Ceff,1 − C1)−1 = (c
(1)
2 )−1(C2 − C1)−1 + (c

(1)
2 )−1c

(1)
1 Γ̃

1
(n1). (2.33)

Now create the rank-2 laminate by laminating medium 1 with a medium with elastic constant
tensor Ceff,1, in direction n2, at volume fraction c

(2)
2 . The volume fraction of the original

medium 2 is now c2 = c
(1)
2 c

(2)
2 , and that of medium 1 is c1 = 1 − c2. Application of the

formula (2.32) shows that the effective elastic constant tensor Ceff,2 of the rank-2 laminate
satisfies

(Ceff,2 − C1)−1 = (c
(2)
2 )−1(Ceff,1 − C1)−1 + (c

(2)
2 )−1c

(2)
1 Γ̃

1
(n2)

= (c
(1)
2 c

(2)
2 )−1(C2 − C1)−1 + (c

(1)
2 c

(2)
2 )−1c

(1)
1 Γ̃

1
(n1) + (c

(2)
2 )−1c

(2)
1 Γ̃

1
(n2)

= (c2)
−1(C2 − C1)−1 + (c2)

−1c
(1)
1 Γ̃

1
(n1) + (c

(2)
2 )−1c

(2)
1 Γ̃

1
(n2).

(2.34)

The interesting thing to note about this formula is that the sum of the “weights” of the

terms involving Γ̃
1

is

(c2)
−1(c

(1)
1 + c

(1)
2 c

(2)
1 ) = (c2)

−1(1 − c
(1)
2 c

(2)
2 ) = (c2)

−1(1 − c2) = (c2)
−1c1,

just as in the simple lamination formula (2.32). Since n1 and n2 are unit vectors, the

function Γ̃
1

can be considered to be evaluated at points on the unit sphere. The lamination

formula (2.34) requires the value of the function Γ̃
1

to be shared between two points, with
the same total weight, c1/c2, as for the simple laminate with the same volume fractions. This
pattern repeats, in fact, for any hierarchical laminate. In the limit of an infinite hierarchy,
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the weighted sum of the values of Γ̃
1

over the unit sphere becomes an integral. The weights
define a measure over the unit sphere, called the H-measure (H for homogenization). A
finite-rank laminate can be viewed in the same framework, by recognising the measure as a
sum of Dirac masses. The H-measure will appear in a different context later.
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3 Energy relations

The stress-strain relation for a linearly elastic body is (1.1) where, in general, the tensor of
moduli C varies with position, x. It is assumed throughout these lectures that C has the
symmetries

Cijkl = Cklij (3.1)

as well as Cijkl = Cjikl = Cijlk which follow from the symmetry of the stress and strain
tensors. The important symmetry (3.1) ensures the existence of an energy density W (ε)
such that

W (ε) = 1

2
Cijklεijεkl or, symbolically, W (ε) = 1

2
εCε. (3.2)

The energy is assumed to be a positive-definite function of ε, and therefore convex.

3.1 The principle of virtual work

In this section and elsewhere, use will be made of a simple consequence of the divergence
theorem, known as the principle of virtual work:
If σ is a stress field that satisfies

σij,j + fi = 0, x ∈ Ω, (3.3)

then ∫

Ω
σijε

′
ij dx =

∫

Ω
fiu

′
i dx +

∫

∂Ω
σijnju

′
i dS, (3.4)

where u′ is any displacement field and ε′ is the associated strain field.
Proof: The symmetry (σij = σji) of the stress tensor allows ε′ij on the left side of (3.4) to be
replaced by the displacement gradient u′

i,j. Thus,

∫

Ω
σijε

′
ij dx =

∫

Ω
σiju

′
i,j dx =

∫

Ω
[(σiju

′
i),j − σij,ju

′
i] dx. (3.5)

The result (3.4) now follows from the divergence theorem, coupled with the fact that the
stress field satisfies equations (3.3).

It should be noted that the identity (3.4) continues to hold, even if the stress field σ

is discontinuous across a set of internal surfaces, provided that σijnj is continuous across
any such surface: this follows by applying the basic identity to each sub-domain within
which σij,j + fi = 0, and recognising that the integrals over the internal surfaces cancel
out. Throughout these notes, the equilibrium equation (3.3) will be given this “generalized
function” interpretation without explicit comment.
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3.2 The classical energy principles

Subject to the assumption that the energy function is positive-definite, equilibrium of the
body is governed by the
Minimum Energy Principle: if the body is subjected to body-force f per unit volume, and a
part Su of its boundary is subjected to prescribed displacements u0 while the complementary
part St is subjected to prescribed tractions t0, the equilibrium displacement minimises the
energy functional

F(u) :=
∫

Ω
( 1

2
Cijklεijεkl − fiui)dx −

∫

St

t0i uidS, (3.6)

amongst displacement fields which take the prescribed boundary values over Su.
7

Proof: Let u be the displacement field that minimises F subject to the given conditions,
and let u′ be any trial field (so that also u′ = u0 on Su). Then

F(u′) −F(u) =
∫

Ω
[ 1

2
Cijkl(ε

′
ij − εij)(ε

′
kl − εkl) + Cijkl(ε

′
ij − εij)εkl − fi(u

′
i − ui)] dx

−
∫

St

t0i (u
′
i − ui) dS

=
∫

Ω
[ 1

2
Cijkl(ε

′
ij − εij)(ε

′
kl − εkl) + σij(ε

′
ij − εij) − fi(u

′
i − ui)] dx

−
∫

St

t0i (u
′
i − ui) dS. (3.7)

Here, we have written σij = Cijklεkl. Use of the divergence theorem as in the proof of the
principle of virtual work now gives

F(u′) −F(u) =
∫

Ω
[ 1

2
Cijkl(ε

′
ij − εij)(ε

′
kl − εkl) − (σij,j + fi)(u

′
i − ui)] dx

+
∫

St

(σijnj − t0i )(u
′
i − ui) dS, (3.8)

since u′
i − ui = 0 on Su. It follows that

F(u′) −F(u) =
∫

Ω

1

2
Cijkl(ε

′
ij − εij)(ε

′
kl − εkl) dx (3.9)

for all trial displacements u′, if and only if

σij,j + fi = 0, with σij = Cijklεkl, x ∈ Ω, (3.10)

7A more precise discussion would specify that u must belong to the Sobolev space
H1(Ω) of functions whose gradients are square-integrable over Ω, and place a suitable
restriction on the prescribed boundary values.
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and
σijnj = t0i , x ∈ St. (3.11)

These are the conditions for stationarity of the functional F . Now assume that the energy
density function is positive-definite: it follows immediately that u provides the minimum
value for F . The usual uniqueness theorem for elastostatics also follows immediately: if u′

were also a solution, it would follow that
∫

Ω

1

2
Cijkl(ε

′
ij − εij)(ε

′
kl − εkl) dx = 0, (3.12)

and hence that ε′ = ε, almost everywhere in Ω. This shows that stress and strain are unique,
and that displacement gradients can differ at most by a field of pure rotation. This is possible
only if the rotation corresponds to that of a rigid body, and this degree of non-uniqueness
is allowed if St is the whole of the boundary ∂Ω. Otherwise, if displacements are prescribed
over some part of ∂Ω, the rigid rotation must be zero and the displacement field is unique.

It is possible also to define a complementary energy density

W ∗(σ) = 1

2
Sijklσijσkl ≡ 1

2
σSσ. (3.13)

The fact that this is numerically equal to W (ε) when σ = Cε is not so important as the
fact that W and W ∗ are Legendre duals:

W ∗(σ) = σijεij − W (ε); ε = Sσ, σ = Cε. (3.14)

(more will be said about this later). Equilibrium is equally defined by the
Complementary Energy Principle: For the boundary value problem described above, the
actual stress field minimises the functional

G(σ) :=
∫

Ω

1

2
Sijklσijσkldx −

∫

Su

σijnju
0
i dS, (3.15)

amongst stress fields that satisfy the equations of equilibrium σij,j + fi = 0 in Ω, and the
given traction conditions on St.

The proof of the complementary energy principle is very similar to that for the minimum
energy principle and is left as an exercise.

3.3 Implications for effective properties

To save notation in performing volume averages, we adopt the convention of taking the unit
of length to be such that the domain Ω has unit volume.
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(a) Linear displacement boundary condition. Under this boundary condition, and
with no body force, the minimum energy principle gives

W eff(ε) :=
∫

Ω
W (ε,x) dx ≤

∫

Ω
W (ε′,x) dx, (3.16)

where u is the actual displacement and u′ is any displacement that satisfies the linear
displacement boundary condition (1.4).

Furthermore, it can be proved that

σij ≡ Ceff
ijklεkl =

∂W eff(ε)

∂εij

, (3.17)

as follows.
Let u + δu be the actual displacement field associated with the imposed mean strain

ε + δε. Then, to first order,

δW eff = W eff(ε + δε) − W eff(ε) =
∫

Ω
{W (ε + δε,x) − W (ε,x)} dx

=
∫

Ω

∂W (ε,x)

∂εij

δεij dx =
∫

Ω
σijδεij dx

=
∫

∂Ω
σijnjδui dS (by the principle of virtual work)

=
∫

∂Ω
σijnjδεikxk dS

= σikδεik (by the relation (1.7)). (3.18)

This implies the relation (3.17) which demonstrates, in turn, that the tensor of effective
moduli Ceff has the symmetry

Ceff
ijkl = Ceff

klij, (3.19)

and that
W eff(ε) = 1

2
εijC

eff
ijklεkl. (3.20)

Consider now the application of the complementary energy principle to the problem with
the linear displacement boundary condition imposed. This gives
∫

Ω

1

2
σijSijkl(x)σkl dx−

∫

∂Ω
σijnjεikxk dS ≤

∫

Ω

1

2
σ′

ijSijkl(x)σ′
kl dx−

∫

∂Ω
σ′

ijnjεikxk dS, (3.21)

where σ is the actual stress field and σ′ is any stress field, in equilibrium with zero body
force. Now the left side of (3.21) can equivalently be written as −W eff(ε), since the actual
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stress is related to the actual displacement via (1.1), (1.2). Hence, the complementary energy
principle and the minimum energy principle together give

∫

∂Ω
σ′

ijnjεikxk dS −
∫

Ω

1

2
σ′

ijSijkl(x)σ′
kl dx ≤ W eff(ε) ≤

∫

Ω

1

2
ε′ijCijkl(x)ε′kl dx, (3.22)

where σ′ is any self-equilibrated stress field and u′ is any displacement field that takes the
prescribed values on ∂Ω.

(b) Uniform boundary traction condition. Similar arguments can be advanced in
relation to the uniform traction boundary condition, with the roles of the minimum energy
and complementary energy principles interchanged. The results are

εij ≡ Seff
ijklσkl =

∂W ∗ eff(σ)

∂σij

, (3.23)

Seff
ijkl = Seff

klij, W ∗ eff(σ) = 1

2
σijS

eff
ijklσkl, (3.24)

and
∫

∂Ω
σijnju

′
i dS −

∫

Ω

1

2
ε′ijCijkl(x)ε′kl dx ≤ W ∗eff(σ) ≤

∫

Ω

1

2
σ′

ijSijkl(x)σ′
kl dx, (3.25)

where u′ is any displacement field and σ′ is any self-equilibrated stress field that satisfies
the traction boundary conditions.

3.4 Elementary bounds for overall properties

The simplest “trial” fields for substitution into the bound formulae (3.22) are the displace-
ment field u′

i = εijxj, so that ε′ = ε, and the uniform stress field σ′ = σ∗, constant, so that
the restrictions are satisfied trivially. These fields give the inequalities

σ∗
ijεij − 1

2
σ∗

ijSijklσ
∗
kl ≤ W eff(ε) ≡ 1

2
εijC

eff
ijklεkl ≤ 1

2
εijCijklεkl. (3.26)

The lower bound given by the left inequality is true for any constant stress σ∗. It is maximised
by choosing the constants σ∗

ij so that

εij = Sijklσ
∗
kl, or σ∗ = (S)−1ε. (3.27)

Thus, employing symbolic notation,

1

2
ε(S)−1ε ≤ 1

2
εCeffε ≤ 1

2
εCε. (3.28)
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Essentially the same bounds follow from the inequalities (3.25). They give

1

2
σ(C)−1σ ≤ 1

2
σSeffσ ≤ 1

2
σSσ. (3.29)

The elementary approximation Ceff ≈ C (so that Seff ≈ (C)−1) can be obtained directly
by assuming that the strain field generated in the composite really is the constant field ε.
Then, the stress at any point x is obtained as σ(x) ≈ C(x)ε(x), and so σ ≈ Cε. This is
called the Voigt approximation, after its originator. Similarly, the elementary approximation
Seff ≈ S (so that Ceff ≈ (S)−1) follows by assuming that the stress field that is generated
in the composite really is a constant field. This is called the Reuss approximation. They
were demonstrated to deliver bounds, subject to the assumed validity of the Hill condition,
in about 1951; their rigorous status as bounds followed in 1963, when the Hill condition was
deduced for the particular two types of boundary conditions that have been adopted here.

Since the bounds (3.28) involve only volume averages, the only information that they
require about the composite consists of the volume fractions. That is both their strength
and their weakness: they are true, universally (which is good), but they contain no infor-
mation about the geometrical arrangement of the composite (it could be a laminate, or
fibre-reinforced, or contain a dispersion of spherical inclusions, etc.) and so give no indica-
tion about the sensitivity of the effective properties to the microgeometry. The subject of
bounds will receive further attention later.
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4 Some General Relations for Composites

This section considers a general n-component (also called n-phase) composite. Phase r has
elastic constant tensor Cr and volume fraction cr. Here and throughout these notes, an
overbar will imply a volume average. Thus, for example, for the elastic constant tensor,

C =
n

∑

r=1

crC
r. (4.1)

4.1 Concentration tensors

Suppose that the composite is subjected to an overall mean strain ε, through imposition
of the linear displacement boundary condition (1.4). The actual strain generated in the
composite is ε(x). Let its average, over the total region occupied by phase r, be denoted εr.
Since the entire problem is linear, the strain at any point must be a linear function of the
parameters ε which define the boundary data, and its average over phase r must be likewise
a linear function:

εr = Arε. (4.2)

The fourth-order tensor Ar is the strain concentration tensor for phase r. The identity

ε =
n

∑

r=1

crε
r (4.3)

induces the identity
n

∑

r=1

crA
r = I (4.4)

between the concentration tensors Ar (r = 1, 2 · · ·n).
If the average of the stress over phase r is denoted σr, it follows from the stress-strain

relation that
σr = Crεr = CrArε (4.5)

and hence that the overall mean stress is

σ = Ceffε, (4.6)

where

Ceff =
n

∑

r=1

crC
rAr. (4.7)
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If the composite consists of a matrix, phase n, say, containing different types of inclusions,
it is natural to eliminate An, using the identity (4.4), to give

Ceff = Cn +
n−1
∑

r=1

cr(C
r − Cn)Ar. (4.8)

4.2 A dilute suspension

In general, estimation of the concentration tensors Ar requires the solution – or at least ap-
proximate solution – of a complicated problem with interactions between inhomogeneities. If
the suspension is dilute, however, then by definition interactions between different inhomo-
geneities are weak, and to lowest order, can be neglected. The problem then becomes that
of estimating the strain within a single inclusion of type r, in a matrix with elastic constant
tensor Cn, subjected to the mean strain ε. It suffices, in fact, to take the matrix as infinite
in extent, and to impose the condition that ε → ε as |x| → ∞.

4.3 Isotropic matrix

This subsection presents, without derivation, some explicit formulae, in the case that the
matrix and inclusions are isotropic. The derivation will be supplied, also for anisotropic
media, in Section 6. It is first desirable to introduce notation that facilitates the algebra,
now and also in later sections.

Notation for isotropic fourth-order tensors

When the matrix is isotropic, with Lamé moduli λ, µ and bulk modulus κ = λ + 2
3
µ, the

elastic constant tensor C can be given in the form

Cijkl = κδijδkl + µ(δikδjl + δilδjk − 2

3
δijδkl). (4.9)

It is convenient to employ the symbolic notation

C = (3κ, 2µ). (4.10)

Then, for two isotropic fourth-order tensors with the symmetries associated with tensors of
moduli, C1 = (3κ1, 2µ1) and C2 = (3κ2, 2µ2), their product becomes

C1C2 = ((3κ1)(3κ2), (2µ1)(2µ2)). (4.11)
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The identity tensor has the representation

I = (1, 1) (4.12)

and
C−1 = (1/(3κ), 1/(2µ)). (4.13)

Isotropic spherical inclusion

If the inclusion is a sphere and is composed of isotropic material with Lamé moduli λ′, µ′ and
bulk modulus κ′ = λ′ + 2

3
µ′, then the associated strain concentration tensor A is isotropic

and is given by the formula

A = (3κA, 2µA), or Aijkl = κAδijδkl + µA(δikδjl + δilδjk − 2

3
δijδkl), (4.14)

where

3κA =
3κ + 4µ

3κ′ + 4µ
, 2µA =

5µ(3κ + 4µ)

µ(9κ + 8µ) + 6µ′(κ + 2µ)
. (4.15)

Thus, for a dilute suspension of isotropic spherical inclusions, at volume fraction c, in an
isotropic matrix, the formula (4.8) gives the effective response as isotropic, with bulk and
shear moduli κeff , µeff given by

κeff = κ + c
(κ′ − κ)(3κ + 4µ)

3κ′ + 4µ
,

µeff = µ + c
5(µ′ − µ)µ(3κ + 4µ)

µ(9κ + 8µ) + 6µ′(κ + 2µ)
. (4.16)

Two particular cases are noted explicitly.

A dilute array of rigid spherical inclusions: If κ′ and µ′ tend to infinity, the formulae (4.16)
reduce to

κeff, rigid = κ + c(κ + 4µ/3), µeff, rigid = µ + c
5µ(3κ + 4µ)

6(κ + 2µ)
. (4.17)

If, in addition, the matrix is incompressible, the effective bulk modulus becomes infinite,
while the effective shear modulus reduces to

µeff, rigid, incomp = µ(1 + 5c/2). (4.18)

The formula was first derived by Einstein, in 1906, in the mathematically identical context
of incompressible viscous flow.
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A matrix containing spherical voids: The case κ′ = µ′ = 0 corresponds to a matrix containing
voids; the formulae (4.16) reduce to

κeff, voids = κ

(

1 − c
(3κ + 4µ)

4µ

)

, µeff, voids = µ

(

1 − c
5(3κ + 4µ)

(9κ + 8µ)

)

. (4.19)

4.4 Approximation for a general composite

If the composite is non-dilute, the problem of estimating its properties becomes very com-
plicated unless resort is made to some simplifying approximation. One such approximation
is considered now.

Suppose first that the composite is an aggregate of different materials, without any clear
matrix-inclusion structure. A simple approximation for the concentration tensor of material
of type r is obtained by assuming that each piece of material of type r is spherical, and that
the strain within it can be estimated by embedding a single sphere, with tensor of moduli
Cr, in a uniform matrix with tensor of moduli C0 (to be chosen judiciously later!). This
assumption means that the effect of the surrounding heterogeneous material on this piece of
type r is approximately the same as the effect of surrounding it with material with tensor
of moduli C0. The mean strain in the composite is ε. This, however, is “screened” by the
heterogeneities, and so we assume that the strain in material r is reproduced by subjecting
the uniform matrix with moduli C0 to a remote strain ε0 (also to be chosen later). It follows
now, in an obvious notation, that the mean strain εr in material r is approximated as

εr = Ar,0ε0. (4.20)

The requirement (4.3) gives

ε0 =
(

∑

crA
r,0

)−1
ε =: 〈A0〉−1ε, (4.21)

and hence
Ar ≈ Ar,0〈A0〉−1. (4.22)

Formula (4.7) now provides the approximation

Ceff ≈
n

∑

r=1

crC
rAr,0

(

n
∑

s=1

csA
s,0

)−1

. (4.23)

This approximation can be used, formally, even when the composite has a clearly-defined
matrix. It is not at all obvious that it is appropriate to treat the actual matrix as though
it is a spherical inclusion in material with tensor of moduli C0, but at least this assumption
provides a formula, and later theoretical developments will show why it works quite well!
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Explicit formulae

For an isotropic composite, with isotropic phases, the formula for Ar,0 becomes, using the
notation already established for isotropic tensors,

Ar,0 = (3κr,0
A , 2µr,0

A ) (4.24)

where, from (4.15),

3κr,0
A =

3κ0 + 4µ0

3κr + 4µ0
, 2µr,0

A =
5µ0(3κ0 + 4µ0)

µ0(9κ0 + 8µ0) + 6µr(κ0 + 2µ0)
. (4.25)

Hence, (4.23) gives

κeff ≈
∑n

r=1 crκ
r/(3κr + 4µ0)

∑n
s=1 cs/(3κs + 4µ0)

, µeff ≈
∑n

r=1 crµ
r/[µ0(9κ0 + 8µ0) + 6µr(κ0 + 2µ0)]

∑n
s=1 cs/[µ0(9κ0 + 8µ0) + 6µs(κ0 + 2µ0)]

. (4.26)

It is noted, for future use, that the expressions (4.26) can be rearranged to give

1

3κeff + 4µ0
=

n
∑

r=1

cr

3κr + 4µ0
,

1

µ0(9κ0 + 8µ0) + 6µeff(κ0 + 2µ0)
=

n
∑

r=1

cr

µ0(9κ0 + 8µ0) + 6µr(κ0 + 2µ0)
. (4.27)

Simple special cases

Suppose we allow the moduli C0 to tend to infinity, corresponding to rigid material. Physi-
cally, it follows that the strain in the inclusion must be ε0, for each r, and hence that

Ar ≈ I. (4.28)

Correspondingly, from (4.23),
Ceff ≈ C, (4.29)

the Voigt approximation. This is confirmed by taking the limit directly in equations (4.26).
Now, conversely, let C0 → 0. Equation (4.26) gives

Ceff ≈ (S)−1, (4.30)

the Reuss approximation. An interpretation of this result is as follows. Ar,0 → 0 and the
formula (4.22) becomes degenerate. What happens in the limit is that ε0 → ∞ in such a
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way that the corresponding stress σ0 remains finite. The stress in the inclusion also takes
the value σ0 and hence the strain becomes Srσ0. Equation (4.3) now requires that

σ0 = (S)−1ε. (4.31)

Since the stress in each piece of material is estimated to take the same constant value σ0,
this represents the estimated mean stress in the composite, and the Reuss approximation
follows.

Evidently, choosing intermediate values for C0 will yield estimates for Ceff between the
Reuss and Voigt approximations.

4.5 Self-consistent approximation

Now here is a proposal for a particular choice of C0. Suppose that the best choice for C0 is
the actual Ceff . The latter of course is not known, but an approximation is given in terms
of C0 by equation (4.23). The so-called “self-consistent” approximation is given by taking
Ceff = C0, where C0 is the solution of the equation

C0 =
n

∑

r=1

crC
rAr,0

(

n
∑

s=1

csA
s,0

)−1

. (4.32)

Explicit equations, for a composite with isotropic phases, are provided by (4.26) or (4.27),
with κeff , µeff replaced by κ0, µ0.

It is worth noting that the form of the equations obtained from (4.27) gives, immediately,
that

n
∑

s=1

csA
s,0 = I, (4.33)

and hence that
Ar = Ar,0, (4.34)

when C0 is chosen self-consistently. This observation provides a different perspective for the
self-consistent approximation (though not for the more general formulae (4.26)): estimate
Ar by embedding an inclusion of type r directly into a matrix whose elastic constant tensor
C0 is chosen to be Ceff . The matrix is subjected to remote strain ε.

It was remarked in subsection 4.1 that, for a matrix-inclusion composite (the matrix be-
ing material n), it was natural to estimate the tensors Ar for 1 ≤ r ≤ n−1 by embedding an
inclusion in a matrix, but then to obtain An by use of the identity (4.4). Then, the expression
for Ceff takes the form (4.8). The observation that (4.33) holds, for the self-consistent choice
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of C0, shows that use of this second prescription, in conjunction with the self-consistent
approximation, gives exactly the same result as that obtained from estimating An by em-
bedding an inclusion of matrix material in material with moduli C0! These comments have
been made in relation to the explicit formulae (4.26), (4.27). They do, in fact, have validity
also for anisotropic media, for which formulae will be presented later.

In the case of a 2-component composite, in which an isotropic matrix with elastic constant
tensor C2 has embedded in it a single population of isotropic spherical inclusions, with elastic
constant tensor C1, at volume fraction c1, the self-consistent approximation to Ceff is defined
by the equations

κ0 = κ2 + c1
(κ1 − κ2)(3κ0 + 4µ0)

3κ1 + 4µ0
,

µ0 = µ2 + c1
5(µ1 − µ2)µ0(3κ0 + 4µ0)

µ0(9κ0 + 8µ0) + 6µ1(κ0 + 2µ0)
. (4.35)

When c1 ¿ 1, the development of the self-consistent solution in a power series in c1, truncated
at first order in c1, agrees with the dilute approximation (4.16).

In the special case of rigid inclusions (C1 → ∞), the formulae (4.35) reduce to

κeff = κ2 + c1(κ
0 + 4µ0/3),

µeff = µ2 + c1
5µ0(3κ0 + 4µ0)

6(κ0 + 2µ0)
. (4.36)

In the special case of cavities (C1 = 0), they reduce to

κeff = κ2

(

1 − c1
(3κ0 + 4µ0)

4µ0

)

,

µeff = µ2

(

1 − c1
5(3κ0 + 4µ0)

(9κ0 + 8µ0)

)

. (4.37)
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5 Thermoelastic Response of a Composite

5.1 General relations

The Helmholtz free energy density F of a thermoelastic solid is a function of the strain,
ε, and the temperature, θ. If strain and temperature are measured relative to a stress-free
state, then, to lowest order, the free energy density becomes a quadratic function of ε and
θ:

F (ε, θ) = 1

2
εCε − (εβ)θ − 1

2
fθ2 ≡ 1

2
εijCijklεkl − εijβijθ − 1

2
fθ2, (5.1)

having set F to zero in the reference state. The constitutive equations associated with (5.1)
are

σij =
∂F

∂εij

= Cijklεkl − βijθ, (5.2)

η = −∂F

∂θ
= βijεij + fθ. (5.3)

Here, η is the entropy density. The elastic constant tensor C applies to isothermal defor-
mations. With θR denoting the temperature in the reference state, θRf is the specific heat
capacity (∂η/∂θ) at constant strain. The second-order tensor β is the thermal stress ten-
sor, giving (minus) the change in stress associated with change in temperature, at constant
strain. The thermal strain tensor, α, gives the change in strain with change of temperature,
at constant stress. It follows by setting σ = 0 in (5.2) and solving for ε. Thus,

α = Sβ, β = Cα, (5.4)

where S is the isothermal tensor of compliances.
For an n-phase composite, the constants take the values Cr, βr, f r in phase r. Effective

constants for the composite are established by finding the mean values of stress and entropy,
when the composite is subjected to conditions that would generate within it, uniform strain
and temperature fields if it were homogeneous. Thus, it is subjected, at its boundary, to
linear displacement or uniform traction conditions, and to a uniform temperature. Since
the concern here is only for equilibrium conditions, uniform temperature on the boundary
implies uniform temperature throughout the composite.

In analogy with the purely mechanical case, concentration tensors are now defined so
that

εr = Arε + arθ. (5.5)
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These are subject to the restrictions

n
∑

r=1

crA
r = I,

n
∑

r=1

cra
r = 0. (5.6)

Now define F eff to be the mean value over Ω of F . F eff must be a quadratic function of
the parameters ε, θ which define the boundary value problem from which it is constructed.
Taking, as previously, Ω to have unit volume,

F eff :=
∫

Ω
F (ε, θ)dx. (5.7)

Now change the mean strain to ε + δε and the temperature to θ + δθ. The strain within the
composite changes to ε + δε. The change in F eff is then, to first order,

δF eff ≡ F eff
,ε δε + F eff

,θ δθ =
∫

Ω
{F,εδε + F,θδθ}dx

=
∫

Ω
{σδε − ηδθ}dx

=
∫

Ω
{σδε − ηδθ}dx (by the principle of virtual work)

= σδε − ηδθ. (5.8)

Hence,
σ ≡ Ceffε − βeffθ = F eff

,ε . (5.9)

Also,
η = −F eff

,θ . (5.10)

It follows, using (5.5), that

σ =
n

∑

r=1

cr{Cr(Arε + arθ) − βrθ}, (5.11)

η =
n

∑

r=1

cr{βr(Arε + arθ) + f rθ}. (5.12)

Therefore, considering also (5.9) and (5.10),

Ceff =
n

∑

r=1

crC
rAr (5.13)
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is symmetric (as in the purely mechanical case), and

βeff =
n

∑

r=1

cr{βr − Crar} ≡
n

∑

r=1

cr(A
r)T βr. (5.14)

Here, the superscript T denotes transposition, in the sense that the ijkl component of (Ar)T

is Ar
klij. [This is about the only point at which the symbolic notation becomes potentially

unclear: if in doubt, revert to suffix notation!] The equivalence recorded here provides an
additional relation between the concentration tensors. It demonstrates, remarkably, that the
effective thermal stress tensor can be deduced, once the purely mechanical strain concentra-
tion tensors have been found: there is no need to solve any thermoelastic problem, for this
purpose.

The fact that F eff is a homogeneous function of degree 2 in its arguments gives the
relation

F eff(ε, θ) = 1

2
(σ ε − ηθ). (5.15)

Thus,
F eff(ε, θ) = 1

2
εCeffε − (βeffε)θ − 1

2
f effθ2, (5.16)

where f eff is given by

f eff =
n

∑

r=1

cr(f
r + βrar). (5.17)

If the composite consists of a matrix (phase n say) containing inclusions, elimination of
An and an using equations (5.6) gives

Ceff = Cn +
n−1
∑

r=1

cr(C
r − Cn)Ar,

βeff = βn +
n−1
∑

r=1

cr(A
r)T (βr − βn),

f eff = f +
n−1
∑

r=1

cr(β
r − βn)ar. (5.18)

The alternative form,

Ceff = C +
n−1
∑

r=1

cr(C
r − Cn)(Ar − I),

βeff = β +
n−1
∑

r=1

cr(A
r − I)T (βr − βn),
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f eff = f +
n−1
∑

r=1

cr(β
r − βn)ar. (5.19)

will be convenient in what follows.

5.2 The Levin relations

Further remarkable relations (due to V M Levin, about 1967) follow if the composite has
only two phases. When combined with (5.6), the equivalence given in (5.14) provides

a1 = −(C1 − C2)−1(A1 − I)T (β1 − β2). (5.20)

Also, from the first of equations (5.19), with n = 2,

c1(A
1 − I)T = (Ceff − C)(C1 − C2)−1, (5.21)

and hence
c1a

1 = −(C1 − C2)−1(Ceff − C)(C1 − C2)−1(β1 − β2). (5.22)

It follows now, from the second and third of equations (5.19) that

βeff = β + (Ceff − C)(C1 − C2)−1(β1 − β2),

f eff = f − (β1 − β2)(C1 − C2)−1(Ceff − C)(C1 − C2)−1(β1 − β2). (5.23)

These are the Levin relations: they give the effective thermoelastic properties explicitly, in
terms of the purely mechanical effective modulus tensor.

5.3 The isotropic spherical inclusion

Just for the record, it is easy to solve the problem of the thermal expansion of an isotropic
spherical inclusion in an isotropic matrix, because the problem displays spherical symmetry.
If the bulk and shear moduli are, respectively, κ, µ for the matrix and κ′, µ′ for the inclusion,
and if the thermal stress tensors have components βδij for the matrix and β′δij for the
inclusion, then the tensor a′ for the inclusion has components a′δij, where

a′ =
(β′ − β)

(3κ′ + 4µ)
. (5.24)

This also follows from the Levin relations, applied to a composite consisting of a dilute
suspension of spheres in a matrix.
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6 A General Formulation for Heterogeneous Media

6.1 A fundamental integral equation

This sub-section considers the solution of problems for a medium which occupies a domain
Ω, with general tensor of elastic moduli C(x). To avoid unnecessary complication, only
the displacement boundary value problem will be addressed. Thus, the stress, strain and
displacement must conform to the equations

div σ + f = 0, or σij,j + fi = 0, x ∈ Ω,

σ = Cε, ε = 1

2
[∇u + (∇u)T ], or σij = Cijklεkl, εij = 1

2
[ui,j + uj,i], x ∈ Ω,

u(x) = u0(x), x ∈ ∂Ω. (6.1)

Introduce a “comparison medium”, with elastic constant tensor C0: in general, this could
vary with position x but the formulation will be most useful (at least for the present) if the
comparison medium is uniform. A “stress polarisation tensor” τ (x) is defined so that the
stress σ and the strain ε in the medium satisfy

σ = Cε ≡ C0ε + τ . (6.2)

Thus,
τ = (C − C0)ε. (6.3)

Substituting (6.2) into the equilibrium equations, and also expressing strain in terms of
displacement, gives the system of equations

(C0
ijkluk,l),j + τij,j + fi = 0, x ∈ Ω. (6.4)

Thus, the displacement and strain fields in the actual medium are generated in the compar-
ison medium, if this is subjected to “body force” f + div τ . The stress in the actual body is
given by (6.2).

Since equations (6.4) are linear, their solution can be broken down as follows. First,
solve the equations, with the real body-force f and the boundary condition but without the
additional body-force div τ : call this solution u0 (now defined over all of Ω). Now, regarding
τ for the moment as known, solve the equations

(C0
ijkluk,l),j + τij,j = 0, x ∈ Ω, (6.5)

subject to the boundary condition u = 0 on ∂Ω: call this solution u1. The required solution
is then

u = u0 + u1. (6.6)
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The field u1 is hard to find explicitly, but it can be represented in terms of Green’s function
G for the comparison body. This has to satisfy the equations

[C0
ijkl(x)Gkp,l(x,x′)],j + δipδ(x − x′) = 0, x ∈ Ω,

Gip(x,x′) = 0, x ∈ ∂Ω. (6.7)

Then, by superposition,

u1
i (x) =

∫

Ω
Gip(x,x′)τpq,q(x

′) dx′. (6.8)

Hence, by integrating by parts and combining with (6.6),

ui(x) = u0
i (x) −

∫

Ω

∂Gip(x,x′)

∂x′
q

τpq(x
′) dx′. (6.9)

Differentiating and symmetrising now gives

εij(x) = ε0
ij(x) −

∫

Ω
Γijpq(x,x′)τpq(x

′) dx′, (6.10)

where

Γijpq(x,x′) =
∂2Gip(x,x′)

∂xj∂x′
q

∣

∣

∣

∣

∣

(ij),(pq)

, (6.11)

the bracketed subscripts implying symmetrisation8. The representation (6.10) will be written
in symbolic notation

ε = ε0 − Γτ . (6.12)

An integral equation for τ now follows by noting, from (6.3), that ε = (C − C0)−1τ .
Thus,

(C − C0)−1τ + Γτ = ε0. (6.13)

6.2 Green’s function for an infinite body

Further progress requires knowledge of the Green’s function. This can be found, fairly
easily, if the body is infinite and uniform. In this case, translation invariance shows that G

depends on x, x′ only in the combination (x − x′), and so x′ can be set to zero, without
loss of generality.

8The integral in (6.10) will be singular, and must be interpreted in the sense of gener-
alised functions. An alternative procedure, which follows the derivation, is first to evaluate
the integral in (6.9) and then to perform the differentiation with respect to x.
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Note first the basic results

∆
(

1

4πr

)

+ δ(x) = 0 (in 3 dimensions),

∆

(

log(1/r)

2π

)

+ δ(x) = 0 (in 2 dimensions). (6.14)

where r = |x| and ∆ denotes the Laplacian. Note also that

∆r = 2/r (in 3 dimensions), ∆r2 log(1/r) = 4(log(1/r) − 1) (in 2 dimensions). (6.15)

Isotropic medium

For an isotropic body, with Lamé moduli λ, µ which are constants, Green’s function must
satisfy the equations

(λ + µ)Gjp,ji + µGip,jj + δipδ(x) = 0. (6.16)

Motivated by the results (6.14) for the Laplacian operator, try

Gip(x) =







1
µ

[

δip

4πr
+ αr,ip

]

(in 3 dimensions)
1
µ

[

log(1/r)
2π

+ α{r2 log(1/r)},ip

]

(in 2 dimensions).
(6.17)

Substituting into (6.16) shows that, in either two or three dimensions,

α = − λ + µ

8π(λ + 2µ)
. (6.18)

Generally-anisotropic medium

Now consider a uniform infinite medium with generally-anisotropic tensor of elastic moduli
C. Green’s function now satisfies the equation

CijklGkp,jl + δipδ(x) = 0. (6.19)

An attractive representation can be given for G(x) in three dimensions, by noting the ele-
mentary relation

∫

|ξ|=1
δ(ξ.x) dS = 2π/r. (6.20)
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The integral here is over the surface of the unit sphere |ξ| = 1. One way to see this result is
to transform to polar coordinates (ρ, θ, φ) (where ρ ≡ |ξ| = 1 on the surface of the sphere),
with the axis θ = 0 aligned with x. The integral becomes

∫ 2π

0
dφ

∫ π

0
sin θ dθ δ(r cos θ),

which can be evaluated by elementary means, after employing the further variable transfor-
mation s = r cos θ.

Notice now that, for any function f of the scalar variable s = ξ.x, ∂f(ξ.x)/∂xi =
ξif

′(ξ.x). Therefore, by applying the Laplacian operator to both sides of (6.20), it is obtained
that

δ(x) =
−1

8π2

∫

|ξ|=1
δ′′(ξ.x) dS, (6.21)

since ξjξj = 1 on the surface of the unit sphere. The solution of (6.19) can now be built up
by superposition. First, solve the problem

CijklG
ξ
kp,jl + δipδ

′′(ξ.x) = 0. (6.22)

Evidently, it is only necessary to take G
ξ to be a function of s = ξ.x. Then, (6.22) reduces

to
K(ξ)Gξ′′(s) + Iδ′′(s) = 0, (6.23)

where
Kik(ξ) = Cijklξjξl. (6.24)

Hence, we may take
Gξ(s) = −[K(ξ)]−1δ(s). (6.25)

It follows now, by the superposition shown in equation (6.21), that

G(x) =
1

8π2

∫

|ξ|=1
[K(ξ)]−1δ(ξ.x) dS. (6.26)

The kernel of the operator Γ is obtained by performing the differentiations indicated in
(6.11). Thus,

Γ =
−1

8π2

∫

|ξ|=1
Γ̃(ξ)δ′′(ξ.x) dS, (6.27)

where
Γ̃ijpq = ξ(i{[K(ξ)]−1}j)(pξq) (6.28)

(brackets on subscripts again implying symmetrisation).
There are corresponding expressions for Green’s function and the associated Γ-operator

in two dimensions but they are more complicated and are not considered here.
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6.3 Inclusion problems

The preceding formulation finds immediate use for solving the problem of an isolated inclu-
sion occupying a finite region V , embedded in an infinite uniform matrix which is in a state
of uniform stress and strain, remote from V . Let the matrix have elastic constant tensor
C0, while the inclusion has elastic constant tensor C. Then since C = C0 in the matrix,
equation (6.3) shows that τ is non-zero only over the region V ; correspondingly, equation
(6.13) applies only for x ∈ V . Since the strain is uniform far from V it would be identically
uniform if the medium contained no inclusion, and hence ε0 is constant, taking the value of
the strain remote from V .

Ellipsoidal inclusion

In the special case that V is an ellipsoid, the solution of this problem has the remarkable
property that the stress and strain, and hence also the polarisation τ , are constant over
the inclusion V . This can be verified by the semi-inverse method of assuming that τ is
constant, and confirming that the equation is satisfied if the constant is chosen appropriately.
To simplify the calculation, suppose first that the inclusion in fact occupies the sphere
V = {x : |x| ≤ a}. Since τ is to be taken constant, (6.13) requires the evaluation of the
integral

P :=
−1

8π2

∫

|ξ|=1
dSΓ̃(ξ)

∫

x′∈V
dx′δ′′(ξ.(x − x′)), (6.29)

when x ∈ V . Thus, it is necessary to evaluate the integral

J(p) :=
∫

x′∈V
δ(ξ.x′ − p)dx′, (6.30)

and then to differentiate the result twice with respect to p, and finally setting p = ξ.x. Now
when x ∈ V , we have |p| < a, since ξ is a unit vector. The value of J(p) is the area of the
disc defined by the intersection of the plane ξ.x′ = p with the sphere V . Thus, since |p| < a,

J(p) = π(a2 − p2) (6.31)

and consequently
J ′′(p) = −2π (6.32)

for all p such that |p| < a. Hence,

P =
1

4π

∫

|ξ|=1
Γ̃(ξ) dS, (6.33)
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which is constant, as asserted. Substituting back into equation (6.13), therefore,

[(C − C0)−1 + P ]τ = ε0. (6.34)

Thus, within the inclusion,

τ = [(C − C0)−1 + P ]−1ε0, (6.35)

ε = (C − C0)−1τ = [I + P (C − C0)]−1ε0, (6.36)

σ = Cε = C[I + P (C − C0)]−1ε0, (6.37)

all constants, as asserted.
The corresponding result when V is the ellipsoid V = {x : xT (AT A)−1x < 1} can

be deduced from the same working, by first defining y = A−T x and ζ = Aξ, so that
|y| < 1 when x ∈ V , and ξ.x = ζ.y. The only differences are that ζ is not a unit vector:
|ζ| = (ξT AT Aξ)1/2, and dx′ = det(A)dy. Following the calculation through gives

P =
det(A)

4π

∫

|ξ|=1

Γ̃(ξ)

(ξT AT A ξ)3/2
dS. (6.38)

6.4 Implications for a dilute suspension of ellipsoids

It follows immediately from the second of equations (6.37) that the strain concentration
tensor corresponding to a dilute suspension of ellipsoidal particles, at volume fraction c, is

A = [I + P (C − C0)]−1. (6.39)

Then, by suitable specialisation of (4.8), it is obtained that

Ceff = C0 + c(C − C0)[I + P (C − C0)]−1 = C0 + c[(C − C0)−1 + P ]−1. (6.40)

(The second form also follows by averaging equation (6.2).) Note that this formula applies,
for any ellipsoidal inclusion, of arbitrary anisotropy, in an anisotropic matrix. It generalises
immediately to the case of a suspension of several different types of ellipsoidal inclusion
(different shapes, or orientations, or elastic constants, or all of these), subject to the dilute
approximation.
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6.5 Isotropic matrix

For an isotropic medium with Lamé moduli λ, µ, the matrix K(ξ) takes the form

Kik(ξ) = (λ + µ)ξiξk + µ|ξ|2δik ≡ (λ + 2µ)ξiξk + µ(|ξ|2δik − ξiξk). (6.41)

The second form permits its immediate inversion:

{[K(ξ)]−1}ik =
1

|ξ|4
{

ξiξk

λ + 2µ
+

|ξ|2δik − ξiξk

µ

}

=
1

µ|ξ|2
{

δik −
λ + µ

λ + 2µ

ξiξk

|ξ|2
}

. (6.42)

The tensor Γ̃(ξ) now becomes, when |ξ| = 1,

Γ̃ijpq(ξ) =
1

4µ
(ξiδjpξq + ξjδipξq + ξiδjqξp + ξjδiqξp) −

λ + µ

µ(λ + 2µ)
ξiξjξpξq. (6.43)

It is now easy to evaluate the tensor P in the case of a sphere. First, formula (6.33) shows
that it is necessary to average ξiξq over the unit sphere. The result must be an isotropic
second-order tensor, and hence a multiple of δiq:

1

4π

∫

|ξ|=1
ξiξq dS = αδiq. (6.44)

The constant α follows by setting i = q and summing. Thus, α = 1/3. Similarly, the average
of ξiξjξpξq over the unit sphere is an isotropic fourth-order tensor, which is also completely
symmetric in its indices. The constant 1/15 in the formula

1

4π

∫

|ξ|=1
ξiξjξpξq dS = 1

15
(δijδpq + δipδjq + δiqδjp) (6.45)

is obtained by setting i = j, and p = q, and summing over i and p. Putting these results
together now gives

Pijpq =
1

6µ
(δiqδjp + δjqδip) −

(λ + µ)

15µ(λ + 2µ)
(δijδpq + δipδjq + δiqδjp). (6.46)

This result can be expressed

P = (3κP , 2µP ), or Pijpq = κP δijδpq + µP (δipδjq + δiqδjp − 2

3
δijδpq), (6.47)

where

3κP =
1

3κ + 4µ
, 2µP =

3(κ + 2µ)

5µ(3κ + 4µ)
. (6.48)

The results of subsection 4.3 are now easily confirmed.
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7 The Hashin–Shtrikman Variational Principle and its

Implications

The integral equation (6.13) has an associated variational principle. The operator Γ is
symmetric, following from the symmetry G(x,x′) = GT (x′,x), and hence, immediately, the
stationary principle

δH(τ ) = 0, (7.1)

where
H(τ ) =

∫

Ω
{ε0τ − 1

2
τ (C − C0)−1τ − 1

2
τΓτ} dx, (7.2)

generates (6.13). This is, basically, the Hashin–Shtrikman variational principle. Much more
insight, as well as generality, will follow from the derivation given below.

7.1 Derivation of the Hashin–Shtrikman principle

Begin with the minimum energy principle in the form

F(u) = inf
u∗

∫

Ω
{W (ε∗) − fu∗} dx; u∗ = u0, x ∈ ∂Ω. (7.3)

The energy function W (ε) will be assumed to be convex in ε; it may be quadratic, as in (3.2),
but it does not have to be. The energy density function may vary with position, x, even
though this is not shown explicitly. The adoption of the displacement boundary condition
u = u0 on ∂Ω is made for consistency with subsection 6.1, some of whose results will be
invoked in the sequel.

Introduce a “comparison potential” W 0(ε): this is likely, in practice, to be chosen to be
a quadratic function, 1

2
εC0ε, but the reasoning to follow does not require this. Now define

(W − W 0)∗(τ ) := sup
ε
{τε − W (ε) + W 0(ε)}. (7.4)

Except in pathological cases, the supremum will be attained for some ε, which will satisfy
the condition of stationarity

τ = W ′(ε) − W 0 ′(ε). (7.5)

Thus, at least locally, (W − W 0)∗ will be a classical Legendre transform. In the case that
(W − W 0) is strictly convex, there will be only one stationary point, and this will deliver
the supremum. If there is more than one stationary point, the classical Legendre transform
will be multi-valued; the definition (7.4) selects the maximum.
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Since, by definition, (W −W 0)∗ is the greatest possible value of the function in braces in
(7.4), the Fenchel inequality

(W − W 0)∗(τ ) ≥ τε − W (ε) + W 0(ε) (7.6)

must hold for all τ and ε. The minimum energy principle (7.3) and (7.6) together imply

F(u) ≥ inf
u∗

∫

Ω
{τε∗ + W 0(ε∗) − (W − W 0)∗(τ ) − fu∗} dx, u∗ = u0, x ∈ ∂Ω, (7.7)

for any τ (x).
Now, starting from a different function W 0, define

(W − W 0)∗(τ ) := inf
ε
{τε − W (ε) + W 0(ε)}. (7.8)

Since (W − W 0)∗(τ ) is the smallest possible value of the bracketed function,

(W − W 0)∗(τ ) ≤ ετ − W (ε) + W 0(ε) (7.9)

holds for all τ and ε, and the minimum energy principle implies

F(u) ≤
∫

Ω
{τε∗ + W 0(ε∗) − (W − W 0)∗(τ ) − fu∗} dx, u∗ = u0, x ∈ ∂Ω, (7.10)

for any τ (x) and any u∗ that satisfies the boundary conditions; the infimum over u∗ is not
needed because all the inequalities run the same way.

The inequalities (7.7) and (7.10) provide a rather general statement of the Hashin–
Shtrikman variational principle(s). To see their relation to (7.1), specialise to a linear
comparison medium, so that W 0(ε) = 1

2
εC0ε, and suppose that this is positive-definite.

It is necessary to evaluate the infimum over u∗ in (7.7), and it is desirable, to get the best
possible result, in (7.10). The infimum is attained when

(C0
ijklu

∗
k,l),j + τij,j + fi = 0, x ∈ Ω, (7.11)

with the boundary condition u∗ = u0 on ∂Ω. Therefore, u∗ is given by (6.9) and ε∗ is given
by (6.10). Write these, just for the moment, u∗ = u0 + u1, ε∗ = ε0 + ε1. The relevant part
of the energy function (7.7) or (7.10) is then

∫

Ω
{τε0 + τε1 + 1

2
ε1C0ε1 + 1

2
ε0C0ε0 − fu0 + (ε1C0ε0 − u1f)}dx.
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Now ∫

Ω
(ε1C0ε0 − u1f) dx = 0,

by the principle of virtual work, since the field u0 satisfies the equations of equilibrium with
the body-force f , while u1 = 0 on ∂Ω. Similarly,

∫

Ω
ε1(C0ε1 + τ ) dx = 0,

because C0ε1 + τ has zero divergence. Hence, keeping the terms that remain, (7.7) gives

F(u) ≥
∫

Ω
{τε0 − 1

2
τΓτ − (W − W 0)∗(τ ) + W 0(ε0) − fu0}dx, (7.12)

having written ε1 = −Γτ , in line with (6.10). Similarly, (7.10) gives

F(u) ≤
∫

Ω
{τε0 − 1

2
τΓτ − (W − W 0)∗(τ ) + W 0(ε0) − fu0}dx. (7.13)

In the case that W (ε) = 1

2
εCε, corresponding to linear elasticity, elementary calculation

gives
(W − W 0)∗(τ ) = 1

2
τ (C − C0)−1τ . (7.14)

The expression on the right side of (7.14) in fact is the stationary value of the function
τε − (W − W 0)(ε). It is the desired supremum so long as the quadratic form ε(C − C0)ε
is positive-definite. Otherwise, the supremum is +∞: the inequality (7.7) remains true, but
becomes trivial! A similar conclusion can be reached in the case of the upper bound, given
by (7.13); for this, the upper bound is non-trivial so long as ε(C −C0)ε is negative-definite.
The result can be summarised thus:

F(u) ≥ (≤)
∫

Ω
{τε0 − 1

2
τΓτ − 1

2
τ (C − C0)−1τ + 1

2
ε0C0ε0 − fu0} dx (7.15)

for any τ , so long as the quadratic form ε(C − C0)ε is positive- (negative-) definite. The
inequalities (7.12) and (7.13) are both true for any τ . The condition that the lower bound
is maximised with respect to τ is formally the same as the condition that the upper bound
is minimised. It is that the integrand in (7.15) should be stationary. Thus,

(C − C0)−1τ + Γτ = ε0, (7.16)

which is a repeat of equation (6.13). When this condition is met, the associated strain field
ε is given by (6.12), and it follows that (6.3) is also satisfied. Thus, the exact solution to
the problem is generated. Only conditions for stationarity have been imposed here; thus,
stationarity of the Hashin–Shtrikman functional H is equivalent to the original formulation
of the problem, for any choice of comparison medium C0. However, it provides a maximum
or a minimum principle only when C0 is restricted as indicated.
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7.2 Random media

It is very often appropriate to treat a composite as a random medium: even in the unusual
event that the composite has a perfectly periodic structure, with period cell Q, say, it
would be quite exceptional for the exact position of one chosen cell to be known exactly,
relative to the boundary of the specimen or structure. In this sense, even a medium with
periodic microstructure becomes random: a natural assumption is that a specified corner of
a specified cell can occupy any position within a cell, Q0, say, whose corner lies at the origin
of coordinates. Of course, once the position of that one corner is fixed, the whole of the
geometry of the composite is defined.

Now more generally, let a realisation of the composite be defined by a parameter (possibly
infinite-dimensional) α ∈ A, where A is the sample space, over which a probability measure
p is defined. For the purpose of this work, it suffices to describe the composite in terms of the
set of characteristic functions χr of the region occupied by material of type r (r = 1, 2, · · ·n).
Since the composite is to be treated as random, the functions χr depend on position x and
on the parameter α:

χr(x, α) =
{

1 if x ∈ phase r
0 otherwise.

(7.17)

In the case of a periodic medium, as discussed above, the parameter α could be identified
with the coordinates of the corner of the chosen cell. Then, the corresponding sample space
A would be Q0, and p would be the uniform measure on Q0.

The ensemble mean of any quantity φ(α) is now defined as

〈φ〉 :=
∫

A
φ(α)p(dα). (7.18)

The ensemble mean of χr gives the probability pr(x) of finding material of type r at position
x:

pr(x) := 〈χr〉(x) =
∫

A
χr(x, α) p(dα). (7.19)

Similarly,

prs(x,x′) :=
∫

A
χr(x, α)χs(x

′, α) p(dα) (7.20)

is the probability of finding simultaneously phase r at x and phase s at x′. Probabilities
involving more points can be defined similarly.

In the case that the composite is “statistically uniform”, multipoint probabilities are
insensitive to translations. Thus, the probability pr becomes independent of x, and so equal
to the volume fraction cr. The two-point function prs becomes a function of x and x′ only
in the combination x − x′.
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7.3 Bounds

The plan now is to substitute trial polarisations into (7.15) to obtain upper and lower bounds
for the energy in a composite. Its elastic constant tensor C(x, α) takes the form

C(x, α) =
n

∑

r=1

Crχr(x, α). (7.21)

Correspondingly, the simplest choice that can be made for the polarisation, so that it depends
on the microstructure, is

τ (x, α) =
n

∑

r=1

τ r(x)χr(x, α), (7.22)

where the functions τ r are sure, i.e. they are the same for every realisation α. Substitution
into (7.15) now gives

F(u) ≥ (≤)
∫

Ω

{

n
∑

r=1

τ r
(

ε0 − 1

2
(Cr − C0)−1τ r

)

χr − 1

2

n
∑

r=1

n
∑

s=1

τ rΓτ sχrχs

+ 1

2
ε0C0ε0 − fu0

}

dx. (7.23)

Now the intention is to exploit the notion that, if the microstructure is fine enough, the
energy will not vary significantly from one realisation to another. An easy way through is to
note that, since the inequalities (7.23) are true for all realisations, they survive the operation
of taking the ensemble mean. Thus,

〈F(u)〉 ≥ (≤)
∫

Ω

{

n
∑

r=1

prτ
r
(

ε0 − 1

2
(Cr − C0)−1τ r

)

− 1

2

n
∑

r=1

n
∑

s=1

τ r{Γprs}τ s

+ 1

2
ε0C0ε0 − fu0

}

dx. (7.24)

The term in the double sum requires explanation. The operation of Γ on a function φ
produces

(Γφ)(x) =
∫

Ω
Γ(x,x′)φ(x′) dx′.

The term {Γprs} represents the operator which, applied to φ, gives

({Γprs}φ)(x) =
∫

Ω
Γ(x,x′)prs(x,x′)φ(x′) dx′.
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The right side of (7.23) is now optimised (to produce either a lower or an upper bound),
by requiring it to be stationary with respect to variations in τ r. Thus,

pr(C
r − C0)−1τ r +

n
∑

s=1

{Γprs}τ s = prε
0. (7.25)

This represents the “best approximation” to the exact equation (6.13) amongst the set
of polarisations of the form (7.22). It requires only knowledge of the one- and two-point
probabilities pr and prs. Any more complicated polarisation would inevitably require more
statistical information for its optimal evaluation: the resulting bounds would be better,
because they would contain that information, but availability of such information would be
the exception rather than the rule.

It should be noted that, once an optimal set of polarisations τ r has been obtained, it
provides, via (6.10), the approximation

ε = ε0 −
n

∑

r=1

Γ(τ rχr) (7.26)

for the strain field, and the corresponding approximation for the stress field,

σ = C0ε +
n

∑

r=1

τ rχr. (7.27)

The mean strain and stress are obtained by ensemble averaging these quantities:

〈ε〉 = ε0 − Γ〈τ 〉, 〈σ〉 = C0〈ε〉 + 〈τ 〉, (7.28)

where

〈τ 〉 =
n

∑

r=1

prτ
r. (7.29)

Taken by themselves, equations (7.28) are exact; the approximation is contained in (7.29).
In conclusion of this subsection, it is noted that substituting the optimal polarisations

into (7.24) gives

〈F(u)〉 ≥ (≤)
∫

Ω
{ 1

2
〈τ 〉ε0 + 1

2
ε0C0ε0 − fu0} dx. (7.30)
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7.4 The classical Hashin–Shtrikman bounds

The classical Hashin–Shtrikman bounds – generalised rather beyond their original exposition
– are obtained by specialising the inequalities (7.30) to the case in which

ε0 = ε, constant, and f = 0.

It is necessary to solve the optimal equations (7.25) in this case. This task is reduced by
noting that, even in the general case, ε0 can be eliminated in favour of 〈ε〉 by use of the first
of equations (7.28). Thus,

pr(C
r − C0)−1τ r +

n
∑

s=1

{Γ(prs − prps)}τ s = pr〈ε〉. (7.31)

Although 〈ε〉 is not known, this equation has particular significance because it directly relates
the polarisation to the mean strain.

Suppose now that the dimensions of the body are large in comparison with the typical
dimension of the microstructure. If the composite has no long-range order, the term (prs −
prps) will tend to zero, typically exponentially, as |x − x′| becomes large, relative to the
microscale. This means, essentially, that the operator {Γ(prs − prps)} is sensitive only to
values of the function upon which it acts, within a small neighbourhood of the point x.
Therefore, except in a boundary layer close to ∂Ω, the effect of the operator is dominated
by its singularity at x′ = x. This means that Γ can be approximated by its infinite-body
form, for which it is known exactly: see equation (6.26).

Suppose further that the material from which the specimen has been produced is “sta-
tistically uniform”, so that pr = cr, constant, and prs is a function of x − x′ only. Except
in a boundary layer, the ensemble mean of ε will coincide with its spatial mean, ε, which
is constant, also equal to ε0. Equations (7.25) become translation-invariant, and hence will
give τ r = constant, where the constant values satisfy the algebraic equations

cr(C
r − C0)−1τ r +

n
∑

s=1

Arsτ
s = crε, (7.32)

with

Ars =
∫

Γ(x − x′)(prs − prps)(x − x′) dx′ ≡
∫

Γ(x)(prs − prps)(x) dx. (7.33)
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Isotropic statistics

The constant tensors can be made more explicit in the case that the two-point probabilities
prs are isotropic, and so functions only of r = |x|. Employing the representation (6.26) shows
the need to evaluate the integral

J(p) :=
∫

δ(ξ.x − p)ψrs(r) dx (7.34)

and then to calculate J ′′(0). Here, the notation

ψrs := prs − prps

has been introduced.
Notice now that J(p) requires the integration of ψrs over the plane ξ.x = p. Thus,

employing cylindrical polar coordinates (ρ, θ, z), with the z-axis aligned with x,

J(p) =
∫ 2π

0
dθ

∫ ∞

0
ρ dρψrs(

√

ρ2 + p2). (7.35)

Integrating with respect to θ and transforming the variable ρ to r =
√

ρ2 + p2 gives

J(p) = 2π
∫ ∞

p
rdr ψrs(r). (7.36)

Hence,
J ′′(p) = −2π(pψ′

rs(p) + ψrs(p)), (7.37)

so

J ′′(0) = −2πψrs(0) = −2π(prs(0) − crcs) ≡ −2πcr(δrs − cs) (no sum on r). (7.38)

The value of prs(0) has to be cr if r = s or 0 otherwise, because only one material can occupy
a single point.

It follows that
Ars = P cr(δrs − cs) (no sum on r), (7.39)

where the tensor P is given by (6.33). Equations (7.25) now reduce to

(Cr − C0)−1τ r + P (τ r − 〈τ 〉) = ε. (7.40)

These equations can be solved, as follows. First,

τ r = [(Cr − C0)−1 + P ]−1[ε + P 〈τ 〉].
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Therefore, by averaging,

〈τ 〉 =
〈

[(C − C0)−1 + P ]−1
〉

[ε + P 〈τ 〉].
This equation can be solved for 〈τ 〉, to give

〈τ 〉 =
〈

[I + (C − C0)P ]−1
〉−1 〈

[(C − C0)−1 + P ]−1
〉

ε. (7.41)

It is possible to continue, to obtain each τ r, but this is not necessary for evaluation of the
bound. Substituting into (7.30), specialised to the present case, gives the result

1

2
εCeffε ≥ (≤) 1

2
εCHSε, (7.42)

where

CHS := C0 +
〈

[I + (C − C0)P ]−1
〉−1 〈

[(C − C0)−1 + P ]−1
〉

≡
〈

[I + (C − C0)P ]−1
〉−1 〈

[I + (C − C0)P ]−1C
〉

. (7.43)

The result may be summarised concisely as follows:

(Ceff − CHS) ≥ (≤) 0, for all C0 such that (Cr − C0) ≥ (≤) 0 for all r, (7.44)

the inequalities here implying order relations in the sense of the associated quadratic form.

Isotropic phases

If the elastic constant tensors are also isotropic, the above result can be made completely
explicit, by employing the expression (6.47) in conjunction with (6.48). Noting, too, that
an isotropic elastic constant tensor C = (3κ, 2µ) is positive-definite if and only if κ > 0 and
µ > 0, the result is

κeff ≥ (≤) κHS, µeff ≥ (≤) µHS (7.45)

whenever κr ≥ (≤) κ0 and µr ≥ (≤) µ0 for all r, where

κHS =

{

∑

r

cr
(3κ0 + 4µ0)

(3κr + 4µ0)

}−1
∑

s

cs
(3κ0 + 4µ0)κs

(3κs + 4µ0)
,

µHS =

{

∑

r

cr
5µ0(3κ0 + 4µ0)

6µr(κ0 + 2µ0) + µ0(9κ0 + 8µ0)

}−1

∑

s

cs
5µ0(3κ0 + 4µ0)µs

6µs(κ0 + 2µ0) + µ0(9κ0 + 8µ0)
. (7.46)

It should be noted that these formulae are identical to (4.26), which were developed as an
ad hoc approximation!
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7.5 More general two-point statistics

Ellipsoidal statistics

The general formulae (7.43) survive unchanged, if all of the two-point probabilities are func-
tions of x in the combination ρ = (xT (AT A)−1x)1/2; this could be achieved, for example,
if a composite with intially isotropic statistics were subjected to an affine transformation
x → A−1x. The only difference is that the tensor P is given by (6.38) instead of (6.47).

A general two-phase composite

If the composite has only two phases, the identity χ1 + χ2 = 1 induces the relations

p1(x) + p2(x) = 1,

p11(x,x′) + p21(x,x′) = p1(x
′), p11(x,x′) + p12(x,x′) = p1(x),

p12(x,x′) + p22(x,x′) = p2(x
′), p21(x,x′) + p22(x,x′) = p2(x).

It follows, when the composite is statistically uniform, that

ψ11 = ψ22 = −ψ12 = −ψ21 = c1c2h, (7.47)

where h is an even function of x−x′, with h(0) = 1. Also, if the composite has no long-range
order, h → 0 as |x − x′| → ∞. Hence,

A11 = A22 = −A12 = −A21 = c1c2P , (7.48)

where now
P =

∫

Γ(x)h(x) dx. (7.49)

The interesting aspect of these results is that they give Ars in exactly the form (7.39). The
reasoning follows through unchanged, to give the Hashin–Shtrikman bounds (7.43), now for
any two-point statistics.

7.6 A general formula for a laminate

The construction in Section 2 showed that, in a laminate subjected to uniform mean strain
ε0 = ε, the fields were uniform in each phase. Hence, relative to any uniform comparison
medium, the polarisations τ r will be exactly constant, and the Hashin–Shtrikman variational
approximation will correspondingly lead to the exact effective tensor Ceff for the laminate.
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In fact, since the fields vary only in the direction n, equation (6.4) reduces to the form

K(n)u′′(s) + nτ ′(s) + f(s) = 0, (7.50)

where s = n.x. The corresponding Green’s function satisfies

K(n)G′′(s) + Iδ(s) = 0, (7.51)

while the operator Γ has kernel

Γ(s) = n ⊗ [K(n)]−1 ⊗ n
∣

∣

∣

symmetrised
δ(s) ≡ Γ̃(n)δ(s). (7.52)

The integral equation (7.25) therefore reduces to the algebraic equation

(C − C0)−1τ + Γ̃(n)(τ − 〈τ 〉) = ε, (7.53)

which is identical to (7.40), with Γ̃(n) now written in place of P . It follows that Ceff for
a laminate is given exactly by (7.43), with P = Γ̃(n). That this formula is consistent with
(2.30) can be confirmed by specialising to a two-phase laminate, and identifying C0 with
C1.

7.7 A remark on optimality

Consider the (generalised) Hashin–Shtrikman bounds, for a general two-phase medium, so
that the tensor P is given by (7.49). Use of the representation (6.27) generates the expression

P =
∫

|ξ|=1
Γ̃(ξ)ĥ(ξ) dS, (7.54)

where

ĥ(ξ) :=
−1

8π2

∫

δ′′(ξ.x)h(x) dx =
−1

8π2

∂2

∂p2

∫

δ(ξ.x − p)h(x) dx

∣

∣

∣

∣

∣

(p=0)

. (7.55)

The function ĥ(ξ) defines a measure on the surface of the unit sphere. Its total mass, M
say, is obtained by integrating it over the unit sphere. In view of the result (6.21),

M =
∫

δ(x)h(x) dx = h(0) = 1. (7.56)

Thus, ĥ(ξ) defines an H-measure, of total mass 1.

50



Now suppose that the two phases are well-ordered, in the sense that C1 − C2 defines a
quadratic form which is definite – say positive-definite, without loss. Choosing C0 = C1

in the generalised Hashin–Shtrikman bound therefore generates an upper bound which, by
simple algebra, can be placed in the form

(CHS − C1)−1 = (c2)
−1(C2 − C1)−1 + (c2)

−1c1P . (7.57)

Section 2 indicated the construction of a hierarchical laminate whose effective elastic constant
tensor would approach CHS arbitrarily closely. The Hashin–Shrikman bound in this case
is therefore optimal. Interchanging materials 1 and 2 shows that the lower bound is also
optimal.

7.8 A remark on the self-consistent approximation

The Hashin–Shtrikman approximation yields a bound for the energy if C0 is suitably re-
stricted; when C0 is not so restricted, it still provides a stationary approximation for the
energy. In this latter context, one possible choice for the comparison medium is to take C0

equal to the Ceff that it predicts. This is an approximation of “self-consistent” type.
In the case of a composite with isotropic (or, more generally, ellipsoidal) two-point statis-

tics, this self-consistent prescription gives Ceff = C0, where

C0 =
〈

[I + (C − C0)P 0]−1
〉−1 〈

[I + (C − C0)P 0]−1C
〉

. (7.58)

The superscript 0 has been placed on P to emphasise that it is calculated from C0. Equation
(7.58) is well suited to solution by iteration. Its content is that the energy that is predicted
in the composite is equal to the energy that the homogeneous comparison medium would
have, when subjected to the same mean strain ε.

An equivalent form is

〈

[I + (C − C0)P 0]−1
〉−1 〈

[(C − C0)−1 + P 0]−1
〉

= 0, (7.59)

and hence
〈

[(C − C0)−1 + P 0]−1
〉

= 0. (7.60)

These equations state that the comparison medium is chosen so that the mean polarisation
is zero.

Exactly the same formulae apply to a general two-phase composite, with P 0 suitably
defined.
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The formula (7.60) can be manipulated to give

〈

[I + (C − C0)P 0]−1
〉

= I. (7.61)

Thus, also,
C0 =

〈

[I + (C − C0)P 0]−1C
〉

, (7.62)

and this can be expressed in the form

C0 = Cn +
n−1
∑

r=1

cr[I + (Cr − C0)P 0]−1(Cr − Cn). (7.63)

This is in precise agreement with the self-consistent approximation of subsection 4.5, which
was derived from the solution of an inclusion problem for a matrix containing spheres. The
formula thus has a rational foundation much more generally.
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8 Nonlinear Response of Composites

This section presents just a brief outline of work on composites whose constitutive response
is nonlinear. Almost all of this is of very recent origin, and the subject remains under active
development. There are two main strands. One is the development of rigorous bounds,
generalising Section 7. The other is the exploitation of results, such as those of Section 7,
for linear composites, now employed as “comparison media” for the nonlinear composites
of present concern. The theory is most advanced for composites whose behaviour can be
described via a convex potential function W (ε) (as in (1.14)). Path-dependent response,
as realised by models of plasticity, requires incremental treatment. Each increment can be
analysed by the methods given in these notes. However, the state from which any given
increment commences is known only to some level of approximation, and the theory conse-
quently suffers some loss of precision. An extended discussion is beyond the scope of these
notes.

8.1 Elementary bounds

Suppose that the constitutive response of the composite can be described by equation (1.14),
except that the potential W depends on position x:

σ = W ′(ε,x), or σij =
∂W (ε,x)

∂εij

, (8.1)

where

W (ε,x) =
n

∑

r=1

W r(ε)χr(x). (8.2)

The potential W r(ε) associated with phase r is assumed convex, for each r. In the context
of small-deformation but physically-nonlinear elasticity (or the deformation theory of plas-
ticity), ε is the strain, which is derived from displacement u. However, (8.1) also models
nonlinear creep behaviour, if ε is interpreted as the strain-rate associated with velocity field
u. The mathematics is the same in either case. The following discussion will be phrased in
the context of physically-nonlinear elasticity.

The classical energy principles given in subsection 3.2 generalise immediately to the
response defined by (8.1).
Minimum Energy Principle: if the body which occupies a domain Ω is subjected to body-
force f per unit volume, and a part Su of its surface is subjected to prescribed displacements
u0 while the complementary part St is subjected to prescribed tractions t0, the equilibrium
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displacement minimises the energy functional

F(u) :=
∫

Ω
(W (ε) − fiui) dx −

∫

St

t0i ui dS, (8.3)

amongst displacement fields which take the prescribed values over Su.
The complementary energy density is defined as

W ∗(σ,x) = sup
ε
{σε − W (ε,x)}

≡ σε − W (ε,x); σ = W ′(ε,x), ε = W ∗′(σ,x). (8.4)

Complementary energy principle: For the boundary value problem described above, the
actual stress field minimises the functional

G(σ) :=
∫

Ω
W ∗(σ,x) dx −

∫

Su

σijnju
0
i dS, (8.5)

amongst stress fields that satisfy the equations of equilibrium σij,j + fi = 0 in Ω, and the
given traction conditions on St.
(a) Linear displacement boundary condition. The minimum energy principle takes
the form (3.16), there being no body force. Substituting the trial field ε′ = ε gives the upper
bound

W eff(ε) ≤ W (ε) ≡
∫

Ω
W (ε,x) dx ≡

n
∑

r=1

crW
r(ε). (8.6)

In the nonlinear context, this is usually called the Taylor bound. Here, as in subsection 3.3,
units are chosen so that the domain Ω has unit volume.

Substituting the constant stress σ as a trial field in the complementary energy principle
gives

W ∗ eff(σ) ≤ W ∗(σ) ≡
n

∑

r=1

crW
r∗(σ). (8.7)

Hence,9

W eff(ε) = sup
σ

{ε σ − W ∗ eff(σ)} ≥ sup
σ

{ε σ − W
∗
(σ)} =

{

W ∗
}∗

(ε). (8.8)

This is usually called the Sachs bound.

9This manipulation relies on the fact that W ∗ eff is the dual of W eff , which is a convex
function, and so equal to (W ∗ eff)∗. Proofs of these claims are omitted in this brief outline.
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In summary, therefore,

{

W ∗
}∗

(ε) ≤ W eff(ε) ≤ W (ε). (8.9)

(b) Uniform traction boundary condition. Similar arguments produce the bounds

{

W
}∗

(σ) ≤ W ∗ eff(σ) ≤ W ∗(σ). (8.10)

They carry exactly the same information as the bounds (8.9).

8.2 Hashin–Shtrikman formalism

The use of a comparison medium, with potential W 0(ε), was introduced in Section 6 and
developed further in Section 7. In the nonlinear context, the stress is represented in the form

σ = W ′(ε) = W 0′(ε) + τ . (8.11)

The potential W depends on x, as in (8.2), but this is suppressed for conciseness. The
potential W 0 may also depend on x, and does not in the most general case need to be a
quadratic function. The reasoning at the start of subsection 7.1 applies, and the inequalities
(7.7) and (7.10) apply at this level of generality.

Now one natural possibility is to take the potential W 0 to be quadratic:

W 0(ε) = 1

2
εC0ε, (8.12)

(where C0 could still depend on x). Considering first the lower bound (7.7), it is not
necessary for W r −W 0 to be convex for each r but it is necessary that each W r should grow
at least quadratically as ‖ε‖ → ∞, since otherwise (W −W 0)∗ will be infinite and the lower
bound will be −∞: true but useless! The opposite statement applies to the upper bound
(7.10): it is necessary, if (W −W 0)∗ is to be finite, that each W r should grow no faster than
quadratically as ‖ε‖ → ∞. Thus, except in very special cases, if the composite is nonlinear,
it is impossible for the technology so far developed to produce more than one bound: either
an upper bound, or a lower bound, but not both. And if the composite were such that the
potential of some phase grew faster than quadratically while the potential of another grew
slower than quadratically, no bound would be obtained at all. The answer to finding the
missing bound(s) has to be to introduce a nonlinear comparison medium. Some research has
been done on this topic but it is mathematically too advanced to be described here; it is also
rather limited in its practical application.
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For the sake of this outline, suppose that each potential of the composite grows faster
than quadratically, The lower bound formula (7.7) then gives a non-trivial result.

Consider first the case that C0 is uniform, and adopt the form (7.22) for τ :

τ =
n

∑

r=1

τ rχr.

The displacement field associated with τ is calculated exactly as in subsection 7.1, and it
leads to the bound (7.12). This is now optimised with respect to the τ r by requiring that

pr(W
r − W 0)∗′(τ r) +

n
∑

s=1

{Γ(prs − prps)}τ s = 〈ε〉, (8.13)

which is the natural extension of equation (7.31) to nonlinear behaviour10. The very first
bounds which improved on the elementary bounds (8.9) were obtained by precisely this
method, around 1985.

It was recognised, later, that results for linear composites could be exploited directly
in the nonlinear setting, by taking C0 itself to correspond to a composite, with the same
microgeometry as the given one. Thus,

C0(x) =
n

∑

r=1

Ĉrχr(x). (8.14)

The intention is now to select the constants Ĉr so that the field in the comparison linear
composite mimics as closely as possible the field in the actual nonlinear composite. The
mathematics that achieves this is very simple! First, specialising the inequality (7.7) to
linear displacement boundary conditions and no body-force,

W eff(ε) ≥ inf
ε

∫

Ω
{τε + W 0(ε) − (W − W 0)∗(τ )} dx, (8.15)

where the infimum is taken over strain fields whose associated displacements satisfy the
linear displacement boundary condition. It usually suffices to choose τ = 0. Then,

(W − W 0)∗(0) = sup
ε
{−(W − W 0)(ε)} = −min(W − W 0).

10It could happen that (W r −W 0)∗ has corners and so is not differentable everywhere.
The more general procedure is to replace (W r −W 0)∗′(τ r) by a subgradient at τ r, εr say.
The relevant theory is not presented here.
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Also,

inf
ε

∫

Ω
W 0(ε) dx = W 0,eff(ε),

the effective energy density of the linear comparison composite. Thus,

W eff(ε) ≥ W 0,eff(ε) +
n

∑

r=1

crmin(W r − Ŵ r), (8.16)

where Ŵ r(ε) = 1

2
εĈrε. A bound is obtained by replacing W 0,eff(ε) by any bound already

known from linear technology. It is optimised by choosing the best elastic constant tensors
Ĉr. Remarkably, when this simple prescription is used in conjunction with the linear Hashin–
Shtrikman bound, it gives the same result as the prescription based on solving equations
(8.13), except in certain pathological cases, when it does not perform as well.

Some insight into the structure of this prescription follows from observing that min(W r−
Ŵ r) is achieved, at εr say, when

σr := W r′(εr) = Ĉrεr.

The stress and strain in phase r of the composite, insofar as they are represented by σr and
εr, are also realised in the comparison linear composite. However, the prescription leads to
a bound, independently of any physical interpretation.

An alternative direct derivation of the formula (8.16) is as follows.

W eff(τ ) = inf
ε

∫

Ω
{W 0 + (W − W 0)}dx

≥ inf
ε

∫

Ω
W 0 dx + inf

ε

∫

Ω
(W − W 0) dx

≥ inf
ε

∫

Ω
W 0 dx +

∫

Ω
min(W − W 0) dx

= W 0,eff(ε) +
n

∑

r=1

crmin(W r − Ŵ r). (8.17)

8.3 Other approximations

Approximations, as opposed to bounds, may follow from a variational structure or may be
developed on the basis of some insight, either mathematical or physical. An advantage to
approximations derived variationally is that an error of order ε, say, in the trial field will
generate an error of order ε2 (or perhaps smaller) in the energy. Variational methods are
not available for path-dependent problems. One favourable course of action is to attempt
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to develop prescriptions of general applicability directly, that have a variational status when
they are applied to problems which have that structure.

One successful attempt in this direction employed a comparison linear composite, with
pre-stress. Thus, it had a potential which, in region r, took the form

Ŵ r(ε) = 1

2
εĈrε + τ rε + Ŵ r(0). (8.18)

The idea was to select the constants Ŵ r(0), Ĉr and τ r so that, in the vicinity of the strain
level εr, the actual potential W r and the quadratic potential Ŵ r would agree to second
order. That is,

1

2
εrĈrεr + τ rεr + Ŵ r(0) = W r(εr), Ĉrεr + τ r = W r′(εr) and Ĉr = W r′′(εr). (8.19)

The strain εr is intended to be the mean strain achieved in region r of the actual nonlinear
composite. This is not known, so instead it is taken as the mean strain over region r that
is predicted by solving the problem for the linear composite. This scheme was originally
proposed intuitively, essentially as just described, but then it was demonstrated to follow
from a variational structure like that of the preceding subsection, except that (W − W 0)∗

was taken to be the appropriate branch of the classical Legendre transform rather than
the supremum, or convex dual. This allowed the actual material response to be matched
as closely as possible, but at the expense of loss of an inequality: the resulting variational
principle is a stationary principle only. The second of conditions (8.19) corresponds to the
condition of stationarity; the third condition makes the stationary point second-order, rather
than just first-order, and the approximation for the energy should be correspondingly more
accurate.

This scheme is quite closely related to a method called “the affine method”, which can be
applied even when there is no potential structure. The affine method starts from the same
type of comparison medium, but the constants are fixed by direct matching of stresses, since
there is no potential.
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