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Abstract

Universal (controllable) deformations of an elastic solid are those deformations that can be maintained
for all possible strain-energy density functions and suitable boundary tractions. Universal deformations
have played a central role in nonlinear elasticity and anelasticity. However, their classification has
been mostly established for homogeneous isotropic solids following the seminal works of Ericksen. In
this paper, we extend Ericksen’s analysis of universal deformations to inhomogeneous compressible and
incompressible isotropic solids. We show that a necessary condition for the known universal deformations
of homogeneous isotropic solids to be universal for inhomogeneous solids is that inhomogeneities respect
the symmetries of the deformations. Symmetries of a deformation are encoded in the symmetries of its
pulled-back metric (the right Cauchy-Green strain). We show that this necessary condition is sufficient
as well for all the known families of universal deformations except for Family 5.
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1 Introduction

For a given class of solids, it turns out that one cannot deform an elastic body to an arbitrary shape by
only applying boundary tractions; most likely body forces are needed to maintain the desired deformation.
Those deformations that can be maintained by only applying boundary tractions are called universal or
controllable [1, 2]. The set of universal deformations explicitly depends on the class of materials. In the
case of (unconstrained) compressible isotropic elastic solids, Ericksen [3] proved that the only universal
deformations are homogeneous deformations. In the case of incompressible isotropic solids, motivated by
the earlier works of Rivlin [4, 5, 6], Ericksen [7] found four families of universal deformations. In his
analysis he conjectured that a deformation whose principal invariants are constant must be homogeneous.
This conjecture turned out to be incorrect [8]. A fifth family of universal inhomogeneous deformations with
constant principal invariants were discovered independently by Singh and Pipkin [9] and Klingbeil and Shield
[10]. The six known families of universal deformations are:
• Family 0: Homogeneous deformations
• Family 1: Bending, stretching, and shearing of a rectangular block
• Family 2: Straightening, stretching, and shearing of a sector of a cylindrical shell
• Family 3: Inflation, bending, torsion, extension, and shearing of a sector of an annular wedge
• Family 4: Inflation/inversion of a sector of a spherical shell
• Family 5: Inflation, bending, extension, and azimuthal shearing of an annular wedge

∗To appear in the Proceedings of the Royal Society A.
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For incompressible isotropic solids, Ericksen’s problem has not been completely solved to this date; the case
of deformations with constant principal invariants is still open. However, the conjecture is that there is no
other family of inhomogeneous isochoric universal deformations with constant principal invariants other than
Family 5.

Ericksen’s work has recently been generalized to anelasticity. In the case of compressible anelastic solids
universal deformations are covariantly homogeneous [11]. In the case of incompressible isotropic solids with
finite eigenstrains, Goodbrake, et al. [12] suggested that universal eigenstrain distributions (that are modeled
by a material Riemannian metric) should follow the same symmetry as the deformations. In particular, they
showed that all the six known families of universal deformations are invariant under the action of certain Lie
subgroups of the special Euclidean group.

Yavari and Goriely [13] extended Ericksen’s analysis to compressible and incompressible transversely
isotropic, orthotropic, and monoclinic solids. They showed that the universality constraints of incompress-
ible anisotropic solids include those of incompressible isotropic solids. For each known family of universal
deformations for isotropic solids they obtained the corresponding universal material preferred directions.
The analogue of universal deformations in linear elasticity are universal displacements [14, 15, 16]. It turns
out that universal displacements explicitly depend on the symmetry class of the material. More specifically,
the smaller the material symmetry group is the smaller the corresponding space of universal displacements
is [16].

Golgoon and Yavari [17] observed that radial deformations of spherical shells are universal even for
radially inhomogeneous transversely isotropic spherical shells with radial material preferred direction. This
means that, in particular, Family 4 is universal for radially-inhomogeneous incompressible isotropic solids.
To this date the study of universal deformations has been restricted to homogeneous solids. One may ask
if Family 4 can admit other forms of material inhomogeneity. The more general question is: What are the
universal deformations for inhomogeneous compressible and incompressible isotropic solids? And what forms
of inhomogeneity can accommodate universal deformations? These questions will be answered in this paper.

We will consider both inhomogeneous compressible and incompressible isotropic solids. We find the
universality constraints that are imposed by the equilibrium equations in the absence of body forces, and the
arbitrariness of the inhomogeneous energy function. It will be seen that the set of universality constraints
for each material class includes those of the corresponding homogenous solids. For compressible solids
the universality constraints force the universal deformations to be homogeneous. The extra universality
constraints force the energy function to be homogeneous. This implies that inhomogeneous compressible
isotropic solids do not admit universal deformations. In the case of incompressible solids for each of the six
known families of universal deformations we find the corresponding universal material inhomogeneity.

This paper is organized as follows. In §2 we briefly review nonlinear elasticity. In §3, we consider
inhomogeneous compressible isotropic solids. In §4 the universal deformations and universal inhomogeneities
of incompressible isotropic solids are analyzed for each of the known six families. Conclusions are given in
§5.

2 Nonlinear Elasticity

Kinematics. In nonlinear elasticity a body B is identified with a flat Riemannian manifold (B,G), which
is a submanifold of the Euclidean 3-space (S,g) [18]. G is the material metric, which is induced from the
ambient space metric g. A deformation is a mapping ϕ : B → S. The deformation gradient is the tangent
map (or derivative) of ϕ and is denoted by F = Tϕ. The deformation gradient at each material point X ∈ B

is a linear map F(X) : TXB → Tϕ(X)S. With respect to local (curvilinear) coordinates {xa} and {XA} on
S and B, respectively, the deformation gradient has the following components

F aA(X) =
∂ϕa

∂XA
(X) . (2.1)

The transpose of deformation gradient is defined as

FT : TxS → TXB, 〈〈FV,v〉〉g = 〈〈V,FTv〉〉G, ∀V ∈ TXB, v ∈ TxS , (2.2)
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which in components reads
(FT(X))Aa = gab(x)F bB(X)GAB(X) . (2.3)

Another measure of strain is the right Cauchy-Green deformation tensor (or strain), which is defined as
C(X) = F(X)TF(X) : TXB → TXB and has components CAB = (FT)AaF

a
B . Note that CAB = (gab ◦

ϕ)F aAF
b
B , which implies that the right Cauchy-Green strain is the pulled-back metric, i.e., C[ = ϕ∗(g),

where [ is the flat operator induced by the metric g, and is used for lowering indices. The left Cauchy-Green
strain is defined as B] = ϕ∗(g]), and has components BAB = (F−1)Aa(F−1)Bb g

ab. The spatial analogues
of C[ and B] are denoted by c[ and b], respectively, and are defined as

c[ = ϕ∗(G), cab =
(
F−1

)A
a

(
F−1

)B
b GAB ,

b] = ϕ∗(G
]), bab = F aAF

b
BG

AB .
(2.4)

b] is called the Finger deformation tensor. The tensors C and b have the same principal invariants I1, I2,
and I3, which are defined as [19, 18]

I1 = trb = baa = bab gab,

I2 =
1

2

(
I2
1 − trb2

)
=

1

2

(
I2
1 − bab bba

)
=

1

2

(
I2
1 − babbcd gac gbd

)
,

I3 = detb.

(2.5)

Balance of linear and angular momenta. The balance of linear and angular momenta in the absence
of inertial effects in material form read

DivP + ρ0B = 0 , PFT = FPT , (2.6)

where B is body force per unit undeformed volume, ρ0 is the material mass density, and P is the first
Piola-Kirchhoff stress. P is related to the Cauchy stress σ as Jσab = P aAF bA, where J is the Jacobian of
deformation that relates the material (dV ) and spatial (dv) Riemannian volume forms as dv = JdV , and is
defined as

J =

√
detg

detG
detF . (2.7)

In terms of the Cauchy stress σ the balance of linear and angular momenta read

divσ + ρb = 0 , σT = σ , (2.8)

where b = B ◦ϕ−1
t , and ρ = J−1ρ0 is the spatial mass density. In components, balance of linear momentum

reads σab|b + ρba = 0, where

σab|b = σab,b + γabcσ
cb + γbbcσ

ac . (2.9)

γcab are the Christoffel symbols of the ambient space metric g, and are defined as

γabc =
1

2
gak (gkb,c + gkc,b − gbc,k) . (2.10)

Constitutive equations. In the case of an inhomogeneous isotropic hyperelastic solid the energy function
(per unit undeformed volume) is written as W = Ŵ (X,C[,G). For an isotropic solid, the energy function
can be rewritten as W = W (X, I1, I2, I3), where I1, I2, and I3 are the principal invariants of the right Cauchy-
Green deformation tensor that are given in (2.5). The Cauchy stress has the following representation [20]

σab =
2√
I3

[
W1b

ab + (I2W2 + I3W3)gab − I3W2 c
ab
]
, (2.11)

where

Wi = Wi(X, I1, I2, I3) =
∂W (X, I1, I2, I3)

∂Ii
, i = 1, 2, 3 , (2.12)
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and cab = (F−1)Mm(F−1)NnGMNg
amgbn. For incompressible isotropic solids (I3 = J2 = 1), the Cauchy

stress has the following representation [20]

σab = −pgab + 2W1b
ab − 2W2 c

ab , (2.13)

where p is a Lagrange multiplier associated with the incompressibility constraint J =
√
I3 = 1.

3 Inhomogeneous Compressible Isotropic Solids

For an inhomogeneous compressible isotropic solid the Cauchy stress representation is given in (2.11). The
ambient space is Euclidean, and hence one can use a single Cartesian coordinate chart {xa}, so that gab = δab.
Thus

σab =
2√
I3

[
W1b

ab + (I2W2 + I3W3)δab − I3W2 c
ab
]
. (3.1)

In the absence of body forces, the equilibrium equations in Cartesian coordinates read σab,b = 0. Note that

W1,b = (F−1)Ab
∂2W

∂XA∂I1
+
∂2W

∂I2
1

I1,b +
∂2W

∂I1∂I2
I2,b +

∂2W

∂I1∂I3
I3,b,

W2,b = (F−1)Ab
∂2W

∂XA∂I2
+

∂2W

∂I1∂I2
I1,b +

∂2W

∂I2
2

I2,b +
∂2W

∂I2∂I3
I3,b,

W3,b = (F−1)Ab
∂2W

∂XA∂I3
+

∂2W

∂I1∂I3
I1,b +

∂2W

∂I2∂I3
I2,b +

∂2W

∂I2
3

I3,b.

(3.2)

These can be written more compactly as

W1,b = (F−1)AbW1,A +W11I1,b +W12I2,b +W13I3,b ,

W2,b = (F−1)AbW2,A +W12I1,b +W22I2,b +W23I3,b ,

W3,b = (F−1)AbW3,A +W13I1,b +W23I2,b +W33I3,b ,

(3.3)

where

Wi,A =
∂Wi

∂XA
, Wij =

∂2W

∂Ii∂Ij
, i ≤ j . (3.4)

The first term on the right-hand side of each equation in (3.3) vanishes for homogeneous solids [3, 11].
Substituting (3.3) into the equilibrium equations, one obtains[

−I3,b
2I3

bab + bab,b

]
W1 +

[
−I3,b

2I3

(
I2δ

ab − I3cab
)

+ I2,bδ
ab − I3,bcab − I3cab,b

]
W2

+
1

2
I3,bδ

abW3 + babI1,bW11 + I2,b
(
I2δ

ab − I3cab
)
W22 + I3I3,bδ

abW33

+
[
I1,b

(
I2δ

ab − I3cab
)

+ I2,bb
ab
]
W12 +

(
babI3,b + δabI1,bI3

)
W13

+
[
I3,b

(
I2δ

ab − I3cab
)

+ I3I2,bδ
ab
]
W23

+ (F−1)Ab b
abW1,A + (F−1)Ab

(
I2δ

ab − I3cab
)
W2,A + (F−1)Ab I3δ

abW3,A = 0.

(3.5)

The above identity must hold for any choice of W = W (X, I1, I2, I3). This means that the partial derivatives
of W can vary independently. Thus, in particular, the coefficients of the partial derivatives W1, W2, W3, W11,
W22, W33, W12, W23, and W31 must vanish independently, and hence one obtains Ericksen’s universality
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constraints for homogeneous compressible isotropic solids [3, 11]:

−I3,b
2I3

bab + bab,b = 0, (3.6)

−I3,b
2I3

(
I2δ

ab − I3cab
)

+ I2,bδ
ab − I3,bcab − I3cab,b = 0, (3.7)

I3,bδ
ab = 0, (3.8)

babI1,b = 0, (3.9)

I2,b
(
I2δ

ab − I3cab
)

= 0, (3.10)

I3I3,bδ
ab = 0, (3.11)

I1,b
(
I2δ

ab − I3cab
)

+ I2,bb
ab = 0, (3.12)

babI3,b + δabI1,bI3 = 0, (3.13)

I3,b
(
I2δ

ab − I3cab
)

+ I3I2,bδ
ab = 0. (3.14)

In addition to the above constraints, for inhomogeneous solids from (3.5) one has the following extra uni-
versality constraints

bab (F−1)AbW1,A = 0,(
I2δ

ab − I3cab
)

(F−1)AbW2,A = 0,

I3δ
ab (F−1)AbW3,A = 0.

(3.15)

From the constraints (3.6)-(3.14) one obtains Erisksen’s conditions:

I1, I2, I3 are constants, and bab,b = cab,b = 0 . (3.16)

Using Ericksen’s conditions and the compatibility equations one can show that the universal deformations
must be homogeneous [3]. Knowing that the tensors bab, I2δ

ab− I3cab, and I3δ
ab are invertible,1 from (3.15)

one concludes that
(F−1)AbW1,A = (F−1)AbW2,A = (F−1)AbW3,A = 0 , (3.18)

which in turn implies that
W1,A = W2,A = W3,A = 0 . (3.19)

Note that

W1,A =
∂

∂XA

∂W

∂I1
=

∂

∂I1

∂W

∂XA
= 0 . (3.20)

Similarly, using W2,A = W3,A = 0, one obtains

∂

∂I2

∂W

∂XA
=

∂

∂I3

∂W

∂XA
= 0 . (3.21)

1When expressed in the principal directions of cab one has

[I2δ
ab − I3cab] = (λ21λ

2
2 + λ22λ

2
3 + λ23λ

2
1)


1 0 0

0 1 0

0 0 1

− λ21λ22λ23


1
λ2
1

0 0

0 1
λ2
2

0

0 0 1
λ2
3



=


λ21(λ

2
2 + λ23) 0 0

0 λ22(λ
2
1 + λ23) 0

0 0 λ23(λ
2
1 + λ22)

 ,

(3.17)

where λ21, λ
2
2, and λ

2
3 are the eigenvalues of b]. Clearly, [I2δab − I3cab] is invertible.
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This means that
∂W

∂X1
= f1(X) ,

∂W

∂X2
= f2(X) ,

∂W

∂X3
= f3(X) , (3.22)

for some scalar functions fA. In particular, note that ∂f1
∂X2 = ∂f2

∂X1 , and ∂f1
∂X3 = ∂f3

∂X1 . From (3.22)1, one
concludes that

W (X, I1, I2, I3) =

∫ X1

X1
0

f1(X1, X2, X3) dX1 + h(X2, X3, I1, I2, I3) , (3.23)

where h is some scalar function and X1
0 is some fixed value of X1. Taking partial derivative with respect to

X2 of both sides one obtains

∂W

∂X2
=

∂

∂X2

∫ X1

X1
0

f1(X1, X2, X3) dX1 +
∂h(X2, X3, I1, I2, I3)

∂X2
,

=

∫ X1

X1
0

∂f1(X1, X2, X3)

∂X2
dX1 +

∂h(X2, X3, I1, I2, I3)

∂X2
,

=

∫ X1

X1
0

∂f2(X1, X2, X3)

∂X1
dX1 +

∂h(X2, X3, I1, I2, I3)

∂X2
,

= f2(X1, X2, X3)− f2(X1
0 , X

2, X3) +
∂h(X2, X3, I1, I2, I3)

∂X2
.

(3.24)

From (3.24) and (3.22)2 one concludes that

∂h(X2, X3, I1, I2, I3)

∂X2
= f2(X1

0 , X
2, X3) . (3.25)

Thus ∫ X2

X2
0

∂h(X2, X3, I1, I2, I3)

∂X2
dX2 =

∫ X2

X2
0

f2(X1
0 , X

2, X3) dX2 , (3.26)

where X2
0 is some fixed value of X2. Hence

h(X2, X3, I1, I2, I3) = h(X2
0 , X

3, I1, I2, I3) +

∫ X2

X2
0

f2(X1
0 , X

2, X3)dX2 . (3.27)

This implies that
h(X2, X3, I1, I2, I3) = H(X3, I1, I2, I3) +K(X2, X3) . (3.28)

Using the above relation in (3.23), one has

W (X, I1, I2, I3) =

∫ X1

X1
0

f1(X1, X2, X3) dX1 +H(X3, I1, I2, I3) +K(X2, X3) . (3.29)

Taking partial derivative with respect to X3 of the above relation one can show that

H(X3, I1, I2, I3) = W̄ (I1, I2, I3) +M(X3) . (3.30)

The above relation and (3.29) imply that W (X, I1, I2, I3) = Ŵ (X) + W̄ (I1, I2, I3). Note that the inhomoge-
neous term Ŵ (X) is mechanically inconsequential. In summary, we have proved the following result.

Proposition 3.1. Inhomogeneous compressible nonlinear isotropic solids do not admit universal deforma-
tions.
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4 Inhomogeneous Incompressible Isotropic Solids

For an incompressible isotropic solid, the equilibrium equations in the absence of body forces read

1

2
p,b g

ab =
[
W1b

ab −W2 c
ab
]
|b , or

1

2
p,a = gam [W1b

mn −W2 c
mn]|n . (4.1)

Hence
1

2
dp =

1

2
p,adx

a = gam [W1b
mn −W2 c

mn]|n dx
a , (4.2)

where d is the exterior derivative. This means that2

ξ = gam [W1b
mn −W2 c

mn]|n dx
a = [W1b

n
a −W2 c

n
a ]|n dx

a , (4.3)

is an exact 1-form. Note that dξ = 0, or equivalently ξa,b = ξb,a, is a necessary condition for ξ to be an
exact form [21]. However, from ξa|b = ξa,b−γcab ξc, one concludes that ξa,b = ξb,a is equivalent to ξa|b = ξb|a.
The latter constraints are more convenient in curvilinear coordinates as the metric of the ambient space is
covariantly constant, i.e., gab|c = 0. One can simplify ξa as

ξa = [W1b
n
a −W2 c

n
a ]|n = W1|n b

n
a −W2|n c

n
a +W1b

n
a |n −W2 c

n
a |n . (4.4)

Note that Wi = Wi(X, I1, I2), i = 1, 2, and hence

W1|n = (F−1)AnW1,A +W11I1,n +W12I2,n ,

W2|n = (F−1)AnW2,A +W12I1,n +W22I2,n .
(4.5)

From (4.4) one can write

ξa|b = (W1|n)|b b
n
a − (W2|n)|b c

n
a +W1|n b

n
a |b −W2|n c

n
a |b +W1|b b

n
a |n −W2|b c

n
a |n +W1b

n
a |nb −W2 c

n
a |nb . (4.6)

Using (4.5) we have

(W1|n)|b = W11 I1|nb +W12 I2|nb +W111 I1,bI1,n +W112 (I2,bI1,n + I1,bI2,n) +W122 I2,bI2,n

+
[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
W1,A +

[
(F−1)An I1,b + (F−1)Ab I1,n

]
W11,A

+
[
(F−1)An I2,b + (F−1)Ab I2,n

]
W12,A +

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
W1,AB ,

(4.7)

and

(W2|n)|b = W12 I1|nb +W22 I2|nb +W112 I1,bI1,n +W122 (I2,bI1,n + I1,bI2,n) +W222 I2,bI2,n

+
[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
W2,A +

[
(F−1)An I2,b + (F−1)Ab I2,n

]
W22,A

+
[
(F−1)An I1,b + (F−1)Ab I1,n

]
W12,A +

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
W2,AB .

(4.8)

2Note that bna = bnmgma, and ban = gambmn, which are equal. Thus, we use the notation bna = bna = ban. Similarly, the
same notation is used for c.
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Therefore

ξa|b =
(
bna |nb

)
W1 −

(
cna |nb

)
W2

+
[
bna |nI1,b + (bnaI1,n)|b

]
W11 −

[
cna |nI2,b + (cnaI2,n)|b

]
W22

+
{
bna |nI2,b + (bnaI2,n)|b −

[
cna |nI1,b + (cnaI1,n)|b

]}
W12

+ (bna I1,nI1,b)W111 − (cna I2,nI2,b)W222

+ [bna (I1,bI2,n + I1,nI2,b)− cnaI1,nI1,b]W112

+ [bnaI2,bI2,n − cna (I1,bI2,n + I1,nI2,b)]W122

+
{

(F−1)An b
n
a |b + (F−1)Ab b

n
a |n + bna

[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]}
W1,A

−
{

(F−1)An c
n
a |b + (F−1)Ab c

n
a |n + cna

[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]}
W2,A

+ bna
[
(F−1)An I1,b + (F−1)Ab I1,n

]
W11,A − cna

[
(F−1)An I2,b + (F−1)Ab I2,n

]
W22,A

+
{
bna
[
(F−1)An I2,b + (F−1)Ab I2,n

]
− cna

[
(F−1)An I1,b + (F−1)Ab I1,n

]}
W12,A

+ bna
[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
W1,AB

− cna
[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
W2,AB .

(4.9)

The first nine terms appear for homogeneous solids as well. As W is an arbitrary function of its ar-
guments, for ξa|b = ξb|a to hold, it is necessary that the coefficients of Wκ, where κ is a multi-index,
κ ∈ {1, 2, 11, 22, 12, 111, 222, 112, 122}, be symmetric. Therefore, the following nine terms must be symmet-
ric [7]:

A1
ab = bna |bn ,

A2
ab = cna |bn ,

A11
ab = bna |n I1,b + (bna I1,n)|b ,

A22
ab = cna |n I2,b + (cna I2,n)|b ,

A12
ab = (bna I2,n)|b + bna |n I2,b −

[
(cna I1,n)|b + cna |n I1,b

]
,

A111
ab = bna I1,nI1,b ,

A222
ab = cna I2,nI2,b ,

A112
ab = bna (I1,bI2,n + I1,nI2,b)− cna I1,nI1,b ,

A122
ab = bna I2,bI2,n − cna (I1,bI2,n + I1,nI2,b) .

(4.10)

It is known that symmetry of the above nine terms, in addition to homogenous deformations, admit five
classes of deformations [7, 9, 10].

For inhomogeneous solids, in addition to Ericksen’s symmetry conditions (4.10), from (4.9) the following
seven groups of terms (for A = 1, 2, 3, and B ≥ A) must be symmetric as well:

C1A
ab = (F−1)An b

n
a |b + (F−1)Ab b

n
a |n + bna

[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
,

C2A
ab = (F−1)An c

n
a |b + (F−1)Ab c

n
a |n + cna

[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
,

C11A
ab = bna

[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C22A
ab = cna

[
(F−1)An I2,b + (F−1)Ab I2,n

]
,

C12A
ab = bna

[
(F−1)An I2,b + (F−1)Ab I2,n

]
− cna

[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C1AB
ab = bna

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
,

C2AB
ab = cna

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
.

(4.11)

The above 27 symmetry constraints restrict the form of the inhomogeneity of the elastic body. For a family
of deformations consistent with (4.10), we call the corresponding inhomogeneities that respect (4.11) the
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universal inhomogeneities. In the sequel, for each of the six known families of universal deformations we will
find the corresponding universal inhomogeneities. More specifically, for a given family, if a term in (4.11)
cannot be symmetric, then the corresponding derivative of W must vanish. This will then restrict the form
of the inhomogeneity, i.e., the explicit dependence of W on XA.

4.1 Family 0: Homogeneous deformations

For homogeneous deformations the deformation mapping has the component form xa(X) = F aAX
A + ca,

where [F aA] is a constant matrix and ca are components of a constant vector. The incompressibility con-
straint in Cartesian coordinates reads det[F aA] = 1. The right Cauchy-Green strain in Cartesian coordinates
has components CAB = F aAF

b
Bδab, which are constants. [bab], and [cab] are constant matrices and I1, and

I2 are constant as well. For isochoric homogeneous deformations the universality constraints (4.10) are triv-
ially satisfied. The first five sets of constraints in (4.11) are trivially satisfied as well, and only the last two
need to be checked, i.e., C1AB

[ab] = C2AB
[ab] = 0, where we use the standard notation (.)[ab] = 1

2 [(.)ab − (.)ba].
Thus

bn[a
[
(F−1)An (F−1)Bb] + (F−1)Bn (F−1)Ab]

]
= 0 ,

cn[a
[
(F−1)An (F−1)Bb] + (F−1)Bn (F−1)Ab]

]
= 0 .

(4.12)

[bab] and [cab] have the same principal directions. With respect to the principal directions of b], F−1 has
the representation

F−1 =


f11 f12 f13

f21 f22 f23

f31 f32 f33

 , [bab] =


λ2

1 0 0

0 λ2
2 0

0 0 λ2
3

 , [cab] =


1
λ2
1

0 0

0 1
λ2
2

0

0 0 1
λ2
3

 , (4.13)

where λ2
1λ

2
2λ

2
3 = 1, and detF−1 = 1. The constraints (4.12)1 for (A,B) = (1, 1) read

f11f12

(
λ2

1 − λ2
2

)
= 0, f12f13

(
λ2

2 − λ2
3

)
= 0, f11f13

(
λ2

3 − λ2
1

)
= 0. (4.14)

Clearly one solution is λ2
1 = λ2

2 = λ2
3 = 1, which corresponds to the identity deformation, which satisfies

all the other constraints. We show that this is the only solution. If not, as all isochoric homogeneous
deformations satisfy the symmetry of all the terms in (4.10) we can assume that the eigenvalues of b] are
distinct. Thus

f11f12 = f12f13 = f11f13 = 0. (4.15)

Similarly, the constraints (4.12)1 for (A,B) = (2, 2) and (A,B) = (3, 3) give

f21f22 = f22f23 = f21f23 = 0 ,

f31f32 = f32f33 = f31f33 = 0 .
(4.16)

It is straightforward to show that (4.15), (4.16), and the constraint detF−1 = 1 imply that f12 = f21 = f13 =
f31 = f23 = f32 = 0. The remaining constraints cannot be satisfied unless λ2

1 = λ2
2 = λ2

3 = 1. Thus, we have
proved the following result.

Proposition 4.1. Homogeneous deformations are not universal for inhomogeneous incompressible nonlinear
isotropic solids.

Remark 4.2. Note that symmetry of a family of deformations ϕ : B → ϕ(B) ⊂ S is encoded in the symmetry
of its pulled-back metric C[ = ϕ∗g. Goodbrake, et al. [12] observed that for homogeneous deformations
C[ is invariant under the action of T (3) ⊂ SE(3)—the group of translations. Proposition 4.1 tells us that
the inhomogeneous energy function must respect the same symmetry, i.e., W (X + a, I1, I2) = W (X, I1, I2),
∀ a ∈ R3. In other words, the energy function must be homogeneous.
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4.2 Family 1: Bending, stretching, and shearing of a rectangular block

This family of deformations, with respect to the Cartesian (X,Y, Z) and cylindrical (r, θ, z) coordinates in
the reference and current configurations, respectively, have the following representation

r(X,Y, Z) =
√
C1(2X + C4) , θ(X,Y, Z) = C2(Y + C5) , z(X,Y, Z) =

Z

C1C2
− C2C3Y + C6 , (4.17)

where the Cartesian coordinate planes are parallel to the faces of the undeformed rectangular block.3

C[, b], and c] have the following representations.

[CAB ] =


C1

2X+C4
0 0

0 C2
2

[
C1(2X + C4) + C2

3

]
−C3

C1

0 −C3

C1

1
C2

1C
2
2

 , (4.18)

[bab] =


C1

C4+2X 0 0

0 C2
2 −C2

2C3

0 −C2
2C3

1
C2

1C
2
2

+ C2
2C

2
3

 , (4.19)

and

[cab] =


C4+2X
C1

0 0

0 C2
1C

2
2C

2
3 + 1

C2
2

C2
1C

2
2C3

0 C2
1C

2
2C3 C2

1C
2
2

 . (4.20)

Note that C[ is independent of Y and Z, i.e., it is invariant under the action of T (2) ⊂ SE(3).
The universality constraint C1A

[ab] = 0, for A = 2, and (a, b) = (1, 2) requires4 C2
1

[
1 + 3C2

2 (C4 + 2X)
]

= 0,
which is not possible. This implies that

∂W1

∂Y
=

∂

∂I1

∂W

∂Y
= 0 . (4.21)

C1A
[ab] = 0, for A = 3, and (a, b) = (1, 2) requires C3

1C2C3

[
1 + C2

2 (C4 + 2X)
]

= 0, which cannot be satisfied.
This implies that

∂W1

∂Z
=

∂

∂I1

∂W

∂Z
= 0 . (4.22)

C2A
[ab] = 0, for A = 2, and (a, b) = (1, 2) requires

(
C4

1C
4
2C

2
3 + C2

1 − C2
2

)√
C1(C4 + 2X) = 0, which is not

possible, and hence
∂W2

∂Y
=

∂

∂I2

∂W

∂Y
= 0 . (4.23)

C2A
[ab] = 0, for A = 3, and (a, b) = (1, 3) requires

(
C4

1C
4
2C

2
3 + C2

1 − 3C2
2

)√
C1(C4 + 2X) = 0, which does not

hold, and thus
∂W2

∂Z
=

∂

∂I2

∂W

∂Z
= 0 . (4.24)

3Note that any connected subset of a rectangular block can undergo these deformations as long as appropriate surface
tractions are applied. This is also the case for subsets of cylindrical shells, spherical shells, and annular wedges for Families 2-5.

4All the symbolic computations in this paper were performed using Mathematica Version 12.3.0.0, Wolfram Research,
Champaign, IL.
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(4.21), (4.22), (4.23), and (4.24) imply that up to a mechanically inconsequential function of (X,Y, Z), the
energy function must have the form W = W (X, I1, I2). For this form of the energy function in (4.11) only
the symmetry of the terms with A = 1, and A = B = 1 needs to be checked. It turns out that those terms
are all symmetric.

Proposition 4.3. For inhomogeneous incompressible nonlinear isotropic solids, Family 1 deformations are
universal for any energy function of the form W = W (X, I1, I2).

Remark 4.4. Note that for Family 1 deformations, C[ is independent of Y and Z, i.e., it is invariant under
the action of the transformations Y → Y +a2, and Z → Z+a3, ∀ a2, a3 ∈ R. We have shown that for Family
1 deformations to be universal for inhomogeneous solids, the energy function must be invariant under the
same group of transformations.

4.3 Family 2: Straightening, stretching, and shearing of a sector of a cylindrical
shell

This family of deformations, with respect to the cylindrical (R,Θ, Z) and Cartesian (x, y, z) coordinates in
the reference and current configurations, respectively, have the following representation

x(R,Θ, Z) =
1

2
C1C

2
2R

2 + C4, y(R,Θ, Z) =
Θ

C1C2
+ C5, z(R,Θ, Z) =

C3

C1C2
Θ +

1

C2
Z + C6 , (4.25)

where the Z-coordinate line is the axis of the cylindrical shell sector. Thus

[CAB ] =


C2

1C
4
2R

2 0 0

0
C2

3+1

C2
1C

2
2

C3

C1C2
2

0 C3

C1C2
2

1
C2

2

 , (4.26)

[bab] =


C2

1C
4
2R

2 0 0

0 1
C2

1C
2
2R

2
C3

C2
1C

2
2R

2

0 C3

C2
1C

2
2R

2
1
C2

2
+

C2
3

C2
1C

2
2R

2

 , (4.27)

and

[cab] =


1

C2
1C

4
2R

2 0 0

0 C2
1C

2
2R

2 + C2
2C

2
3 −C2

2C3

0 −C2
2C3 C2

2

 . (4.28)

Note that C[ is independent of Θ and Z, i.e., it is invariant under the action of SO(2)× T (1) ⊂ SE(3).
The universality constraint C1A

[ab] = 0, for A = 2, and (a, b) = (1, 3) requires C4
1C

6
2 + 1

R4 = 0, which cannot
be satisfied. This implies that

∂W1

∂Θ
=

∂

∂I1

∂W

∂Θ
= 0 . (4.29)

Similarly
C1A

[ab] = 0, for (A, a, b) = (3, 1, 2)⇒ C1C
3
2 = 0,

C2A
[ab] = 0, for (A, a, b) = (2, 1, 2)⇒ C2

1C2 +
1

C2
1C

5
2R

4
= 0,

C2A
[ab] = 0, for (A, a, b) = (3, 1, 3)⇒ 1

C3
1C

5
2R

4
= 0.

(4.30)
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None of the above constraints can be satisfied, and hence

∂W1

∂Z
=

∂

∂I1

∂W

∂Z
= 0 ,

∂W2

∂Θ
=

∂

∂I2

∂W

∂Θ
= 0 ,

∂W2

∂Z
=

∂

∂I2

∂W

∂Z
= 0 . (4.31)

(4.29) and (4.31) imply that up to a mechanically inconsequential function of (R,Θ, Z), the energy function
must have the form W = W (R, I1, I2). For this form of the energy in (4.11) only the symmetry of the terms
with A = 1, and A = B = 1 needs to be checked. One can check that all those terms are symmetric.

Proposition 4.5. For inhomogeneous incompressible nonlinear isotropic solids, Family 2 deformations are
universal for any energy function of the form W = W (R, I1, I2).

Remark 4.6. Note that for Family 2 deformations, C[ is independent of Θ and Z, i.e., it is invariant under
the action of the transformations Θ → Θ + Θ0, and Z → Z + Z0, ∀ Θ0, Z0 ∈ R. We have shown that for
Family 2 deformations to be universal for inhomogeneous solids, the energy function must be invariant under
the same group of transformations.

4.4 Family 3: Inflation, bending, torsion, extension, and shearing of a sector of
an annular wedge

With respect to the cylindrical coordinates (R,Θ, Z) and (r, θ, z) in the reference and current configurations,
respectively, this family of deformations have the following representation

r(R,Θ, Z) =

√
R2

C1C4 − C2C3
+ C5, θ(R,Θ, Z) = C1Θ+C2Z+C6, z(R,Θ, Z) = C3Θ+C4Z+C7 , (4.32)

where the Z-coordinate line is the axis of the annular wedge. Thus

[CAB ] =


R2

K(KC5+R2) 0 0

0 C2
3 + C2

1

[
R2

K + C5

]
C1C2

[
R2

K + C5

]
+ C3C4

0 C1C2

[
R2

K + C5

]
+ C3C4 C2

4 + C2
2

[
R2

K + C5

]

 , (4.33)

[bab] =


R2

K(C5K+R2) 0 0

0
C2

1

R2 + C2
2

C1C3

R2 + C2C4

0 C1C3

R2 + C2C4
C2

3

R2 + C2
4

 , (4.34)

and

[cab] =


C5K

2

R2 +K 0 0

0
C2

3+C2
4R

2

K2 −C1C3+C2C4R
2

K2

0 −C1C3+C2C4R
2

K2

C2
1+C2

2R
2

K2

 , (4.35)

where K = C1C4 − C2C3. Note that C[ only depends on R.
The universality constraint C1A

[ab] = 0, for A = 2, and (a, b) = (1, 2) requires that

C4R
6
(
C2

1 + 2C2
2C5K − 1

)
+ C5KR

4
[
C4

(
C2

2C5K + 2
)
− 2C1C2C3

]
+ C1C

2
5K

2R2(4C2C3 − 3C1C4)− 2C1C
3
5K

4 + C2
2C4R

8 = 0,
(4.36)
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which is not possible, and hence
∂W1

∂Θ
=

∂

∂I1

∂W

∂Θ
= 0 . (4.37)

C1A
[ab] = 0, for A = 3, and (a, b) = (1, 3) requires

C1

{
C2

1

(
C5K +R2

)2
+ C5KR

2
[
C2

2

(
C5K + 2R2

)
− 2
]

+ C2
2R

6 −R4
}

= 0 , (4.38)

which cannot be satisfied. This implies that

∂W1

∂Z
=

∂

∂I1

∂W

∂Z
= 0 . (4.39)

Similarly, C2A
[ab] = 0, for A = 2, and (a, b) = (1, 2), and C2A

[ab] = 0, for A = 3, and (a, b) = (1, 3) cannot be
satisfied, and hence

∂W2

∂Θ
=

∂

∂I2

∂W

∂Θ
= 0 ,

∂W2

∂Z
=

∂

∂I2

∂W

∂Z
= 0 . (4.40)

Therefore, up to a mechanically inconsequential function of (R,Θ, Z), the energy function must have the
form W = W (R, I1, I2). For this form of the energy in (4.11) only the symmetry of the terms with A = 1,
and A = B = 1 needs to be checked. All those terms are symmetric. In summary, in Proposition 4.5,
“Family 2” can be replaced by “Family 3”. Similar to Family 2, for Family 3 deformations to be universal
the energy function must respect the symmetry of C[.

4.5 Family 4: Inflation/inversion of a sector of a spherical shell

With respect to the spherical coordinates (R,Θ,Φ) and (r, θ, φ) in the reference and current configurations,
respectively, this family of deformations have the following representation

r(R,Θ,Φ) = (±R3 + C3
1 )

1
3 , θ(R,Θ,Φ) = ±Θ, φ(R,Θ,Φ) = Φ , (4.41)

where the spherical coordinates are centered at the center of the spherical shell sector. Thus

[CAB ] =


R4

(C3
1±R3)

4/3 0 0

0
(
C3

1 ±R3
)2/3

0

0 0
(
C3

1 ±R3
)2/3

sin2 Θ

 , (4.42)

[bab] =


R4

(C3
1±R3)

4/3 0 0

0 1
R2 0

0 0 1
R2 sin2 Θ

 , [cab] =


(C3

1±R
3)

4/3

R4 0 0

0 R2 0

0 0 R2 sin2 Θ

 . (4.43)

C[ can be written as [12]

C[(X) =
R4

(C3
1 ±R3)

4/3
R̂⊗ R̂ +

(
C3

1 ±R3
)2/3

R2
(1− R̂⊗ R̂) , (4.44)

where 1 is the identity tensor, and R̂ = X
|X| . This means that at a point X, C[ is invariant under all those

rotations that fix X.
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The universality constraint C1A
[ab] = 0, forA = 2, and (a, b) = (1, 3) requires that 4C3

1R
6±3C6

1R
3+2C9

1 = 0,
which cannot be satisfied. This implies that

∂W1

∂Θ
=

∂

∂I1

∂W

∂Θ
= 0 . (4.45)

C1A
[ab] = 0, for A = 3, and (a, b) = (1, 2) requires

(
C3

1 ±R3
) 2

3 cot Θ = 0, which is not possible, and thus

∂W1

∂Φ
=

∂

∂I1

∂W

∂Φ
= 0 . (4.46)

C2A
[ab] = 0, for A = 2, and (a, b) = (1, 2) requires

(
5R9 ± 2C3

1R
6
) (
C3

1 ±R3
) 1

3 ∓R6 + 3C3
1R

3 ± 4C6
1 = 0 , (4.47)

which is not possible. Thus
∂W2

∂Θ
=

∂

∂I2

∂W

∂Θ
= 0 . (4.48)

C2A
[ab] = 0, for A = 3, and (a, b) = (2, 3) requires R2

(
C3

1 ±R3
) 2

3 cos Θ sin3 Θ = 0, which is not possible. This
implies that

∂W2

∂Φ
=

∂

∂I2

∂W

∂Φ
= 0 . (4.49)

(4.45), (4.46), (4.48), and (4.49) imply that up to a mechanically inconsequential function of (R,Θ,Φ), the
energy function must have the form W = W (R, I1, I2). For this form of the energy in (4.11) only the
symmetry of the terms with A = 1, and A = B = 1 needs to be checked. One can check that all those
terms are symmetric. In summary, in Proposition 4.5, “Family 2” can be replaced by “Family 4”. Similar to
Families 2 and 3, for Family 4 deformations to be universal the energy function must respect the symmetry
of C[.

4.6 Family 5: Inflation, bending, extension, and azimuthal shearing of an an-
nular wedge

With respect to the cylindrical coordinates (R,Θ, Z) and (r, θ, z) in the reference and current configurations,
respectively, this family of deformations have the following representation

r(R,Θ, Z) = C1R, θ(R,Θ, Z) = C2 logR+ C3Θ + C4, z(R,Θ, Z) =
1

C2
1C3

Z + C5 , (4.50)

where the Z-coordinate line is the axis of the annular wedge. Thus

[CAB ] =


C2

1

(
C2

2 + 1
)

C2
1C2C3R 0

C2
1C2C3R C2

1C
2
3R

2 0

0 0 1
C4

1C
2
3

 , (4.51)

[bab] =


C2

1
C1C2

R 0

C1C2

R
C2

2+C2
3

R2 0

0 0 1
C4

1C
2
3

 , [cab] =


C2

2

C2
1C

2
3

+ 1
C2

1
− C2R
C1C2

3
0

− C2R
C1C2

3

R2

C2
3

0

0 0 C4
1C

2
3

 . (4.52)
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Note that C[ only depends on R. For homogeneous incompressible isotropic solids, this is the only known
family of inhomogeneous universal deformations for which I1 and I2 are constant. Let us consider the
following universality constraints:

C1A
[ab] = 0, for (A, a, b) = (1, 1, 2)⇒ C1C2 = 0,

C1A
[ab] = 0, for (A, a, b) = (2, 1, 2)⇒ C1(1 + C2

2 − C2
3 ) = 0,

C1A
[ab] = 0, for (A, a, b) = (3, 2, 3)⇒ C4

1C2C3 = 0,

C2A
[ab] = 0, for (A, a, b) = (1, 1, 2)⇒ R2C2 = 0,

C2A
[ab] = 0, for (A, a, b) = (2, 1, 2)⇒ C2

2

(
1− 6C2

1R
2
)
− 5C4

1R
4 + C2

3 = 0,

C2A
[ab] = 0, for (A, a, b) = (3, 2, 3)⇒ R2C2

1C2 = 0.

(4.53)

None of the above six universality constraints can be satisfied. This means that the energy function must
be homogeneous.

Proposition 4.7. For inhomogeneous incompressible nonlinear isotropic solids, Family 5 deformations are
not universal.

Remark 4.8. This family of deformations is peculiar in the sense that it is inhomogeneous yet it does not
accommodate universal inhomogeneity. This result is consistent with what Yavari and Goriely [13] observed
for transversely isotropic solids. For Family 1 one of the universal solutions is a uniform distribution of
fibers for fixed X. For Families 2 and 3, and Family 5 they showed that the integral curves of the material
preferred directions are circular helices. For Families 2 and 3 the helices can be R dependent but not for
Family 5. Goodbrake, et al. [12] observed another peculiarity of this family: C[ corresponding to other
inhomogeneous families (i.e., Families 1-4) has an eigenvector parallel to the inhomogeneity direction, but
not for this family.

5 Concluding Remarks

In this paper we extended Ericksen’s analysis of universal deformations in homogeneous isotropic solids to
inhomogeneous isotropic solids. The set of universality constraints of inhomogeneous solids include those
of the corresponding homogeneous solids. We showed that inhomogeneous compressible isotropic solids do
not admit universal deformations. For incompressible solids we considered each of the six known families of
universal deformations for homogeneous isotropic solids, and showed that:
• Family 0 is not universal for inhomogeneous solids.
• Family 1 is universal for inhomogeneous solids as long as the energy function respects the symmetry

of these deformations, i.e., when W = W (X, I1, I2) with respect to the natural Cartesian coordinates
(X,Y, Z) in the reference configuration of a rectangular block.

• Families 2, 3, and 4 are universal for those inhomogeneous solids for which W = W (R, I1, I2) with
respect to the natural referential cylindrical coordinates (R,Θ, Z) for Families 2 and 3, and with respect
to the natural referential spherical coordinates (R,Θ,Φ) for Family 4.

• Family 5 is not universal for inhomogeneous solids.
Table 1 summarizes our results for inhomogeneous incompressible isotropic solids.
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Family Universal Deformations C[ Universal inhomogeneity

1


r(X,Y, Z) =

√
C1(2X + C4)

θ(X,Y, Z) = C2(Y + C5)

z(X,Y, Z) = Z
C1C2

− C2C3Y + C6

[CAB ] =


C1

2X+C4
0 0

0 C2
2

[
C1(2X + C4) + C2

3

]
−C3

C1

0 −C3

C1

1
C2

1C
2
2

 W = W (X, I1, I2)

2


x(R,Θ, Z) = 1

2C1C
2
2R

2 + C4

y(R,Θ, Z) = Θ
C1C2

+ C5

z(R,Θ, Z) = C3

C1C2
Θ + 1

C2
Z + C6

[CAB ] =


C2

1C
4
2R

2 0 0

0
C2

3+1

C2
1C

2
2

C3

C1C2
2

0 C3

C1C2
2

1
C2

2

 W = W (R, I1, I2)

3


r(R,Θ, Z) =

√
R2

C1C4−C2C3
+ C5

θ(R,Θ, Z) = C1Θ + C2Z + C6

z(R,Θ, Z) = C3Θ + C4Z + C7

[CAB ] =


R2

K(KC5+R2) 0 0

0 C2
1

(
R2

K + C5

)
+ C2

3 C1C2

(
R2

K + C5

)
+ C3C4

0 C1C2

(
R2

K + C5

)
+ C3C4 C2

2

(
R2

K + C5

)
+ C2

4

 W = W (R, I1, I2)

4


r(R,Θ,Φ) = (±R3 + C3

1 )

θ(R,Θ,Φ) = ±Θ

φ(R,Θ,Φ) = Φ

[CAB ] =


R4

(C3
1±R3)

4/3 0 0

0
(
C3

1 ±R3
)2/3

0

0 0
(
C3

1 ±R3
)2/3

sin2 Θ

 W = W (R, I1, I2)

Table 1: Universal deformations and universal material inhomogeneities for incompressible isotropic solids for the six known
families of universal deformations. For Family 3, K = C1C4 − C2C3. Note that Families 0 and 5 are not universal for
inhomogeneous solids.
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