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Abstract

For a given class of materials, universal deformations are those that can be maintained in the ab-
sence of body forces by applying only boundary tractions. Universal deformations play a crucial role in
nonlinear elasticity. To date, their classification has been accomplished for homogeneous isotropic solids
following Ericksen’s seminal work, and homogeneous anisotropic solids and inhomogeneous isotropic
solids in our recent works. In this paper we study universal deformations for inhomogeneous anisotropic
solids defined as materials whose energy function depends on position. We consider both compressible
and incompressible transversely isotropic, orthotropic, and monoclinic solids. We show that the univer-
sality constraints—the constraints that are dictated by the equilibrium equations and the arbitrariness
of the energy function—for inhomogeneous anisotropic solids include those of inhomogeneous isotropic
and homogeneous anisotropic solids. For compressible solids, universal deformations are homogeneous
and the material preferred directions are uniform. For each of the three classes of anisotropic solids we
find the corresponding universal inhomogeneities—those inhomogeneities that are consistent with the
universality constraints. For incompressible anisotropic solids we find the universal inhomogeneities for
each of the six known families of universal deformations. This work provides a systematic approach to
study analytically functionally-graded fiber-reinforced elastic solids.

Keywords: Universal deformations, nonlinear elasticity, anisotropic elasticity, inhomogeneity, functionally-
graded materials.
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1 Introduction

In elasticity, for a given class of materials, universal deformations are those deformations that can be main-
tained in the absence of body forces by applying only boundary tractions for an arbitrary energy function in
that class.1 They are particularly important in nonlinear elasticity since they exist independently of a partic-
ular choice of energy function. Therefore, they can be used experimentally to study material properties and
analytically as a basis for more complicated deformations or to gain insight into basic properties of materials.
The history of a theory of universal deformations goes back to the seminal work of Ericksen who showed
that for homogeneous compressible isotropic solids, universal deformations are homogeneous [Ericksen, 1955].
From that original seed, grew a large body of work addressing the same problems for materials that have
constraints such as incompressibility, may be anisotropic, may be inhomogenous, may be anelastic, or linear
as shown in Fig. 1. The problem of finding universal deformations in the presence of internal constraints
is more difficult [Saccomandi, 2001]. For homogeneous incompressible isotropic solids, in a second seminal
paper that was motivated by the earlier works of Rivlin [Rivlin, 1948, 1949a,b], Ericksen [1954] found four
families of universal deformations. He conjectured that a deformation with constant principal invariants has
to be homogeneous. This conjecture turned out to be incorrect [Fosdick, 1966], and motivated the discovery
of a fifth family of universal deformations [Singh and Pipkin, 1965, Klingbeil and Shield, 1966]. The six
known families of universal deformations are:

• Family 0: Homogeneous deformations
• Family 1: Bending, stretching, and shearing of a rectangular block
• Family 2: Straightening, stretching, and shearing of a sector of a cylindrical shell
• Family 3: Inflation, bending, torsion, extension, and shearing of a sector of an annular wedge
• Family 4: Inflation/inversion of a sector of a spherical shell
• Family 5: Inflation, bending, extension, and azimuthal shearing of an annular wedge

We should emphasize that for incompressible isotropic solids Ericksen’s problem has not been solved
completely to this day; the case of deformations with constant principal invariants is still an open problem.
However, the conjecture is that there are no other possible families of universal deformations. In related
works, there have been several studies of universal deformations and universal steady-state temperature fields

1See Pucci et al. [2015] for definitions of controllable, general, universal, and partial solutions in nonlinear elasticity.
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in nonlinear thermoelasticity (see [Petroski and Carlson, 1968, Saccomandi, 1999, Dunwoody, 2005a,b], and
references therein).

Based on Ericksen’s seminal work, we embarked a few years ago into what we now refer to as the universal
program: to generalize Ericken’s results to anisotropic and inhomogeneous materials for all hyperelastic
materials, anelastic materials, and linear materials (see Fig.1). Indeed, the analogue of universal deformations
in linear elasticity are universal displacements [Truesdell, 1966, Gurtin, 1972, Yavari et al., 2020]. In [Yavari
et al., 2020], it was shown that universal displacements explicitly depend on the symmetry class of the
material; the larger the symmetry group is the larger the corresponding space of universal displacements
is. More recently, we studied universal inhomogeneities in anisotropic linear elasticity [Yavari and Goriely,
2022]. There have been recent extensions of Ericksen’s analysis to anelasticity. Yavari and Goriely [2016]
proved that in compressible anelasticity universal deformations must be covariantly homogeneous. In the
case of incompressible anelasticity, Goodbrake et al. [2020] observed that a key feature of the analysis is that
the extra fields entering the analysis should follow the same symmetry as the universal deformations. They
also showed that the six known families of universal deformations are invariant under certain Lie subgroups
of the special Euclidean group.

HOMOGENEOUS W INHOMOGENEOUS W

COMPRESSIBLE

ISOTROPIC ISOTROPICANISOTROPIC

INCOMPRESSIBLE COMPRESSIBLE

ISOTROPIC ISOTROPICANISOTROPIC

INCOMPRESSIBLE

ANELASTICITY LINEAR ELASTICITY

[Ericksen 1954] [Ericksen 1955] [Yavari 2021] [Yavari 2021][this work][Yavari-Goriely 2021]

[Yavari-Goriely 2016

 Goodbrake-Yavari-Goriely 2020]
[Yavari-Goodbrake-Goriely 2020

 Yavari-Goriely 2022]

NONLINEAR ELASTICITY

Figure 1: The universal program: Finding all the universal deformations and displacements, together with the associated
universal material preferred directions, and universal inhomogeneities, for both compressible and incompressible solids. These
are the different cases considered so far with partial or complete solutions. Here, nonlinear elasticity refers to hyperleasticity
and the existence of a strain-energy density W is assumed that can either be homogeneous or non-homogenous, isotropic or
anisotropic.

Until recently, there was no systematic study of universal deformations in anisotropic solids. There were
early studies restricted to a subset of Family 1 deformations for two cases of homogeneous anisotropy, and
Family 3 deformations for an example of homogeneous anisotropy [Ericksen and Rivlin, 1954] (see also [Ad-
kins, 1955a,b]). However, many examples of universal deformations for anisotropic fiber-reinforced systems
were known and widely used [Spencer, 1982, Qiu and Pence, 1997, Melnik and Goriely, 2013, Holzapfel et al.,
2000, Demirkoparan and Pence, 2007, Goriely and Tabor, 2013, Demirkoparan and Pence, 2015, Goriely,
2017]. Recently, we studied universal deformations and universal material preferred directions in homoge-
neous compressible and incompressible anisotropic solids [Yavari and Goriely, 2021]. More specifically, we
considered compressible and incompressible transversely isotropic, orthotropic, and monoclinic solids. We
assumed that the material preferred directions can vary from point to point. In the case of compressible
solids we showed that universal deformations are homogeneous and universal material preferred directions
for the three classes of anisotropic solids must be uniform. In the case of homogeneous incompressible trans-
versely isotropic, orthotropic, and monoclinic solids, we showed that in addition to the nine universality
constraints for isotropic solids [Ericksen, 1954], there are extra 25, 74, and 152, respectively, extra univer-
sality constraints that must be satisfied. For each known family of universal deformations we obtained the
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universal material preferred directions assuming that they have the symmetry of the corresponding universal
deformations (that are encoded in the symmetries of the right Cauchy-Green strain).2

Motivated by a result in [Golgoon and Yavari, 2021], Yavari [2021] extended the analysis of universal
deformations to inhomogeneous isotropic solids (with position-dependent strain-energy density), and showed
that in addition to those of homogeneous isotropic solids there are some extra universality constraints. It
was shown that inhomogeneous compressible isotropic solids do not admit universal deformations. In the
case of inhomogeneous incompressible solids the following results were obtained for each of the six known
families of universal deformations.
• For inhomogeneous incompressible isotropic solids it was incorrectly concluded that Family 0 deformations

are not universal. This is discussed in §4.1, and the corrected statement is given in Footnote 4.
• Family 1 deformations are universal for any energy function of the form W = W (X, I1, I2), where (X,Y, Z)

is a Cartesian coordinate system with coordinate lines normal to the faces of an undeformed rectangular
block. Note that with respect to cylindrical coordinates (r, θ, z) in the deformed configuration, Family

1 deformations have the form: (r, θ, z) =
(√

C1(2X + C4), C2(Y + C5), Z
C1 C2

− C2 C3Y + C6

)
, where

C1, ..., C6 are constants.
• Families 2, 3, and 4 deformations are universal for any energy function of the form W = W (R, I1, I2),

where R is the radial coordinate in the undeformed configuration of a cylindrical shell, an annular wedge,
and a spherical shell, for Families 2, 3, and 4, respectively.

• For inhomogeneous incompressible isotropic solids, Family 5 deformations are not universal.
The remaining problem to be solved to complete Ericksen’s program is to study elastic materials that are

inhomogenous, and anisotropic. Therefore, we study universal deformations for inhomogeneous anisotropic
solids and generalize the results of [Yavari and Goriely, 2021, Yavari, 2021]. We consider both compressible
and incompressible transversely isotropic, orthotropic, and monoclinic solids. It is shown that the universality
constraints—the constraints that are dictated by the equilibrium equations and the arbitrariness of the energy
function— for inhomogeneous anisotropic solids include those of inhomogeneous isotropic and homogeneous
anisotropic solids as special cases. For compressible solids, universal deformations are homogeneous and
the material preferred directions are uniform. For each of the three classes of anisotropic solids we find
the corresponding universal inhomogeneities—those inhomogeneities (position dependence of the energy
function) that are compatible with the universality constraints. For incompressible anisotropic solids we find
the universal inhomogeneities for each of the six known families of universal deformations.

This paper is organized as follows. In §2 we tersely review nonlinear anisotropic elasticity. In §3, we
consider inhomogeneous compressible transversely isotropic, orthotropic, and monoclinic solids. The univer-
sal deformations, universal material preferred directions, and universal inhomogeneities of inhomogeneous
incompressible transversely isotropic solids are analyzed for each of the six known families in §4. Similar
analyses for inhomogeneous incompressible orthotropic and inhomogeneous incompressible monoclinic solids
are given in §5 and §6, respectively. Conclusions are given in §7.

2 Nonlinear Anisotropic Elasticity

Kinematics. Consider an elastic body B. In nonlinear anelasticity the body is identified with a Rieman-
nian manifold (B,G) whose metric G is used in calculating the natural distances between material points in
the body. In nonlinear elasticity (B,G) is flat, and is a submanifold of the Euclidean 3-space. A deformation
of the body is a map ϕ : B → S, where S is the Euclidean ambient space, and g is the Euclidean metric.
The material velocity is defined as

Vt : B → Tϕt(X)S , Vt(X) = V(X, t) =
∂ϕ(X, t)

∂t
. (2.1)

The spatial velocity is defined as v = V◦ϕ−1
t . The deformation gradient—the tangent map (or derivative) of

ϕ—is denoted by F = Tϕ. With respect to local coordinate charts {xa} and {XA} on S and B, respectively,

2Unfortunately, there was a small mistake in calculating the universal material preferred directions for Family 5 deformations.
The correct universal material preferred directions are given in (4.83), (5.17), and (6.31), for transversely isotropic, orthotropic,
and monoclinic solids, respectively.
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deformation gradient is defined as

F(X) : TXB → Tϕ(X)S , F aA(X) =
∂ϕa

∂XA
(X) . (2.2)

The deformation gradient is a linear map that maps vectors in the tangent space at a material point in the
reference configuration to vectors in the tangent space of the same material point in the current configuration.
The transpose of deformation gradient is defined as

FT : TxS → TXB, 〈〈FV,v〉〉g = 〈〈V,FTv〉〉G, ∀V ∈ TXB, v ∈ TxS , (2.3)

where 〈〈, 〉〉G and 〈〈, 〉〉g are the inner products induced by the material and ambient space metrics, respectively.

FT has the following components

(FT(X))Aa = gab(x)F bB(X)GAB(X) . (2.4)

The right Cauchy-Green deformation tensor is defined as

C(X) = F(X)TF(X) : TXB → TXB , CAB = (FT)AaF
a
B . (2.5)

The pulled-back metric is denoted by C[ = ϕ∗g, and is defined as

〈〈U,W〉〉ϕ∗g = 〈〈FU,FW〉〉g, ∀U,W ∈ TXB , (2.6)

where [ is the flat operator induced by the metric g. C[ has components CAB = (gab ◦ϕ)F aAF
b
B . The left

Cauchy-Green deformation tensor is defined as

B] = ϕ∗(g]) , BAB = (F−1)Aa(F−1)Bb g
ab . (2.7)

The spatial analogues of C[ and B] are denoted by c[ and b] (the Finger deformation tensor), respectively,
and are defined as

c[ = ϕ∗(G), cab =
(
F−1

)A
a

(
F−1

)B
b GAB ,

b] = ϕ∗(G
]), bab = F aA F

b
B G

AB .
(2.8)

The second-order tensors C and b have the same principal invariants I1, I2, and I3 that are defined as
[Ogden, 1984]

I1 = trb = baa = bab gab,

I2 =
1

2

(
I2
1 − trb2

)
=

1

2

(
I2
1 − bab bba

)
=

1

2

(
I2
1 − babbcd gac gbd

)
,

I3 = detb.

(2.9)

Balance laws. The referential forms of the mass conservation and the balance of linear and angular
momenta read

∂ρ0

∂t
= 0 , DivP + ρ0B = ρ0A , PFT = FPT , (2.10)

where ρ0 is the material mass density, B is body force per unit referential volume, A is the material
acceleration, and P is the first Piola-Kirchhoff stress. The spatial forms of conservation of mass and balance
of linear and angular momenta read

Lvρ = 0 , divσ + ρb = ρa , σT = σ , (2.11)

where ρ is the spatial mass density, σ is the Cauchy stress, b = B ◦ ϕ−1
t , a is the spatial acceleration,

and Lvρ is the Lie derivative of the spatial mass density with respect to the spatial velocity. P and σ are
related as Jσab = P aAF bA. The Jacobian of deformation J =

√
I3 relates the material (dV ) and spatial

(dv) Riemannian volume forms as dv = JdV , and is given by

J =

√
detg

detG
detF . (2.12)
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Constitutive equations. For an inhomogeneous anisotropic hyperelastic solid the energy function (per
unit undeformed volume) has the following functional form

W = Ŵ (X,C[,G, ζ1, . . . , ζn) , (2.13)

where W explicitly depends on X (inhomogeneity), and the structural tensors ζi, i = 1, . . . , n characterize
the material symmetry group of the solid. Using structural tensors the energy function becomes an isotropic
function of its arguments. Instead of (2.13) one can write the energy as a function of an integrity basis
for the set of tensors {C[,G, ζ1, . . . , ζn}. Denoting the integrity basis by Ij , j = 1, . . . ,m, one can write
W = W (X, I1, ..., Im). The second Piola-Kirchhoff stress tensor has the following representation [Doyle and
Ericksen, 1956, Marsden and Hughes, 1994, Yavari et al., 2006]

S = 2
∂Ŵ

∂C[
=

m∑
j=1

2Wj
∂Ij
∂C[

, Wj = Wj(X, I1, ..., Im) :=
∂W

∂Ij
, j = 1, . . . ,m . (2.14)

The relations between the second Piola-Kirchhoff stress, and the first Piola-Kirchhoff and Cauchy stresses
are: SAB = (F−1)AaP

aB = J(F−1)Aa(F−1)Bb σ
ab.

Isotropic solids. For an inhomogeneous isotropic solid, W = W (X, I1, I2, I3), where I1, I2, and I3 were
defined in (2.9). From (2.14) one writes

S = 2W1 G
] + 2W2 (I2 C

−1 − I3 C−2) + 2W3 I3 C
−1 . (2.15)

The Cauchy stress has the following representation

σab =
2√
I3

[
W1 b

ab + (I2W2 + I3W3)gab − I3W2 c
ab
]
, (2.16)

where cab = (F−1)Mm(F−1)NnGMN g
am gbn. For an incompressible isotropic solid I3 = 1, and hence

S = −pC−1 + 2W1 G
] − 2W2 C

−2 ,

σ = −pg] + 2W1 b
] − 2W2 c

−1 ,
(2.17)

where p is the Lagrange multiplier associated with the incompressibility constraint J =
√
I3 = 1. Eq. (2.17)2

in components reads σab = −p gab + 2W1 b
ab − 2W2 c

ab.

Transversely isotropic solids. In a transversely isotropic solid at every point there is a single material
preferred direction, which is normal to the plane of isotropy at that point. We assume that a unit vector
N(X) identifies the material preferred direction at X ∈ B. The energy function for an inhomogeneous
transversely isotropic solid has the form W = W (X,G,C[,A), where A = N ⊗ N is a structural tensor
[Doyle and Ericksen, 1956, Spencer, 1982, Lu and Papadopoulos, 2000]. The energy function W depends on
five independent invariants that are defined as

I1 = trC = CAA , I2 = detC tr C−1 = det(CAB)(C−1)DD , I3 = detC = det(CAB)

I4 = N ·C ·N = NANB CAB , I5 = N ·C2 ·N = NANB CBM CMA .
(2.18)

The second Piola-Kirchhoff stress tensor has the following representation

S =

5∑
j=1

2Wj
∂Ij
∂C[

, Wj = Wj(X, I1, ..., I5) :=
∂W

∂Ij
, j = 1, . . . , 5 , (2.19)

where
∂I1
∂C[

= G] ,
∂I2
∂C[

= I2C
−1 − I3C−2 ,

∂I3
∂C[

= I3C
−1 ,

∂I4
∂C[

= N⊗N ,
∂I5
∂C[

= N⊗ (C ·N) + (C ·N)⊗N .

(2.20)
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Thus
S = 2W1 G

] + 2W2

(
I2 C

−1 − I3 C−2
)

+ 2W3 I3 C
−1

+ 2W4 (N⊗N) + 2W5 [N⊗ (C ·N) + (C ·N)⊗N] .
(2.21)

The Cauchy stress has the representation [Ericksen and Rivlin, 1954, Golgoon and Yavari, 2018a,b]

σab =
2√
I3

[
W1b

ab + (I2W2 + I3W3) gab − I3W2 c
ab +W4 n

anb +W5 `
ab
]
, (2.22)

where na = F aAN
A, and

`ab = na bbc nc + nb bac nc . (2.23)

In the case of an incompressible transversely isotropic solid (I3 = 1), W = W (X, I1, I2, I4, I5), and hence

S = −pC−1 + 2W1G
] + 2W2

(
I2 C

−1 −C−2
)

+ 2W4 (N⊗N) + 2W5 [N⊗ (C ·N) + (C ·N)⊗N] . (2.24)

Similarly, the Cauchy stress has the following representation [Ericksen and Rivlin, 1954, Spencer, 1986,
Golgoon and Yavari, 2018a,b]

σab = −p gab + 2W1 b
ab − 2W2 c

ab + 2W4 n
a nb + 2W5

(
na bbc nd gcd + nb bac nd gcd

)
. (2.25)

Orthotropic solids. An orthotropic solid has reflection symmetry with respect to three mutually per-
pendicular planes at every point. Let three G-orthonormal vectors N1(X), N2(X), and N3(X) specify
the orthotropic axes at a point X in the reference configuration. The three tensors A1 = N1 ⊗ N1,
A2 = N2⊗N2, and A3 = N3⊗N3 are structural tensors. However, because A1 +A2 +A3 = I, only two of
them are independent. The energy function of an inhomogeneous orthotropic solid has the functional form
W = W (X,G,C[,A1,A2) [Doyle and Ericksen, 1956, Spencer, 1982, Lu and Papadopoulos, 2000]. It can
be rewritten as a function of the following seven independent invariants:

I1 = trC , I2 = detC trC−1 , I3 = detC ,

I4 = N1 ·C ·N1 , I5 = N1 ·C2 ·N1 ,

I6 = N2 ·C ·N2 , I7 = N2 ·C2 ·N2 .

(2.26)

Thus

S =

7∑
j=1

2Wj
∂Ij
∂C[

, Wj = Wj(X, I1, ..., I7) :=
∂W

∂Ij
, j = 1, . . . , 7 . (2.27)

The second Piola-Kirchhoff stress tensor has the following representation

S =2W1 G
] + 2W2

(
I2 C

−1 − I3 C−2
)

+ 2W3 I3 C
−1

+ 2W4 (N1 ⊗N1) + 2W5 [N1 ⊗ (C ·N1) + (C ·N1)⊗N1]

+ 2W6 (N2 ⊗N2) + 2W7 [N2 ⊗ (C ·N2) + (C ·N2)⊗N2] .

(2.28)

Similarly, the Cauchy stress is written as [Smith and Rivlin, 1958, Spencer, 1986, Golgoon and Yavari,
2018a,b]

σab =
2√
I3

[
W1 b

ab + (I2W2 + I3W3)gab − I3W2 c
ab

+W4 n
a
1 n

b
1 +W5

(
na1 b

bc nd1 gcd + nb1 b
ac nd1 gcd

)
+W6 n

a
2 n

b
2 +W7

(
na2 b

bc nd2 gcd + nb2 b
ac nd2 gcd

) ]
,

(2.29)

where na1 = F aAN
A
1 , and na2 = F aAN

A
2 . In the case of an incompressible orthotropic solid (I3 = 1),

W = W (X, I1, I2, I4, I5, I6, I7). Thus, using (2.28), one has

S = −pC−1 + 2W1G
] + 2W2

(
I2C

−1 −C−2
)

+ 2W4 (N1 ⊗N1) + 2W5 [N1 ⊗ (C ·N1) + (C ·N1)⊗N1]

+ 2W6 (N2 ⊗N2) + 2W7 [N2 ⊗ (C ·N2) + (C ·N2)⊗N2] .

(2.30)
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Similarly, the Cauchy stress tensor is written as

σab = −pgab + 2W1 b
ab − 2W2 c

ab + 2W4 n
a
1 n

b
1 + 2W5 `

ab
1 + 2W6 n

a
2 n

b
2 + 2W7 `

ab
2 , (2.31)

where `ab1 = na1 b
bc nd1 gcd + nb1 b

ac nd1 gcd, and `ab2 = na2 b
bc nd2 gcd + nb2 b

ac nd2 gcd.

Monoclinic solids. A monoclinic solid has three material preferred directions that are specified by three
unit vectors {N1,N2,N3} such that N1 ·N2 6= 0 and N3 is normal to the plane of N1 and N2 [Merodio and
Ogden, 2020]. The energy function of a monoclinic solid depends on nine invariants [Spencer, 1986], seven
of which are identical to those of orthotropic solids (2.26). The two extra invariants are

I8 = gN1 ·C ·N2, I9 = g2 , (2.32)

where g = N1 ·N2. Note that

∂I8
∂C[

=
g

2
(N1 ⊗N2 + N2 ⊗N1) ,

∂I9
∂C[

= 0 . (2.33)

For orthotropic solids the second Piola-Kirchhoff stress has the following representation

S =2W1 G
] + 2W2

(
I2 C

−1 − I3 C−2
)

+ 2W3 I3C
−1

+ 2W4 (N1 ⊗N1) + 2W5 [N1 ⊗ (C ·N1) + (C ·N1)⊗N1]

+ 2W6 (N2 ⊗N2) + 2W7 [N2 ⊗ (C ·N2) + (C ·N2)⊗N2]

+ gW8 (N1 ⊗N2 + N2 ⊗N1) ,

(2.34)

where Wi = Wi (X, I1, ..., I9), i = 1, ..., 8. Similarly, the Cauchy stress can be written as

σab =
2√
I3

[
W1 b

ab + (I2W2 + I3W3)gab − I3W2 c
ab

+W4 n
a
1 n

b
1 +W5

(
na1 b

bc nd1 gcd + nb1 b
ac nd1 gcd

)
+W6 n

a
2 n

b
2 +W7

(
na2 b

bc nd2 gcd + nb2 b
ac nd2 gcd

)
+ gW8

(
na1 n

b
2 + nb1 n

a
2

) ]
.

(2.35)

In the case of incompressible monoclinic solids (I3 = 1), W = W (X, I1, I2, I4, I5, I6, I7, I8, I9). Thus

S = −pC−1 + 2W1 G
] + 2W2

(
I2 C

−1 −C−2
)

+ 2W4 (N1 ⊗N1) + 2W5 [N1 ⊗ (C ·N1) + (C ·N1)⊗N1]

+ 2W6 (N2 ⊗N2) + 2W7 [N2 ⊗ (C ·N2) + (C ·N2)⊗N2]

+ gW8 (N1 ⊗N2 + N2 ⊗N1) .

(2.36)

Similarly, the Cauchy stress tensor is written as

σab = −p gab + 2W1 b
ab − 2I3W2 c

ab + 2W4 n
a
1 n

b
1 + 2W5 `

ab
1 + 2W6 n

a
2 n

b
2 + 2W7 `

ab
2 +W8 `

ab
3 , (2.37)

where `ab3 = g
(
na1 n

b
2 + nb1 n

a
2

)
.

3 Compressible Inhomogeneous Anisotropic Solids

3.1 Transversely isotropic solids

We first consider an inhomogeneous body made of compressible transversely isotropic solids. We do not
specify the material preferred direction N(X) a priori. In the absence of body forces, the equilibrium
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equations in Cartesian coordinates read σab,b = 0. Substituting (2.22) into the equilibrium equations one
obtains [Yavari and Goriely, 2021]

− I−
3
2

3 I3,b
[
W1 b

ab + (I2W2 + I3W3)δab − I3W2 c
ab +W4 n

a nb +W5 `
ab
]

+ 2I
− 1

2
3

[
(I2,bW2 + I2W2,b + I3,bW3 + I3W3,b)δ

ab +W1 b
ab
,b +W1,b b

ab

− I3,bW2 c
ab − I3W2,b c

ab − I3W2 c
ab
,b

+W4,b n
a nb +W4 n

a
,b n

b +W4 n
a nb,b +W5,b `

ab +W5 `
ab
,b

]
= 0 .

(3.1)

For universal deformations the equilibrium equations hold for an arbitrary energy function W . Knowing
that W is an arbitrary function of its arguments, the coefficient of W1, W2, W3, W3, and W5 must vanish
separately. Thus [Yavari and Goriely, 2021]

W1 : bab,b = 0 ,

W2 : I2,b δ
ab − I3 cab,b = 0 ,

W3 : I3,b = 0 ,

W4 : (na nb),b = 0 ,

W5 : `ab,b = 0 .

(3.2)

The above constraints simplify (3.1) to read

babW1,b + (I2 δ
ab − I3 cab)W2,b + I3δ

abW3,b + na nbW4,b + `abW5,b = 0 . (3.3)

Note that I3,b = 0 from (3.2)3 and

W1,b = (F−1)AbW1,A +W11 I1,b +W12 I2,b +W14 I4,b +W15 I5,b ,

W2,b = (F−1)AbW2,A +W12 I1,b +W22 I2,b +W24 I4,b +W25 I5,b ,

W3,b = (F−1)AbW3,A +W13 I1,b +W23 I2,b +W34 I4,b +W35 I5,b ,

W4,b = (F−1)AbW4,A +W14 I1,b +W24 I2,b +W44 I4,b +W45 I5,b ,

W5,b = (F−1)AbW5,A +W15 I1,b +W25 I2,b +W45 I4,b +W55 I5,b ,

(3.4)

where

Wi,A =
∂Wi

∂XA
, Wij =

∂2W

∂Ii∂Ij
, i ≤ j . (3.5)

Notice that the first term on the right-hand side of each equation in (3.4) vanishes for homogeneous solids
[Yavari and Goriely, 2021]. Substituting the above relations into (3.3) the coefficients of W13 and W23 read

W13 : I3 I1,b δ
ab = 0 ,

W23 : I3 I2,b δ
ab = 0 .

(3.6)

Thus, I1,b = I2,b = 0. Substituting these into (3.4) and using (3.3) the coefficients of W34 and W35 read

W34 : I3 I4,b δ
ab = 0 ,

W35 : I3 I5,b δ
ab = 0 .

(3.7)

Hence, I4,b = I5,b = 0. Therefore, we have the following universality constraints

I1, I2, and I3 are constant, (3.8)

bab,b = cab,b = 0 , (3.9)

I4, and I5 are constant, (3.10)

(na nb),b = `ab,b = 0 . (3.11)

9



Note that (3.8) and (3.9) are the universality constraints for isotropic solids [Ericksen, 1955, Yavari and
Goriely, 2016] and imply that F aA|B = 0, i.e., universal deformations are homogeneous. In addition, since
I4,b = I4,A(F−1)Ab = 0, we have I4,A = 0. Similarly, I5,A = 0. The constraints (3.10) and (3.11) imply that
N is a constant unit vector [Yavari and Goriely, 2021].

For inhomogeneous solids one has the following extra five sets of universality constraints:

bab (F−1)AbW1,A = 0 ,(
I2 δ

ab − I3 cab
)

(F−1)AbW2,A = 0 ,

I3 δ
ab (F−1)AbW3,A = 0 ,

na nb(F−1)AbW4,A = 0 ,

`ab(F−1)AbW5,A = 0 .

(3.12)

The first three constraints in (3.12) are identical to those of isotropic solids [Yavari, 2021], and imply that

W1,A = W2,A = W3,A = 0 , A = 1, 2, 3 . (3.13)

The constraint (3.12)4 implies that nb(F−1)AbW4,A = W4,AN
A = 0. As N is a constant unit vector we can

choose the Cartesian coordinates (X1, X2, X3) in the reference configuration such that

N =
∂

∂X1
, (3.14)

i.e., NA = δA1 . Here we have used the notation ∂Xi to denote the unit (tangent) vector along the ith
Cartesian direction as is customary in differential geometry. With this choice of coordinates the constraint
W4,AN

A = 0 reads
∂W4

∂X1
= 0 . (3.15)

Note that na = F aAN
A = F aA δ

A
1 = F a1.

Eq.(3.12)5 is equivalent to

(F−1)Ba `
ab (F−1)AbW5,A = 0, B = 1, 2, 3 . (3.16)

Using (2.23) the above constraints can be rewritten as(
NA CBDN

D +NB CADN
D
)
W5,A = 0, B = 1, 2, 3 . (3.17)

Knowing that NA = δA1 , this last expression can be rewritten as

CB1W5,1 + δB1 CA1W5,A = 0, B = 1, 2, 3 . (3.18)

For B = 2, it implies that C2
1W5,1 = 0, which must hold for arbitrary homogeneous deformations, i.e.,

for arbitrary constant C2
1. Thus, W5,1 = 0. Now the constraint for B = 3 is trivially satisfied. For

B = 1, C2
1W5,2 + C3

1W5,3 = 0, which must be satisfied for arbitrary constants C2
1, and C3

1. Therefore,
W5,2 = W5,3 = 0. Thus, the constraint (3.12)5 implies that W5,A = 0. In summary, we have the following
constraints

W1,A = W2,A = W3,A = W5,A = 0, A = 1, 2, 3, & W4,1 = 0 . (3.19)

This implies that
∂W

∂X1
= f1(X) ,

∂W

∂X2
= f2(X, I4) ,

∂W

∂X3
= f3(X, I4) , (3.20)

for some scalar functions fA. Note that ∂f1
∂X2 = ∂f2

∂X1 . Since f1 does not depend on I4, one has

f2(X, I4) = f̄2(X2, X3, I4) + ¯̄f2(X) . (3.21)
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Similarly, ∂f1
∂X3 = ∂f3

∂X1 implies that

f3(X, I4) = f̄3(X2, X3, I4) + ¯̄f3(X) . (3.22)

From (3.20)1, one writes

W (X, Ii) =

∫ X1

X1
0

f1(X1, X2, X3) dX1 + h(X2, X3, Ii) , (3.23)

where X1
0 is some fixed value of X1, h is some scalar function, and W (X, Ii) and h(X2, X3, Ii) are short for

W (X, I1, I2, I3, I4, I5) and h(X2, X3, I1, I2, I3, I4, I5), respectively. Taking partial derivative with respect to
X2 of both sides one obtains

∂W

∂X2
=

∫ X1

X1
0

∂f1(X1, X2, X3)

∂X2
dX1 +

∂h(X2, X3, Ii)

∂X2
,

=

∫ X1

X1
0

∂f2(X1, X2, X3, I4)

∂X1
dX1 +

∂h(X2, X3, Ii)

∂X2
,

= f2(X1, X2, X3, I4)− f2(X1
0 , X

2, X3, I4) +
∂h(X2, X3, Ii)

∂X2
.

(3.24)

From (3.24) and (3.20)2 one concludes that

∂h(X2, X3, Ii)

∂X2
= f2(X1

0 , X
2, X3, I4) . (3.25)

Thus ∫ X2

X2
0

∂h(X2, X3, Ii)

∂X2
dX2 =

∫ X2

X2
0

f2(X1
0 , X

2, X3, I4) dX2 , (3.26)

where X2
0 is some fixed value of X2. Hence

h(X2, X3, Ii) = h(X2
0 , X

3, Ii) +

∫ X2

X2
0

f2(X1
0 , X

2, X3, I4) dX2 . (3.27)

Using the above relation in (3.23), one writes

W (X, Ii) = h(X2
0 , X

3, Ii) +

∫ X1

X1
0

f1(X1, X2, X3) dX1 +

∫ X2

X2
0

f2(X1
0 , X

2, X3, I4) dX2 . (3.28)

Taking partial derivative with respect to X3 of the above relation one obtains

∂W

∂X3
=
∂h(X2

0 , X
3, Ii)

∂X3
+

∫ X1

X1
0

∂f1(X1, X2, X3)

∂X3
dX1 +

∫ X2

X2
0

∂f2(X1
0 , X

2, X3, I4)

∂X3
dX2 ,

=
∂h(X2

0 , X
3, Ii)

∂X3
+

∫ X1

X1
0

∂f3(X1, X2, X3, I4)

∂X1
dX1 +

∫ X2

X2
0

∂f3(X1
0 , X

2, X3, I4)

∂X2
dX2 ,

=
∂h(X2

0 , X
3, Ii)

∂X3
+ f3(X1, X2, X3, I4)− f3(X1

0 , X
2
0 , X

3, I4) .

(3.29)

Thus using (3.20)3 one concludes that

∂h(X2
0 , X

3, Ii)

∂X3
= f3(X1

0 , X
2
0 , X

3, I4) . (3.30)
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Hence ∫ X3

X3
0

∂h(X2
0 , X

3, Ii)

∂X3
dX3 =

∫ X3

X3
0

f3(X1
0 , X

2
0 , X

3, I4) dX3 , (3.31)

where X3
0 is some fixed value of X3. Thus

h(X2
0 , X

3, Ii) = h(X2
0 , X

3
0 , Ii) +

∫ X3

X3
0

f3(X1
0 , X

2
0 , X

3, I4) dX3 . (3.32)

Substituting the above relation into (3.28) one obtains

W (X, Ii) = h(X2
0 , X

3
0 , Ii) +

∫ X1

X1
0

f1(X1, X2, X3) dX1 +

∫ X2

X2
0

f2(X1
0 , X

2, X3, I4) dX2

+

∫ X3

X3
0

f3(X1
0 , X

2
0 , X

3, I4) dX3 .

(3.33)

Substituting (3.21) and (3.22) into the above relation one finds thatW (X, Ii) = Ŵ (X)+W (Ii)+W̃ (X2, X3, I4).
Note that the term Ŵ (X) is mechanically inconsequential, and hence we have proved that the only univer-
sal deformations are homogeneous and the only possible dependence on the position is through I4 and in
directions normal to a constant vector N:

Proposition 3.1. For compressible nonlinear transversely isotropic solids, universal deformations are ho-
mogeneous, the universal material preferred direction is at all points a constant unit vector N, and the
universal inhomogeneity has the following form

W (X, I1, I2, I3, I4, I5) = W (I1, I2, I3, I4, I5) + W̃ (X2, X3, I4) , (3.34)

where the Cartesian X1-coordinate line is parallel to N.

3.2 Orthotropic solids

For inhomogeneous compressible orthotropic solids there are two sets of universality constraints. The first
set of constraints are identical to those of homogeneous compressible orthotropic solids and read [Yavari and
Goriely, 2021]:

I1, I2, and I3 are constant , (3.35)

bab,b = cab,b = 0 , (3.36)

I4, and I5 are constant , (3.37)

(na1 n
b
1),b = `ab1 ,b = 0 , (3.38)

I6, and I7 are constant , (3.39)

(na2 n
b
2),b = `ab2 ,b = 0 . (3.40)

These constraints imply again that universal deformations are homogeneous and the material preferred
directions are uniform. In the reference configuration we choose the Cartesian coordinates (X1, X2, X3)
such that

N1 =
∂

∂X1
, N2 =

∂

∂X2
, N3 =

∂

∂X3
. (3.41)
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The second set of universality constraints are:

bab (F−1)AbW1,A = 0 ,(
I2 δ

ab − I3 cab
)

(F−1)AbW2,A = 0 ,

I3 δ
ab (F−1)AbW3,A = 0 ,

na1 n
b
1(F−1)AbW4,A = 0 ,

`ab1 (F−1)AbW5,A = 0 ,

na2 n
b
2(F−1)AbW6,A = 0 ,

`ab2 (F−1)AbW7,A = 0 .

(3.42)

The first three constraints are identical to those of isotropic solids [Yavari, 2021], and imply that W1,A =
W2,A = W3,A = 0. Similarly to the universality constraints of transversely isotropic solids, (3.42)4 and
(3.42)6 imply that

∂W4

∂XA
NA

1 =
∂W4

∂X1
= 0,

∂W6

∂XA
NA

2 =
∂W6

∂X2
= 0 . (3.43)

The universality constraints (3.42)5 and (3.42)7 imply that

W5,A = W7,A = 0, A = 1, 2, 3 . (3.44)

This means that
∂W

∂X1
= f1(X, I6) ,

∂W

∂X2
= f2(X, I4) ,

∂W

∂X3
= f3(X, I4, I6) . (3.45)

Note that

∂f1(X, I6)

∂X2
=
∂f2(X, I4)

∂X1
,

∂f1(X, I6)

∂X3
=
∂f3(X, I4, I6)

∂X1
,

∂f2(X, I4)

∂X3
=
∂f3(X, I4, I6)

∂X2
. (3.46)

Thus
f1(X, I6) = f̄1(X1, X3, I6) + ¯̄f1(X) ,

f2(X, I4) = f̄2(X2, X3, I4) + ¯̄f2(X) .
(3.47)

Using (3.45)1, one writes

W (X, Ii) =

∫ X1

X1
0

f1(X1, X2, X3, I6) dX1 + h(X2, X3, Ii) , (3.48)

where h is some scalar function, and X1
0 is some fixed value of X1. Taking partial derivative with respect to

X2 of both sides one obtains

∂W

∂X2
=

∫ X1

X1
0

∂f1(X1, X2, X3, I6)

∂X2
dX1 +

∂h(X2, X3, Ii)

∂X2
,

=

∫ X1

X1
0

∂f2(X1, X2, X3, I4)

∂X1
dX1 +

∂h(X2, X3, Ii)

∂X2
,

= f2(X1, X2, X3, I4)− f2(X1
0 , X

2, X3, I4) +
∂h(X2, X3, Ii)

∂X2
.

(3.49)

From (3.49) and (3.45)2 one concludes that

∂h(X2, X3, Ii)

∂X2
= f2(X1

0 , X
2, X3, I4) . (3.50)

Thus ∫ X2

X2
0

∂h(X2, X3, Ii)

∂X2
dX2 =

∫ X2

X2
0

f2(X1
0 , X

2, X3, I4) dX2 , (3.51)
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where X2
0 is some fixed value of X2. Hence

h(X2, X3, Ii) = h(X2
0 , X

3, Ii) +

∫ X2

X2
0

f2(X1
0 , X

2, X3, I4) dX2 . (3.52)

Using the above relation in (3.48), one has

W (X, Ii) = h(X2
0 , X

3, Ii) +

∫ X1

X1
0

f1(X1, X2, X3, I6) dX1 +

∫ X2

X2
0

f2(X1
0 , X

2, X3, I4) dX2 . (3.53)

Taking partial derivative with respect to X3 of the above relation one obtains

∂W

∂X3
=
∂h(X2

0 , X
3, Ii)

∂X3
+

∫ X1

X1
0

∂f1(X1, X2, X3, I6)

∂X3
dX1 +

∫ X2

X2
0

∂f2(X1
0 , X

2, X3, I4)

∂X3
dX2 ,

=
∂h(X2

0 , X
3, Ii)

∂X3
+

∫ X1

X1
0

∂f3(X1, X2, X3, I4, I6)

∂X1
dX1 +

∫ X2

X2
0

∂f3(X1
0 , X

2, X3, I4, I6)

∂X2
dX2 ,

=
∂h(X2

0 , X
3, Ii)

∂X3
+ f3(X1, X2, X3, I4, I6)− f3(X1

0 , X
2
0 , X

3, I4, I6) .

(3.54)

Thus using (3.45)3 one concludes that

∂h(X2
0 , X

3, Ii)

∂X3
= f3(X1

0 , X
2
0 , X

3, I4, I6) . (3.55)

Hence ∫ X3

X3
0

∂h(X2
0 , X

3, Ii)

∂X3
dX3 =

∫ X3

X3
0

f3(X1
0 , X

2
0 , X

3, I4, I6) dX3 , (3.56)

where X3
0 is some fixed value of X3. Thus

h(X2
0 , X

3, Ii) = h(X2
0 , X

3
0 , Ii) +

∫ X3

X3
0

f3(X1
0 , X

2
0 , X

3, I4, I6) dX3 . (3.57)

Using the above relation in (3.53), one obtains

W (X, Ii) = h(X2
0 , X

3
0 , Ii) +

∫ X1

X1
0

f1(X1, X2, X3, I6) dX1 +

∫ X2

X2
0

f2(X1
0 , X

2, X3, I4) dX2

+

∫ X3

X3
0

f3(X1
0 , X

2
0 , X

3, I4, I6) dX3 .

(3.58)

Substituting (3.47) into (3.58) one finds

W (X, Ii) = Ŵ (X) +W (Ii) +

∫ X1

X1
0

¯̄f1(X1, X3, I6) dX1 +

∫ X2

X2
0

¯̄f2(X2, X3, I4) dX2

+

∫ X3

X3
0

f3(X1
0 , X

2
0 , X

3, I4, I6) dX3 .

(3.59)

Noting that the term Ŵ (X) is mechanically inconsequential, we have proved the following result.

Proposition 3.2. For compressible nonlinear orthotropic solids universal deformations are homogeneous,
the universal material preferred directions are everywhere the same three mutually orthogonal constant unit
vectors N1,N2, and N3, and the universal inhomogeneity has the following form

W (X, I1, I2, I3, I4, I5, I6, I7) = W (I1, I2, I3, I4, I5, I6, I7)

+ W̃ (X3, I4, I6) +ıW (X2, X3, I4) + Ŵ (X1, X3, I6) ,
(3.60)

where the Cartesian coordinate lines are the orthotropy directions.
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While the form of this strain-energy density seems involved, it can be written explicitly in terms of the
Cartesian components of C as

W (X,C) = W (C) + W̃ (X3, C11, C22) +ıW (X2, X3, C11) + Ŵ (X1, X3, C22) . (3.61)

3.3 Monoclinic solids

Note that orthogonality of the material preferred directions was not assumed when deriving the constraints
(3.35)-(3.40), i.e., these universality constraints hold for monoclinic solids as well. However, there are the
following extra universality constraints [Yavari and Goriely, 2021]:

I8, and I9 are constant , (3.62)

(na3 n
b
3),b = `ab3 ,b = 0 . (3.63)

For compressible monoclinic solids the universality constraints (3.35)-(3.40) imply that universal deforma-
tions are homogeneous, and the three unit vectors N1,N2, and N3 are constant. This means that (3.62),
(3.63) are trivially satisfied. Let us assume that the angle between N1 and N2 is θ (0 < θ < π

2 ). In the
reference configuration we choose a Cartesian coordinate system (X1, X2, X3) such that

N3 =
∂

∂X3
. (3.64)

In general, N1 makes and angle α with the X1-axis, and thus

N1 = cosα
∂

∂X1
+ sinα

∂

∂X2
, N2 = cos(α+ θ)

∂

∂X1
+ sin(α+ θ)

∂

∂X2
. (3.65)

The second set of universality constraints for inhomogeneous monoclinic solids include those of orthotropic
solids, i.e., Eqs.(3.42). There is one extra universality constrain that reads:

`ab3 (F−1)AbW8,A = 0 . (3.66)

This is equivalent to
(
NB

1 N
A
2 +NA

1 N
B
2

)
W8,A = 0, and is trivially satisfied for B = 3. For B = 1, 2 it gives

us
2 cosα cos(α+ θ)W8,1 + sin(2α+ θ)W8,2 = 0 ,

sin(2α+ θ)W8,1 + 2 sinα sin(α+ θ)W8,2 = 0 .
(3.67)

These need to be satisfied for arbitrary α, and θ, and hence

W8,1 = W8,2 = 0 . (3.68)

The first three universality constraints in (3.42), and (3.42)5 and (3.42)7 imply that

W1,A = W2,A = W3,A = W5,A = W7,A = 0, A = 1, 2, 3 . (3.69)

The constraint (3.42)4 implies that

∂W4

∂XA
NA

1 = cosα
∂W6

∂X1
+ sinα

∂W6

∂X2
= 0 , (3.70)

which must hold for any α, and hence
∂W4

∂X1
=
∂W4

∂X2
= 0 . (3.71)

The constraint (3.42)6 implies that

∂W6

∂XA
NA

2 = cos(α+ θ)
∂W6

∂X1
+ sin(α+ θ)

∂W6

∂X2
= 0 . (3.72)
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This needs to hold for any 0 < θ < π
2 , and hence

∂W6

∂X1
=
∂W6

∂X2
= 0 . (3.73)

From Eqs. (3.68), (3.69), (3.71), and (3.73) one has

∂W

∂X1
= f1(X, I9) ,

∂W

∂X2
= f2(X, I9) ,

∂W

∂X3
= f3(X, I4, I6, I8, I9) . (3.74)

Using (3.74)1, one can write

W (X, Ii) =

∫ X1

X1
0

f1(X1, X2, X3, I9) dX1 + h(X2, X3, Ii) . (3.75)

Taking partial derivative with respect to X2 of both sides one obtains

∂W

∂X2
=

∫ X1

X1
0

∂f1(X1, X2, X3, I9)

∂X2
dX1 +

∂h(X2, X3, Ii)

∂X2
,

=

∫ X1

X1
0

∂f2(X1, X2, X3, I9)

∂X1
dX1 +

∂h(X2, X3, Ii)

∂X2
,

= f2(X1, X2, X3, I9)− f2(X1
0 , X

2, X3, I9) +
∂h(X2, X3, Ii)

∂X2
.

(3.76)

From (3.76) and (3.74)2 one concludes that

∂h(X2, X3, Ii)

∂X2
= f2(X1

0 , X
2, X3, I9) . (3.77)

Thus

h(X2, X3, Ii) = h(X2
0 , X

3, Ii) +

∫ X2

X2
0

f2(X1
0 , X

2, X3, I4, I9) dX2 . (3.78)

Using the above relation in (3.75), one writes

W (X, Ii) = h(X2
0 , X

3, Ii) +

∫ X1

X1
0

f1(X1, X2, X3, I9) dX1 +

∫ X2

X2
0

f2(X1
0 , X

2, X3, I9) dX2 . (3.79)

Taking partial derivative with respect to X3 of the above relation one obtains

∂W

∂X3
=
∂h(X2

0 , X
3, Ii)

∂X3
+

∫ X1

X1
0

∂f1(X1, X2, X3, I9)

∂X3
dX1 +

∫ X2

X2
0

∂f2(X1
0 , X

2, X3, I9)

∂X3
dX2 ,

=
∂h(X2

0 , X
3, Ii)

∂X3
+

∫ X1

X1
0

∂f3(X1, X2, X3, I4, I6, I8, I9)

∂X1
dX1

+

∫ X2

X2
0

∂f3(X1
0 , X

2, X3, I4, I6, I8, I9)

∂X2
dX2 ,

=
∂h(X2

0 , X
3, Ii)

∂X3
+ f3(X1, X2, X3, I4, I6, I8, I9)− f3(X1

0 , X
2
0 , X

3, I4, I6, I8, I9) .

(3.80)

Thus using (3.74)3 one concludes that

∂h(X2
0 , X

3, Ii)

∂X3
= f3(X1

0 , X
2
0 , X

3, I4, I6, I8, I9) . (3.81)
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Hence

h(X2
0 , X

3, Ii) = h(X2
0 , X

3
0 , Ii) +

∫ X3

X3
0

f3(X1
0 , X

2
0 , X

3, I4, I6, I8, I9) dX3 . (3.82)

Using the above relation in (3.79), one obtains

W (X, Ii) = h(X2
0 , X

3
0 , Ii) +

∫ X1

X1
0

f1(X1, X2, X3, I9) dX1 +

∫ X2

X2
0

f2(X1
0 , X

2, X3, I9) dX2

+

∫ X3

X3
0

f3(X1
0 , X

2
0 , X

3, I4, I6, I8, I9) dX3 .

(3.83)

Note that the second and third terms on the right-hand side are mechanically inconsequential, and hence,
we have proved the following result.

Proposition 3.3. For compressible nonlinear monoclinic solids universal deformations are homogeneous,
the universal material preferred directions are everywhere the same three constant unit vectors N1,N2, and
N3, such that N3 is perpendicular to the plane of N1 and N2, and the universal inhomogeneity has the
following form

W (X, I1, I2, I3, I4, I5, I6, I7, I8, I9) = W (I1, I2, I3, I4, I5, I6, I7, I8, I9) + W̃ (X3, I4, I6, I8, I9) , (3.84)

where the Cartesian X3-coordinate line is along N3.

Table 1 summarizes our results for inhomogeneous compressible anisotropic solids.

Symmetry Class Energy Function Universal Energy Function

Transversely Isotropic W (X1, X2, X3, I1, I2, I3, I4, I5) W (I1, I2, I3, I4, I5) + W̃ (X2, X3, I4)

Orthotropic W (X1, X2, X3, I1, I2, I3, I4, I5, I6, I7)

W (I1, I2, I3, I4, I5, I6, I7) + W̃ (X3, I4, I6)

+ıW (X2, X3, I4) + Ŵ (X1, X3, I6)

Monoclinic W (X1, X2, X3, I1, I2, I3, I4, I5, I6, I7, I8, I9) W (I1, I2, I3, I4, I5, I6, I7, I8, I9) + W̃ (X3, I4, I6, I8, I9)

Table 1: Universal inhomogeneities for compressible transversely isotropic, orthotropic, and monoclinic solids.

4 Incompressible Inhomogeneous Transversely Isotropic Elastic
Solids

For a body made of an incompressible transversely isotropic solid, the equilibrium equations in the absence
of body forces read:

p,b g
ab = 2

[
W1 b

ab −W2 c
ab +W4 n

a nb +W5 `
ab
]
|b . (4.1)

This is equivalent to exactness of the 1-form

ξ = gam [W1b
mn −W2 c

mn +W4 n
mnn +W5 `

mn]|n dx
a = ξadx

a, (4.2)
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where

ξa = [W1 b
n
a −W2 c

n
a +W4 na n

n +W5 `
n
a ]|n

= W1,n b
n
a −W2,n c

n
a +W4,n na n

n +W5,n `
n
a +W1 b

n
a |n −W2 c

n
a |n +W4 (nan

n)|n +W5 `
n
a |n .

(4.3)

The exactness of ξ implies that dξ = 0 [Yavari, 2013], or equivalently, ξa|b = ξb|a, where

ξa|b = W1b
n
a |nb −W2 c

n
a |nb +W4 (nan

n)|nb +W5 `
n
a |nb

+W1,nb
n
a |b −W2,n c

n
a |b +W4,n (nan

n)|b +W5,n `
n
a |b

+W1,bb
n
a |n −W2,b c

n
a |n +W4,b (nan

n)|n +W5,b `
n
a |n

+W1|nbb
n
a −W2|nb c

n
a +W4|nb nan

n +W5|nb `
n
a .

(4.4)

Note that Wi = Wi(X, I1, I2, I4, I5), i = 1, 2, 4, 5, and thus

W1,b = (F−1)AnW1,A +W11 I1,b +W12I2,b +W14 I4,b +W15 I5,b ,

W2,b = (F−1)AnW2,A +W12 I1,b +W22I2,b +W24 I4,b +W25 I5,b ,

W4,b = (F−1)AnW4,A +W14 I1,b +W24I2,b +W44 I4,b +W45 I5,b ,

W5,b = (F−1)AnW5,A +W15 I1,b +W25I2,b +W45 I4,b +W55 I5,b .

(4.5)

Note also that

W1|bn = (W1,b)|n = W11 I1|bn +W12 I2|bn +W14 I4|bn +W15 I5|bn +W11,n I1,b +W12,n I2,b

+W14,n I4,b +W15,n I5,b +
[
(F−1)AbW1,A

]
|n .

(4.6)

The last term on the right hand-side is simplified as[
(F−1)AbW1,A

]
|n =

∂

∂xn
[
(F−1)AbW1,A

]
− γmnb (F−1)AmW1,A

= (F−1)Bn(F−1)Ab,BW1,A + (F−1)Ab
∂

∂xn
W1,A − γmnb (F−1)AmW1,A .

(4.7)

Notice that

∂

∂xn
W1,A = (F−1)BnW1,AB +

∂

∂XA
[W11 I1,n +W12 I2,n +W14 I4,n +W15 I5,n]

= (F−1)BnW1,AB +W11,A I1,n +W12,A I2,n +W14,A I4,n +W15,A I5,n .
(4.8)

Thus [
(F−1)AbW1,A

]
|n =

[
(F−1)Bn(F−1)Ab,B − γmnb (F−1)Am

]
W1,A + (F−1)Ab (F−1)BnW1,AB

+ (F−1)Ab [W11 I1,n +W12 I2,n +W14 I4,n +W15 I5,n]

=
[
(F−1)Bn(F−1)Ab,B − γmnb (F−1)Am

]
W1,A

+
1

2

[
(F−1)Ab (F−1)Bn + (F−1)Bb (F−1)An

]
W1,AB

+ (F−1)Ab [W11 I1,n +W12 I2,n +W14 I4,n +W15 I5,n] .

(4.9)

Let us denote the independent third order derivatives of the energy function by Wijk = ∂3W
∂Ii∂Ij∂Ik

, ( i ≤ j ≤ k).

Thus
W11,n = (F−1)AnW11,A +W111 I1,n +W112 I2,n +W114 I4,n +W115 I5,n ,

W12,n = (F−1)AnW12,A +W112 I1,n +W122 I2,n +W124 I4,n +W125 I5,n ,

W14,n = (F−1)AnW14,A +W114 I1,n +W124 I2,n +W144 I4,n +W145 I5,n ,

W15,n = (F−1)AnW15,A +W115 I1,n +W125 I2,n +W145 I4,n +W155 I5,n .

(4.10)
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Hence3

W1|bn = W11 I1|bn +W12 I2|bn +W14 I4|bn +W15 I5|bn

+W111 I1,nI1,b +W112(I2,n I1,b + I1,n I2,b) +W114(I4,n I1,b + I1,n I4,b)

+W115(I5,n I1,b + I1,n I5,b) +W122I2,n I2,b +W124(I4,n I2,b + I4,b I2,n)

+W125(I5,n I2,b + I2,n I5,b) +W144I4,n I4,b +W145(I5,n I4,b + I5,b I4,n +W155I5,n I5,b

+
[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
W1,A

+
1

2

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
W1,AB

+
[
(F−1)An I1,b + (F−1)Ab I1,n

]
W11,A +

[
(F−1)An I2,b + (F−1)Ab I2,n

]
W12,A

+
[
(F−1)An I4,b + (F−1)Ab I4,n

]
W14,A +

[
(F−1)An I5,b + (F−1)Ab I5,n

]
W15,A .

(4.11)

Similarly,

W2|bn = W12 I1|bn +W22 I2|bn +W24 I4|bn +W25 I5|bn

+W112 I1,n I1,b +W122(I2,n I1,b + I1,n I2,b) +W222 I2,n I2,b

+W244I4,n I4,b +W255I5,n I5,b +W124(I4,n I1,b + I4,b I1,n)

+W125(I5,n I1,b + I1,n I5,b) +W224(I4,n I2,b + I4,b I2,n)

+W225(I5,n I2,b + I5,b I2,n +W245(I5,n I4,b + I5,b I4,n)

+
[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
W2,A

+
1

2

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
W2,AB

+
[
(F−1)An I1,b + (F−1)Ab I1,n

]
W12,A +

[
(F−1)An I2,b + (F−1)Ab I2,n

]
W22,A

+
[
(F−1)An I4,b + (F−1)Ab I4,n

]
W24,A +

[
(F−1)An I5,b + (F−1)Ab I5,n

]
W25,A ,

(4.12)

W4|bn = W14 I1|bn +W24 I2|bn +W44 I4|bn +W45 I5|bn

+W114 I1,n I1,b +W224 I2,n I2,b +W444 I4,n I4,b +W455 I5,n I5,b

+W124(I2,n I1,b + I1,n I2,b) +W144(I4,n I1,b + I4,b I1,n)

+W244(I4,n I2,b + I2,n I4,b) +W145(I5,n I1,b + I5,b I1,n)

+W245(I5,n I2,b + I2,n I5,b) +W445(I5,n I4,b + I5,b I4,n)

+
[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
W4,A

+
1

2

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
W4,AB

+
[
(F−1)An I1,b + (F−1)Ab I1,n

]
W14,A +

[
(F−1)An I2,b + (F−1)Ab I2,n

]
W24,A

+
[
(F−1)An I4,b + (F−1)Ab I4,n

]
W44,A +

[
(F−1)An I5,b + (F−1)Ab I5,n

]
W45,A ,

(4.13)

3The factor “ 1
2

” on the sixth line is missing in Eqs. (4.7)-(4.9) in [Yavari, 2021]. However, this typo did not affect any of
the results of that work.
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and

W5|bn = W15 I1|bn +W25 I2|bn +W45 I4|bn +W55 I5|bn

+W115 I1,n I1,b +W225 I2,n I2,b +W445 I4,n I4,b +W555 I5,n I5,b

+W125(I2,n I1,b + I1,n I2,b) +W145(I4,n I1,b + I4,b I2,1)

+W155(I5,n I1,b + I1,n I5,b) +W245(I4,n I2,b + I4,b I2,n)

+W255(I5,n I2,b + I2,n I5,b) +W455(I5,n I4,b + I5,b I4,n)

+
[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
W5,A

+
1

2

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
W5,AB

+
[
(F−1)An I1,b + (F−1)Ab I1,n

]
W15,A +

[
(F−1)An I2,b + (F−1)Ab I2,n

]
W25,A

+
[
(F−1)An I4,b + (F−1)Ab I4,n

]
W45,A +

[
(F−1)An I5,b + (F−1)Ab I5,n

]
W55,A .

(4.14)

The symmetry ξa|b = ξb|a forces the coefficient of each partial derivative of the energy function to be
symmetric. Following the notation introduced in [Yavari and Goriely, 2021], we define Aκ

ab to be the matrix
of the coefficient of Wκ, where κ is a multi-index. The first nine terms are identical to those of homogeneous
isotropic solids: κ ∈ Kiso = {1, 2, 11, 22, 12, 111, 222, 112, 122}. They read

A1
ab = bna |bn ,

A2
ab = −cna |bn ,

A11
ab = bna |n I1,b + (bna I1,n)|b ,

A22
ab = −cna |n I2,b − (cna I2,n)|b ,

A12
ab = (bna I2,n)|b + bna |n I2,b −

[
(cna I1,n)|b + cna |n I1,b

]
,

A111
ab = bna I1,n I1,b ,

A222
ab = −cna I2,n I2,b ,

A112
ab = bna (I1,b I2,n + I1,n I2,b)− cna I1,n I1,b ,

A122
ab = bna I2,b I2,n − cna (I1,b I2,n + I1,n I2,b) ,

(4.15)

where bna = bmngma, and cna = cmngma. It is well known that the symmetry of the above nine terms admits
six families of deformations [Ericksen, 1954, Singh and Pipkin, 1965, Klingbeil and Shield, 1966]. For both
homogeneous and inhomogeneous transversely isotropic solids, we have 25 extra terms:

K = {4, 5, 44, 55, 14, 15, 24, 25, 45, 444, 555, 114, 115, 124, 125,

144, 145, 155, 224, 225, 244, 245, 255, 445, 455} .
(4.16)

These terms read [Yavari and Goriely, 2021]:

A4
ab = (na n

n)|nb ,

A5
ab = `na |nb ,

A44
ab = (na n

n)|n I4,b + (na n
n I4,n)|b ,

A55
ab = `na |n I5,b + (`na I5,n)|b ,

A14
ab = bna |n I4,b + (bna I4,n)|b + (na n

n)|n I1,b + (na n
nI1,n)|b ,

A15
ab = bna |n I5,b + (bna I5,n)|b + `na |n I1,b + (`na I1,n)|b ,

A24
ab = (na n

n)|n I2,b + (na n
n I2,n)|b −

[
cna |n I4,b + (cna I4,n)|b

]
,

A25
ab = `na |n I2,b + (`na I2,n)|b −

[
cna |n I5,b + (cna I5,n)|b

]
,

A45
ab = (na n

n)|n I5,b + (na n
n I5,n)|b + `na |n I4,b + (`na I4,n)|b ,

(4.17)
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and
A444
ab = na n

n I4,n I4,b ,

A555
ab = `na I5,n I5,b ,

A114
ab = bna (I4,n I1,b + I4,b I1,n) + na n

nI1,n I1,b ,

A115
ab = bna (I5,n I1,b + I5,b I1,n) + `na I1,n I1,b ,

A124
ab = bna (I4,n I2,b + I4,b I2,n)− cna (I4,n I1,b + I4,b I1,n) + na n

n (I2,n I1,b + I2,b I1,n) ,

A125
ab = bna (I5,n I2,b + I5,b I2,n)− cna (I5,n I1,b + I5,b I1,n) + `na (I2,n I1,b + I2,b I1,n) ,

A144
ab = bna I4,n I4,b + na n

n (I4,n I1,b + I4,b I1,n) ,

A145
ab = bna (I5,n I4,b + I5,b I4,n) + na n

n (I5,n I1,b + I5,b I1,n) + `na (I4,n I1,b + I4,b I1,n) ,

A155
ab = bna I5,nI5,b + `na (I5,n I1,b + I5,b I1,n) ,

A224
ab = na n

n I2,n I2,b − cna (I4,n I2,b + I4,b I2,n) ,

A225
ab = `na I2,n I2,b − cna (I5,n I2,b + I5,b I2,n) ,

A244
ab = −cna I4,n I4,b + na n

n (I4,n I2,b + I4,b I2,n) ,

A245
ab = na n

n (I5,n I2,b + I5,b I2,n) + `na (I4,n I2,b + I4,b I2,n)− cna (I5,n I4,b + I5,b I4,n) ,

A255
ab = `na (I5,n I2,b + I5,b I2,n)− cnaI5,n I5,b ,

A445
ab = na n

n (I5,n I4,b + I5,b I4,n) + `na I4,n I4,b ,

A455
ab = na n

n I5,n I5,b + `na (I5,n I4,b + I5,b I4,n) .

(4.18)

It turns out that the known universal deformations are invariant with respect to certain Lie subgroups of
the special Euclidean group [Goodbrake et al., 2020]. In [Yavari and Goriely, 2021] we conjectured that for
each family of universal deformations the corresponding universal material preferred direction vector N is
invariant under the same Lie subgroup. For each of the six families of universal deformations we found the
corresponding universal material preferred directions.

For inhomogeneous incompressible transversely isotropic solids, in addition to the universality constraints
(4.15), (4.17), and (4.18), there are the following eighteen extra sets of universality constraints (each term
must be symmetric in (ab) for A = 1, 2, 3, and B ≥ A):

C1A
ab = (F−1)An b

n
a |b + (F−1)Ab b

n
a |n + bna

[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
,

C2A
ab = (F−1)An c

n
a |b + (F−1)Ab c

n
a |n + cna

[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
,

C11A
ab = bna

[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C22A
ab = cna

[
(F−1)An I2,b + (F−1)Ab I2,n

]
,

C12A
ab = bna

[
(F−1)An I2,b + (F−1)Ab I2,n

]
− cna

[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C1AB
ab = bna

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
,

C2AB
ab = cna

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
,

(4.19)
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and

C4A
ab = (F−1)An (nan

n)|b + (F−1)Ab (nan
n)|n + na n

n
[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
,

C5A
ab = (F−1)An `

n
a |b + (F−1)Ab `

n
a |n + `na

[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
,

C14A
ab = bna

[
(F−1)An I4,b + (F−1)Ab I4,n

]
+ na n

n
[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C15A
ab = bna

[
(F−1)An I5,b + (F−1)Ab I5,n

]
+ `na

[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C24A
ab = −cna

[
(F−1)An I4,b + (F−1)Ab I4,n

]
+ na n

n
[
(F−1)An I2,b + (F−1)Ab I2,n

]
,

C25A
ab = −cna

[
(F−1)An I5,b + (F−1)Ab I5,n

]
+ `na

[
(F−1)An I2,b + (F−1)Ab I2,n

]
,

C44A
ab = na n

n
[
(F−1)An I4,b + (F−1)Ab I4,n

]
,

C45A
ab = na n

n
[
(F−1)An I5,b + (F−1)Ab I5,n

]
+ `na

[
(F−1)An I4,b + (F−1)Ab I4,n

]
,

C55A
ab = `na

[
(F−1)An I5,b + (F−1)Ab I5,n

]
,

C4AB
ab = na n

n
[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
,

C5AB
ab = `na

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
.

(4.20)

The set of universality constraints (4.19) are identical to those of inhomogeneous isotropic solids [Yavari,
2021]. For a given family of deformations and material preferred directions that are consistent with (4.15),
(4.17), and (4.18), the corresponding inhomogeneities that respect (4.19) and (4.20) are celled the universal
inhomogeneities. In the following subsections, for each of the six families of universal deformations the
corresponding universal inhomogeneities will be determined. This will be done by looking at each term in
(4.19) and (4.20) and examining its symmetries. If a particular term cannot be symmetric the corresponding
derivative of W has to vanish, giving us a constraint on the form of W .

4.1 Family 0: Homogeneous deformations

With respect to the Cartesian coordinates {XA} and {xa} in the reference and current configurations,
respectively, a homogeneous deformation has the representation xa(X) = F aAX

A + ca, where [F aA] is a
constant matrix and [ca] is a constant vector. The incompressibility constraint is then det[F aA] = 1. For a
homogeneous deformation the right Cauchy-Green tensor has the constant components CAB = F aAF

a
A δab,

which implies that C[ is invariant under the action of T (3) ⊂ SE(3)—the group of translations. In [Yavari
and Goriely, 2021] it was assumed that N(X) is invariant under T (3) as well, i.e., N is a constant unit
vector. We choose the Cartesian coordinates (X1, X2, X2) such that

N =
∂

∂X1
, (4.21)

i.e., NA = δA1 . With this assumption the universality constraints (4.17) and (4.18) are satisfied. For
homogeneous deformations, the first five sets of universality constraints (4.19) are trivially satisfied. The
last two sets force the deformation to be the identity [Yavari, 2021]. This implies that

W1,AB = W2,AB = 0 , A,B = 1, 2.3 . (4.22)

For isotropic solids, the relations W1,AB = (W1,A),B = 0, and W2,AB = (W2,A),B = 0 imply that

∂W1

∂X1
= f1(I1, I2),

∂W1

∂X2
= f2(I1, I2),

∂W1

∂X3
= f3(I1, I2) ,

∂W2

∂X1
= g1(I1, I2),

∂W2

∂X2
= g2(I1, I2),

∂W2

∂X3
= g3(I1, I2) .

(4.23)

Note that

∂f1(I1, I2)

∂I2
=
∂g1(I1, I2)

∂I1
,

∂f2(I1, I2)

∂I2
=
∂g2(I1, I2)

∂I1
,

∂f3(I1, I2)

∂I2
=
∂g3(I1, I2)

∂I1
. (4.24)
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From (4.23)1, one concludes that

W1(X, I1, I2) = f0(I1, I2) + f1(I1, I2)X1 + f2(I1, I2)X2 + f3(I1, I2)X3 . (4.25)

Thus

W (X, I1, I2) =

∫
f0(I1, I2) dI1 +X1

∫
f1(I1, I2) dI1 +X2

∫
f2(I1, I2) dI1

+X3

∫
f3(I1, I2) dI1 +R(X, I2) ,

(4.26)

for some function R(X, I2). Hence

W2(X, I1, I2) =

∫
∂f0(I1, I2)

∂I2
dI1 +X1

∫
∂f1(I1, I2)

∂I2
dI1 +X2

∫
∂f2(I1, I2)

∂I2
dI1

+X3

∫
∂f3(I1, I2)

∂I2
dI1 +

∂R(X, I2)

∂I2

=

∫
∂f0(I1, I2)

∂I2
dI1 +X1

∫
∂g1(I1, I2)

∂I1
dI1 +X2

∫
∂g2(I1, I2)

∂I1
dI1

+X3

∫
∂g3(I1, I2)

∂I1
dI1 +

∂R(X, I2)

∂I2

=

∫
∂f0(I1, I2)

∂I2
dI1 + g1(I1, I2)X1 + g2(I1, I2)X2 + g3(I1, I2)X3 +

∂R(X, I2)

∂I2
.

(4.27)

Substituting the above identity into (4.23)2 one concludes that

∂

∂X1

∂R(X, I2)

∂I2
=

∂

∂X2

∂R(X, I2)

∂I2
=

∂

∂X3

∂R(X, I2)

∂I2
= 0 . (4.28)

This implies that
∂R(X, I2)

∂I2
= r(I2) , (4.29)

and henceR(X, I2) = R1(X)+R2(I2). Using this in (4.26), up to a mechanically inconsequential X dependent
term one concludes that for an incompressible isotropic solid the energy function is a linear function of the
Cartesian coordinates, i.e.,

W (X, I1, I2) = W (I1, I2) + H(I1, I2) ·X , (4.30)

for some vector H(I1, I2).4

In the case of inhomogeneous transversely isotropic solids, one still has the constraints (4.22). The first
nine sets of universality constraints (4.20) are trivially satisfied for homogeneous deformations and constant
N. The last two sets of constraints in (4.20) are nontrivial. The universality constraints corresponding to
Eq.(4.20)10 read

na
[
NA (F−1)Bb +NB (F−1)Ab

]
W4,AB = nb

[
NA (F−1)Ba +NB (F−1)Aa

]
W4,AB . (4.31)

Knowing that NA = δA1 , the above constraints are rewritten as[
na(F−1)Ab − nb(F−1)Aa

]
W4,1A = 0 , a, b = 1, 2, 3 . (4.32)

This is equivalent to

F aMF
b
N

[
na(F−1)Ab − nb(F−1)Aa

]
W4,1A = 0 , M,N = 1, 2, 3 , (4.33)

4In [Yavari, 2021] from (4.22) it was incorrectly concluded that W (X, I1, I2) = W (I1, I2). Proposition 4.1 in [Yavari, 2021]
should be corrected to read: “For inhomogeneous incompressible nonlinear isotropic solids, Family 0 deformations are universal
for any energy function of the form W (X, I1, I2) = W (I1, I2) + H(I1, I2) ·X.”
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which is simplified to read

CM1W4,1N − CN1W4,1M = 0 , M,N = 1, 2, 3 . (4.34)

These are three constraints corresponding to (M,N) = (1, 2), (1, 3), and (2, 3), and read

C11W4,12 − C21W4,11 = 0 ,

C11W4,13 − C31W4,11 = 0 ,

C21W4,13 − C31W4,12 = 0 .

(4.35)

Notice that these need to be satisfied for an arbitrary matrix [CAB ] with unit determinant. This means that
W4,11 = W4,12 = W4,13 = 0.

The universality constraints corresponding to Eq.(4.20)11 read

`na
[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
W5,AB

= `nb
[
(F−1)An (F−1)Ba + (F−1)Bn (F−1)Aa

]
W5,AB , a, b = 1, 2, 3 .

(4.36)

This can be simplified to read

CK1 [CM1W5,KN + CMKW5,1N − CN1W5,KM − CNKW5,1M ] = 0 , M,N = 1, 2, 3 . (4.37)

These are three constraints corresponding to (M,N) = (1, 2), (1, 3), and (2, 3), and read(
2C1

1C21 + C2
1C22 + C3

1C23

)
W5,11 −

(
2C1

1C11 + C3
1C13

)
W5,12 + C3

1C21W5,13

− C2
1C11W5,22 − C3

1C11W5,23 = 0 ,(
2C1

1C31 + C2
1C32 + C3

1C33

)
W5,11 + C2

1C31W5,12 −
(
2C1

1C11 + C2
1C12

)
W5,13

− C2
1C11W5,23 − C3

1C11W5,33 = 0 ,(
2C1

1C31 + C2
1C32 + C3

1C33

)
W5,12 −

(
2C1

1C21 + C2
1C22 + C3

1C23

)
W5,13 + C2

1C31W5,22

+
(
C3

1C31 − C2
1C21

)
W5,23 − C3

1C21W5,33 = 0 .

(4.38)

These must be satisfied for an arbitrary matrix [CAB ] with unit determinant. If [CAB ] is diagonal, one
concludes that W5,12 = W5,13 = 0. Considering simple shear in the X1X2-plane (C13 = C23 = 0), one
concludes that W5,11 = W5,22 = W5,23 = 0. Substituting these in the above equations, one concludes that
W5,33 = 0. Therefore, W4,AB = 0.

In summary, for the universality constraints to hold one must have

(W1,A),B = (W2,A),B = (W4,1),B = (W5,A),B = 0 , A,B = 1, 2, 3 . (4.39)

Using arguments similar to those used in deriving (4.30), one can show that the above constraints imply the
following proposition.

Proposition 4.1. For inhomogeneous incompressible nonlinear transversely isotropic solids with material
preferred direction parallel to the X1-axis in a Cartesian coordinate system (X1, X2, X3), Family 0 defor-
mations are universal for any energy function of the following form

W (X, I1, I2, I4, I5) = W (I1, I2, I4, I5) + H(I1, I2, I4, I5) ·X + W̃ (X2, X3, I4) . (4.40)

Remark 4.2. Note that the last term of the energy function in (4.40) has a form identical to that of
compressible orthotropic solids (3.34).
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4.2 Family 1: Bending, stretching, and shearing of a rectangular block

Consider a rectangular block and a Cartesian coordinate system (X,Y, Z) with coordinate planes parallel to
the faces of the block. In the current configuration cylindrical coordinates (r, θ, z) are used. With respect to
these coordinates, the deformations given by Family 1 have the following representation

r(X,Y, Z) =
√
C1(2X + C4) , θ(X,Y, Z) = C2(Y + C5) , z(X,Y, Z) =

Z

C1 C2
− C2 C3Y + C6 , (4.41)

where C1, ..., C6 are constants. The right Cauchy-Green strain reads

[CAB ] =



C1

2X+C4
0 0

0 C2
2

[
C1(2X + C4) + C2

3

]
−C3

C1

0 −C3

C1

1
C2

1 C
2
2


, (4.42)

and is independent of Y and Z, i.e., C[ is invariant under the action of T (2) ⊂ SE(3). Yavari and Goriely
[2021] assumed that N has the same symmetry, i.e.,

N(X,Y, Z) =



N1(X)

N2(X)

N3(X)


, (4.43)

where (N1(X))2 + (N2(X))2 + (N3(X))2 = 1. It was shown that the universal material preferred direction
has the following possible forms

N =



±1

0

0


, N =



0

cosψ(X)

± sinψ(X)


, (4.44)

where ψ(X) is an arbitrary function. Notice that (4.44)1 corresponds to a uniform distribution of fibers
parallel to the X-axis. In the other universal material preferred direction distribution (4.44)2, for fixed X
fibers make an angle ψ(X) with the Y -axis, and are distributed uniformly in the Y Z-plane.

In [Yavari, 2021] it was shown that the constraints (4.19) imply that

∂W1

∂Y
=
∂W1

∂Z
=
∂W2

∂Y
=
∂W2

∂Z
= 0 . (4.45)
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The above relations hold for inhomogeneous transversely isotropic solids as well. For the universal material
preferred direction (4.44)1, one can show that5

C4A
[ab] = 0, for (A, a, b) = (2, 1, 2)⇒ C2

1 = 0 ,

C4A
[ab] = 0, for (A, a, b) = (3, 1, 2)⇒ C3

1 C2 C3 = 0 ,

C5A
[ab] = 0, for (A, a, b) = (2, 1, 2)⇒ [C1(C4 + 2X)]

3
2 C4 = 0 ,

C5A
[ab] = 0, for (A, a, b) = (3, 1, 2)⇒ C2 C3 [C1(C4 + 2X)]

5
2 = 0 .

(4.46)

These constraints cannot be satisfied, and hence

∂W4

∂Y
=
∂W4

∂Z
=
∂W5

∂Y
=
∂W5

∂Z
= 0 . (4.47)

Similarly, for the universal material preferred direction (4.44)2 one has the following constraints:

• C4A
[ab] = 0, for (A, a, b) = (2, 1, 2) requires that

C2

√
C1(C4 + 2X) cosψ [2(C4 + 2X)ψ′ sinψ − 3 cosψ] = 0 . (4.48)

• C4A
[ab] = 0, for (A, a, b) = (3, 1, 2) implies that

C2

√
C1(C4 + 2X)

[
C1C

2
2C3 cos2 ψ + (C4 + 2X)ψ′ cos 2ψ + sin 2ψ

]
= 0 . (4.49)

• C5A
[ab] = 0, for (A, a, b) = (2, 1, 2) requires that

C2

√
C1(C4 + 2X)

{
2(C4 + 2X)ψ′

[
C1C

2
2 sin 2ψ

(
C1C4 + 2C1X + C2

3

)
+ C3 cos 2ψ

]
− 2C1 C

2
2 cos2 ψ

[
5C1(C4 + 2X) + 3C2

3

]
+ 3C3 sin 2ψ

}
= 0 .

(4.50)

• C5A
[ab] = 0, for (A, a, b) = (3, 1, 2) requires that

(C4 + 2X)2ψ′ cos 2ψ
[
C2

1 C
4
2

(
C1(C4 + 2X) + C2

3

)
+ 1
]

+ (C4 + 2X)
{
C3

1C
6
2C3 cos 2ψ

(
C1 C4 + 2C1X + C2

3

)
+ sin 2ψ

[
2C3

1 C
4
2 (C4 + 2X) + 1

]
+ C1 C

2
2 C3

[
C2

1 C
4
2

(
C1 C4 + 2C1X + C2

3

)
− 2
] }

= 0 .

(4.51)

None of the above constraints can be satisfied, and hence, (4.47) holds for this case as well. From (4.45) and
(4.47) one concludes that up to a mechanically inconsequential function of (X,Y, Z), the energy function
must have the form W = W (X, I1, I2, I4, I5). For energy functions of this form, in (4.19) and (4.20) one only
needs to check the symmetry of the terms with A = 1, and A = B = 1. All those terms are symmetric.

Proposition 4.3. For inhomogeneous incompressible nonlinear transversely isotropic solids with any of the
universal material preferred directions given in (4.44), Family 1 deformations are universal for any energy
function of the form W = W (X, I1, I2, I4, I5).

5All the symbolic computations in this paper were performed using Mathematica Version 12.3.0.0, Wolfram Research,
Champaign, IL.
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4.3 Family 2: Straightening, stretching, and shearing of a sector of a cylindrical
shell

Consider a sector of a cylindrical shell that is parametrized by cylindrical coordinates (R,Θ, Z). In the
deformed configuration Cartesian coordinates (x, y, z) are used. Family 2 deformations have the following
representation

x(R,Θ, Z) =
1

2
C1 C

2
2 R

2 + C4 , y(R,Θ, Z) =
Θ

C1 C2
+ C5 , z(R,Θ, Z) =

C3

C1 C2
Θ +

1

C2
Z + C6 , (4.52)

and hence

[CAB ] =



C2
1 C

4
2R

2 0 0

0
C2

3+1

C2
1 C

2
2

C3

C1 C2
2

0 C3

C1 C2
2

1
C2

2


. (4.53)

It is seen that the right Cauchy-Green strain is independent of Θ and Z. In [Yavari and Goriely, 2021] it
was assumed that N has the same symmetry, i.e.,

N(R,Θ, Z) =



N1(R)

N2(R)

N3(R)


, (4.54)

such that (N1(R))2+R2(N2(R))2+(N3(R))2 = 1. It was shown that there are two solutions for the universal
material preferred direction:

N =



±1

0

0


, N =



0

1
R cosχ(R)

± sinχ(R)


, (4.55)

where χ(R) is an arbitrary function. In the case of (4.55)1 fibers are distributed radially. In the solution
(4.55)2, if cosψ(R) 6= 0,±1 fibers are distributed helically, if cosψ(R) = 0 they are distributed parallel to
the axis of the shell, and if cosψ(R) = ±1 they are concentric circles in the (R,Θ)-plane.

In [Yavari, 2021] it was shown that the constraints (4.19) imply that

∂W1

∂Θ
=
∂W1

∂Z
=
∂W2

∂Θ
=
∂W2

∂Z
= 0 . (4.56)

The above relations hold for inhomogeneous transversely isotropic solids as well. For the universal material
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preferred direction (4.55)1, one can show that

C4A
[ab] = 0, for (A, a, b) = (2, 1, 2)⇒ C2

1 C
3
2 = 0 ,

C4A
[ab] = 0, for (A, a, b) = (3, 1, 2)⇒ C1 C

3
2 C3 = 0 ,

C5A
[ab] = 0, for (A, a, b) = (2, 1, 2)⇒ C4

1 C
7
2 R

2 = 0 ,

C5A
[ab] = 0, for (A, a, b) = (3, 1, 2)⇒ C3

1 C
7
2 C3R

2 = 0 .

(4.57)

These constraints cannot be satisfied, and thus

∂W4

∂Θ
=
∂W4

∂Z
=
∂W5

∂Θ
=
∂W5

∂Z
= 0 . (4.58)

Similarly, for the universal material preferred direction (4.55)2 one has the following constraints:

• C4A
[ab] = 0, for (A, a, b) = (2, 1, 2) requires that

cosχ(R) [Rχ′(R) sinχ(R) + cosχ(R)] = 0 . (4.59)

• C4A
[ab] = 0, for (A, a, b) = (3, 1, 2) implies that

sin 2χ(R)− 2Rχ′(R) cos 2χ(R) = 0 . (4.60)

• C5A
[ab] = 0, for (A, a, b) = (2, 1, 2) requires that

Rχ′(R)
[(

1 + C2
3

)
sin 2χ(R)− C1C3R cos 2χ(R)

]
+ cosχ(R)

[
3C1C3R sinχ(R) + 4

(
1 + C2

3

)
cosχ(R)

]
= 0 .

(4.61)

• C5A
[ab] = 0, for (A, a, b) = (3, 1, 2) requires that

−R
(
1 + C2

1R
2 + C2

3

)
χ′(R) cos 2χ(R) +

(
3 + C2

1R
2 + 3C2

3

)
sin 2χ(R) + 2C1 C3R = 0 . (4.62)

None of the above constraints can be satisfied,6 and thus, (4.58) holds for this case as well. From (4.56) and
(4.58) one concludes that up to a mechanically inconsequential function of (R,Θ, Z), the energy function
must have the form W = W (R, I1, I2, I4, I5). For energy functions of this form, in (4.19) and (4.20) one only
needs to check the symmetry of the terms with A = 1, and A = B = 1. All those terms are symmetric.

Proposition 4.4. For inhomogeneous incompressible nonlinear transversely isotropic solids with any of the
universal material preferred directions given in (4.55), Family 2 deformations are universal for any energy
function of the form W = W (R, I1, I2, I4, I5).

4.4 Family 3: Inflation, bending, torsion, extension, and shearing of a sector of
an annular wedge

Family 3 deformations, with respect to the cylindrical coordinates (R,Θ, Z) and (r, θ, z) in the reference and
current configurations, respectively, have the following representation

r(R,Θ, Z) =

√
R2

C1 C4 − C2 C3
+ C5 , θ(R,Θ, Z) = C1Θ + C2Z + C6 , z(R,Θ, Z) = C3Θ + C4Z + C7 ,

(4.63)

6Note that we are finding the universal inhomogeneities for an arbitrary universal material preferred direction in (4.55)2,
and hence, cosχ(R) 6= 0, in general, i.e., (4.59) cannot be satisfied.
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and hence

[CAB ] =



R2

K(KC5+R2) 0 0

0 C2
3 + C2

1

[
R2

K + C5

]
C1C2

[
R2

K + C5

]
+ C3C4

0 C1C2

[
R2

K + C5

]
+ C3C4 C2

4 + C2
2

[
R2

K + C5

]


, (4.64)

where K = C1C4 − C2C3. Notice that C[ is independent of Θ and Z. In [Yavari and Goriely, 2021] it was
assumed that N has the same symmetry, i.e.,

N(R,Θ, Z) =



N1(R)

N2(R)

N3(R)


, (4.65)

where (N1(R))2 +R2(N2(R))2 + (N3(R))2 = 1. It was shown that there are two solutions for the universal
material preferred direction:

N =



±1

0

0


, N =



0

1
R cosψ(R)

± sinψ(R)


, (4.66)

where ψ(R) is an arbitrary function.
In [Yavari, 2021] it was shown that for this family of deformations constraints (4.19) imply that

∂W1

∂Θ
=
∂W1

∂Z
=
∂W2

∂Θ
=
∂W2

∂Z
= 0 . (4.67)

The above relations hold for inhomogeneous transversely isotropic solids as well. For the universal material
preferred direction (4.66)1, one can show that

C4A
[ab] = 0, for (A, a, b) = (2, 1, 2)⇒ C4

(
−2C2 C3 C5 + 2C1 C4 C5 +R2

)
= 0 ,

C4A
[ab] = 0, for (A, a, b) = (3, 1, 2)⇒ C3

(
−2C2 C3 C5 + 2C1 C4 C5 +R2

)
= 0 ,

C5A
[ab] = 0, for (A, a, b) = (2, 1, 2)⇒ C4

(
−4C2 C3 C5 + 4C1 C4 C5 +R2

)
= 0 ,

C5A
[ab] = 0, for (A, a, b) = (3, 1, 2)⇒ C3

(
−4C2 C3 C5 + 4C1 C4 C5 +R2

)
= 0 .

(4.68)

These constraints cannot be satisfied, and hence

∂W4

∂Θ
=
∂W4

∂Z
=
∂W5

∂Θ
=
∂W5

∂Z
= 0 . (4.69)
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Similarly, for the universal material preferred direction (4.66)2 C4A
[ab] = 0, for (A, a, b) = (2, 1, 2) requires that:

(
C1 C4 C5 − C2 C3 C5 +R2

){
2C3

1 C
2
4 C5 − 4C2

1 C2 C3 C4 C5 + C2
1 C2 C

2
4 C5R sin 2ψ(R)

− C2
1 C4R

2 + cos 2ψ(R)
[
2C3

1 C
2
4 C5 − C2

1 C4

(
4C2 C3 C5 +R2

)
+ 2C1C

2
2C

2
3C5 + C2

2C4R
4
]

+ 2C1 C
2
2 C

2
3 C5 − 2C1 C

2
2 C3 C4 C5R sin 2ψ(R)

− 2Rψ′(R)(C2 C3 − C1 C4)
(
−C1 C4 C5 + C2 C3 C5 −R2

)
[C2R cos 2ψ(R)− C1 sin 2ψ(R)]

− 3C1 C2 C4R
3 sin 2ψ(R) + C3

2 C
2
3 C5R sin 2ψ(R) + C2

2 C3R
3 sin 2ψ(R)− C2

2 C4R
4
}

= 0 .

(4.70)

The constraints C4A
[ab] = 0, for (A, a, b) = (3, 1, 2), C5A

[ab] = 0, for (A, a, b) = (2, 1, 2), and C5A
[ab] = 0, for

(A, a, b) = (3, 1, 2) require vanishing of some lengthy expressions that we do not report here. None of these
four constraints can be satisfied, and thus, (4.69) holds for this case as well. Similar to Family 2 deformations,
from (4.67) and (4.69) one concludes that up to a mechanically inconsequential function of (R,Θ, Z), the
energy function must have the form W = W (R, I1, I2, I4, I5). For energy functions of this form, in (4.19)
and (4.20) one only needs to check the symmetry of the terms with A = 1, and A = B = 1. All those terms
are symmetric.

Proposition 4.5. For inhomogeneous incompressible nonlinear transversely isotropic solids with any of the
universal material preferred directions given in (4.66), Family 3 deformations are universal for any energy
function of the form W = W (R, I1, I2, I4, I5).

Physically, this universal inhomogeneity and directions can be understood as follows: A particular case
consists of a single homogeneous cylindrical tube with helical preferred directions. Now, consider a series
of encased homogeneous cylindrical tubes in the reference configuration, each with its own helical material
preferred directions as describe in [Goriely, 2017]. The solution from Proposition 4.5 is a continuous version
of this problem where the variation in helical fibers and material properties only depends on R.

4.5 Family 4: Inflation/inversion of a sector of a spherical shell

Family 4 deformations with respect to the spherical coordinates (R,Θ,Φ) and (r, θ, φ) in the reference and
current configurations, respectively, have the following representation

r(R,Θ,Φ) = (±R3 + C3
1 ) , θ(R,Θ,Φ) = ±Θ , φ(R,Θ,Φ) = Φ . (4.71)

Thus

[CAB ] =



R4

(C3
1±R3)

4/3 0 0

0
(
C3

1 ±R3
)2/3

0

0 0
(
C3

1 ±R3
)2/3

sin2 Θ


, (4.72)

which can be written as [Goodbrake et al., 2020]

C[(X) =
R4

(C3
1 ±R3)

4/3
R̂⊗ R̂ +

(
C3

1 ±R3
)2/3

R2
(1− R̂⊗ R̂) , (4.73)

where 1 is the identity tensor, and R̂ = X
|X| . This implies that at a given point X, C[ is invariant under all

those rotations that fix X. Yavari and Goriely [2021] assumed that N(X) has the same symmetry, i.e., it is
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invariant under all those rotations that fix X. Thus, N(X) is parallel to X, and knowing that it is a unit
vector one concludes that

N(X) = ± X

|X|
= ±R̂ . (4.74)

This means that the universal material preferred direction is radial, i.e., with respect to the spherical coor-
dinates

N(X) =



±1

0

0


. (4.75)

In [Yavari, 2021] it was shown that for this family of deformations constraints (4.19) imply that

∂W1

∂Θ
=
∂W1

∂Φ
=
∂W2

∂Θ
=
∂W2

∂Φ
= 0 . (4.76)

The above relations hold for inhomogeneous transversely isotropic solids as well. For the universal material
preferred direction (4.75), one can show that

C4A
[ab] = 0, for (A, a, b) = (2, 1, 2)⇒ 4C3

1 R−R4 = 0 ,

C4A
[ab] = 0, for (A, a, b) = (3, 1, 3)⇒ 4C3

1 R−R4 = 0 ,

C5A
[ab] = 0, for (A, a, b) = (2, 1, 2)⇒ − 8C3

1 R
5 +R8 = 0 ,

C5A
[ab] = 0, for (A, a, b) = (3, 1, 3)⇒ − 8C3

1 R
5 +R8 = 0 .

(4.77)

These constraints cannot be satisfied, and hence

∂W4

∂Θ
=
∂W4

∂Φ
=
∂W5

∂Θ
=
∂W5

∂Φ
= 0 . (4.78)

From (4.76) and (4.78) one concludes that up to a mechanically inconsequential function of (R,Θ,Φ), the
energy function must have the form W = W (R, I1, I2, I4, I5). For any energy function of this form, in (4.19)
and (4.20) one only needs to check the symmetry of the terms with A = 1, and A = B = 1. All those terms
are symmetric.

Proposition 4.6. For inhomogeneous incompressible nonlinear transversely isotropic solids with the univer-
sal material preferred directions given in (4.75), Family 4 deformations are universal for any energy function
of the form W = W (R, I1, I2, I4, I5).

Again, this result can be understood physically as the continuous limit of a finite number of encased
homogeneous spherical shells with different material properties.

4.6 Family 5: Inflation, bending, extension, and azimuthal shearing of an an-
nular wedge

Family 5 deformations with respect to the cylindrical coordinates (R,Θ, Z) and (r, θ, z) in the reference and
current configurations, respectively, have the following representation

r(R,Θ, Z) = C1R , θ(R,Θ, Z) = C2 logR+ C3Θ + C4 , z(R,Θ, Z) =
1

C2
1 C3

Z + C5 . (4.79)
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Thus

[CAB ] =



C2
1

(
C2

2 + 1
)

C2
1 C2 C3R 0

C2
1 C2 C3R C2

1 C
2
3R

2 0

0 0 1
C4

1 C
2
3


, (4.80)

which only depends on R. Yavari and Goriely [2021] assumed that N has the same symmetry, i.e.,

N(R,Θ, Z) =



N1(R)

N2(R)

N3(R)


, (4.81)

where (N1(R))2+(N2(R))2+(N3(R))2 = 1. They obtained the following two solutions for universal material
preferred directions

N =



0

1
R cos η

± sin η


, N =



cos ξ

± 1
R sin ξ

0


, (4.82)

for arbitrary constants η, and ξ. Unfortunately, there was a mistake in checking the universality constraints
for solution (4.82)1: This solution satisfies all the universality constraints other than the symmetry of the
coefficient of W4 for (a, b) = (1, 3), which gives C2 cos η sin η = 0. Note that sin η = 0 in (4.82)1 corresponds
to cos ξ = 0 in (4.82)2. This means that the correct set of universal material preferred directions for Family
5 are:

N =



0

0

±1


, N =



cos ξ

± 1
R sin ξ

0


, (4.83)

for an arbitrary constant ξ.
In [Yavari, 2021] it was shown that the for Family 5 deformations constraints (4.19) imply that

∂W1

∂R
=
∂W1

∂Θ
=
∂W1

∂Z
=
∂W2

∂R
=
∂W2

∂Θ
=
∂W2

∂Z
= 0 . (4.84)
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The above relations hold for inhomogeneous transversely isotropic solids as well.
For the universal material preferred direction (4.83)1, all the terms in (4.20)(1−9) are symmetric. In the

last two sets of equations the following four terms are not symmetric:

C4AB
[ab] 6= 0, for (A,B, a, b) = (1, 3, 1, 3) ,

C4AB
[ab] 6= 0, for (A,B, a, b) = (2, 3, 1, 3) ,

C5AB
[ab] 6= 0, for (A,B, a, b) = (1, 3, 1, 3) ,

C5AB
[ab] 6= 0, for (A,B, a, b) = (2, 3, 1, 3) .

(4.85)

This implies that
∂2W4

∂R∂Z
=

∂2W4

∂Θ ∂Z
=

∂2W5

∂R∂Z
=

∂W5

∂Θ ∂Z
= 0 . (4.86)

From (4.84) and (4.86) one concludes thatW (X, I1, I2, I4, I5) = W (I1, I2, I4, I5)+W̃ (R,Θ, I4, I5)+ıW (Z, I4, I5).
For an energy function of this form, in (4.19) and (4.20) one only needs to check the symmetry of the terms
with A = 1, and A = B = 1. It turns out that all those terms are symmetric.

For the universal material preferred direction (4.83)2, one can show that

C4A
[ab] = 0, for (A, a, b) = (1, 1, 2)⇒ C1 cos ξ [C2 cos ξ + C3 sin ξ] = 0 ,

C4A
[ab] = 0, for (A, a, b) = (2, 1, 2)⇒ C1

[(
1 + C2

2

)
cos2 ξ − C2

3 sin2 ξ
]

= 0 ,

C4A
[ab] = 0, for (A, a, b) = (3, 2, 3)⇒ C3

1 C3

[(
−1 + C2

2

)
cos2 ξ + C3 sin ξ (2C2 cos ξ + C3 sin ξ)

]
= 0 ,

C5A
[ab] = 0, for (A, a, b) = (1, 1, 2)⇒

C3
1

{
2C2

[
1 + C2

2 + C2
3 +

(
1 + C2

2

)
cos 2ξ

]
+ C3

(
1 + 3C2

2 + C2
3

)
sin 2ξ

}
= 0 ,

C5A
[ab] = 0, for (A, a, b) = (2, 1, 2)⇒

C3
1

{[(
1 + C2

2

)2
+ C4

3

]
cos 2ξ +

(
1 + C2

2 − C2
3

) (
1 + C2

2 + C2
3 + C2C3 sin 2ξ

)}
= 0 ,

C5A
[ab] = 0, for (A, a, b) = (3, 2, 3)⇒

C6
1 C3

{
2C2

[
1 + C2

2 + C2
3 +

(
1 + C2

2

)
cos 2ξ

]
+ C3

(
1 + 3C2

2 + C2
3

)
sin 2ξ

}
= 0 .

(4.87)

None of the above constraints can be satisfied,7 and hence

∂W4

∂R
=
∂W4

∂Θ
=
∂W4

∂Z
=
∂W5

∂R
=
∂W5

∂Θ
=
∂W5

∂Z
= 0 . (4.88)

From (4.84) and (4.88) one concludes that the energy function must be homogeneous. This means that
Family 5 deformations are not universal for inhomogeneous incompressible transversely isotropic solids with
the universal material preferred directions (4.83)2.

Proposition 4.7. For inhomogeneous incompressible nonlinear transversely isotropic solids with the uni-
versal material preferred directions given in (4.83)1, Family 5 deformations are universal for any energy

function of the form W (X, I1, I2, I4, I5) = W (I1, I2, I4, I5) + W̃ (R,Θ, I4, I5) +ıW (Z, I4, I5). Family 5 defor-
mations are not universal for inhomogeneous incompressible transversely isotropic solids with the universal
material preferred directions (4.83)2.

Table 2 summarizes our results for inhomogeneous incompressible transversely isotropic solids.

7Note that we are finding the universal inhomogeneities of the energy function for an arbitrary member of this class. That
means that cos ξ 6= 0, in general, i.e., (4.87)1 cannot be satisfied.
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Family Universal Deformations Universal material preferred directions Universal inhomogeneities

0 xa(X) = F aAX
A + ca Any constant unit vector N W = W (I1, I2, I4, I5) + H(I1, I2, I4, I5) ·X + W̃ (X2, X3, I4)

1


r(X,Y, Z) =

√
C1(2X + C4)

θ(X,Y, Z) = C2(Y + C5)

z(X,Y, Z) = Z
C1C2

− C2C3Y + C6

N̂ =



±1

0

0


, N̂ =



0

cosψ(X)

± sinψ(X)


W = W (X, I1, I2, I4, I5)

2


x(R,Θ, Z) = 1

2C1C
2
2R

2 + C4

y(R,Θ, Z) = Θ
C1C2

+ C5

z(R,Θ, Z) = C3

C1C2
Θ + 1

C2
Z + C6

N̂ =



±1

0

0


, N̂ =



0

cosχ(R)

± sinχ(R)


W = W (R, I1, I2, I4, I5)

3


r(R,Θ, Z) =

√
R2

C1C4−C2C3
+ C5

θ(R,Θ, Z) = C1Θ + C2Z + C6

z(R,Θ, Z) = C3Θ + C4Z + C7

N̂ =



±1

0

0


, N̂ =



0

cosχ(R)

± sinχ(R)


W = W (R, I1, I2, I4, I5)

4


r(R,Θ,Φ) = (±R3 + C3

1 )

θ(R,Θ,Φ) = ±Θ

φ(R,Θ,Φ) = Φ

N̂ =



±1

0

0


W = W (R, I1, I2, I4, I5)

5


r(R,Θ, Z) = C1R

θ(R,Θ, Z) = C2 logR+ C3Θ + C4

z(R,Θ, Z) = 1
C2

1C3
Z + C5

N̂ =



0

0

±1


W = W (I1, I2, I4, I5) + W̃ (R,Θ, I4, I5) +ıW (Z, I4, I5)

Table 2: Universal deformations, universal material preferred directions, and universal inhomogeneities for incompressible
transversely isotropic solids for the six known families of universal deformations.

5 Incompressible Orthotropic Elastic Solids

For inhomogeneous orthotropic solids

ξa = gam [W1b
mn −W2 c

mn +W4 n
m
1 n

n
1 +W5 `

mn
1 +W6 n

m
2 n

n
2 +W7 `

mn
2 ]|n . (5.1)

In order to satisfy the symmetry ξa|b = ξb|a for an arbitrary energy function the coefficient of each partial
derivative of W must be symmetric. There are five groups of terms. The first four were derived in [Yavari
and Goriely, 2021]. In order for this work to be self contained, all the five groups are reported below. The
first four groups of terms that must be symmetric for both incompressible and compressible orthotropic
solids are:

i) Nine terms that need to be symmetric for isotropic solids as well:

Kiso = {1, 2, 11, 22, 12, 111, 222, 112, 122} . (5.2)
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ii) 25 terms associated to N1:

Ki = {4, 5, 44, 55, 14, 15, 24, 25, 45, 444, 555, 114, 115, 124, 125,

144, 145, 155, 224, 225, 244, 245, 255, 445, 455} .
(5.3)

iii) 25 terms associated to N2:

Kii = {6, 7, 66, 77, 16, 17, 26, 27, 67, 666, 777, 116, 117, 126, 127,

166, 167, 177, 226, 227, 266, 267, 277, 667, 677} .
(5.4)

iv) 24 terms corresponding to coupling of N1 and N2:

Kiii = {46, 47, 56, 57, 146, 147, 156, 157, 246, 247, 256, 257, 446, 447,

456, 457, 556, 557, 466, 467, 566, 567, 477, 577} .
(5.5)

v) 33 terms that correspond to the inhomogeneity of the energy function. 18 of these are identical to
those of isotropic (4.19) and transversely isotropic solids (4.20).

In [Yavari and Goriely, 2021] it was noticed that Ki and Kii universality constraints have forms identical
to those of K universality constraints (4.16). This implies that (N1,N2,N3) is universal for orthotropic
solids if i) N1, N2, and N3 are universal for transversely isotropic solids, and ii) the three pairs (N1,N2),
(N2,N3), and (N3,N1) satisfy the Kiii universality constraints. We follow the notation introduced in [Yavari
and Goriely, 2021], and let (n,m) = (n1,n2), and (lab, kab) = (`ab1 , `

ab
2 ). The coefficients of the derivatives

of the energy function associated to the set Kiii are:

A46
ab = [na I6,n n

n]|b + I6,b[na n
n]|n + [ma I4,nm

n]|b + I4,b[mam
n]|n ,

A47
ab = [na I7,n n

n]|b + I7,b[na n
n]|n + (knaI4,n)|b + kna |nI4,b ,

A56
ab = (lna I6,n)|b + lna |n I6,b + (ma I5,nm

n)|b + (mam
n)|nI5,b ,

A57
ab = (lna I7,n)|b + lna |n I7,b + (kna I5,n)|b + kna |n I5,b ,

(5.6)
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and
A146
ab = bna (I4,b I6,n + I4,n I6,b) ,

A147
ab = bna (I4,b I7,n + I4,n I7,b) ,

A156
ab = bna (I5,b I6,n + I5,n I6,b) ,

A157
ab = bna (I5,b I7,n + I5,n I7,b) ,

A246
ab = cna (I4,b I6,n + I4,n I6,b) ,

A247
ab = cna (I4,b I7,n + I4,n I7,b) ,

A256
ab = cna (I5,b I6,n + I5,n I6,b) ,

A257
ab = cna (I5,b I7,n + I5,n I7,b) ,

A446
ab = na n

n (I4,b I6,n + I4,n I6,b) ,

A447
ab = na n

n (I4,b I7,n + I4,n I7,b) ,

A456
ab = na n

n (I5,b I6,n + I5,n I6,b) + lna (I4,b I6,n + I4,n I6,b) ,

A457
ab = na n

n (I5,b I7,n + I5,n I7,b) + lna (I4,b I7,n + I4,n I7,b) ,

A466
ab = mam

n (I4,b I6,n + I4,n I6,b) ,

A467
ab = mam

n (I4,b I7,n + I4,n I7,b) + kna (I4,b I6,n + I4,n I6,b) ,

A477
ab = kna (I4,b I7,n + I4,n I7,b) ,

A556
ab = lna (I5,b I6,n + I5,n I6,b) ,

A557
ab = lna (I5,b I7,n + I5,n I7,b) ,

A566
ab = mam

n (I5,b I6,n + I5,n I6,b) ,

A567
ab = mam

n (I5,b I7,n + I5,n I7,b) + kna (I5,b I6,n + I5,n I6,b) ,

A577
ab = kna (I5,b I7,n + I5,n I7,b) .

(5.7)

For inhomogeneous incompressible orthotropic solids, in addition to the universality constraints (4.19),
and (4.20) there are the following 15 extra sets of universality constraints (each term must be symmetric in
(ab) for A = 1, 2, 3, and B ≥ A):

C6A
ab = (F−1)An (mam

n)|b + (F−1)Ab (mam
n)|n + mam

n
[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
,

C7A
ab = (F−1)An k

n
a |b + (F−1)Ab k

n
a |n + kna

[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
,

C16A
ab = bna

[
(F−1)An I6,b + (F−1)Ab I6,n

]
+ mam

n
[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C17A
ab = bna

[
(F−1)An I7,b + (F−1)Ab I7,n

]
+ kna

[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C26A
ab = −cna

[
(F−1)An I6,b + (F−1)Ab I6,n

]
+ mam

n
[
(F−1)An I2,b + (F−1)Ab I2,n

]
,

C27A
ab = −cna

[
(F−1)An I7,b + (F−1)Ab I7,n

]
+ kna

[
(F−1)An I2,b + (F−1)Ab I2,n

]
,

C46A
ab = na n

n
[
(F−1)An I6,b + (F−1)Ab I6,n

]
+ mam

n
[
(F−1)An I4,b + (F−1)Ab I4,n

]
,

C47A
ab = na n

n
[
(F−1)An I7,b + (F−1)Ab I7,n

]
+ kna

[
(F−1)An I4,b + (F−1)Ab I4,n

]
,

C56A
ab = `na

[
(F−1)An I6,b + (F−1)Ab I6,n

]
+ mam

n
[
(F−1)An I5,b + (F−1)Ab I5,n

]
,

C57A
ab = `na

[
(F−1)An I7,b + (F−1)Ab I7,n

]
+ kna

[
(F−1)An I5,b + (F−1)Ab I5,n

]
,

C66A
ab = mam

n
[
(F−1)An I6,b + (F−1)Ab I6,n

]
,

C67A
ab = kna

[
(F−1)An I6,b + (F−1)Ab I6,n

]
+ mam

n
[
(F−1)An I7,b + (F−1)Ab I7,n

]
,

C77A
ab = kna

[
(F−1)An I7,b + (F−1)Ab I7,n

]
,

C6AB
ab = mam

n
[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
,

C7AB
ab = kna

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
.

(5.8)
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5.1 Family 0

In [Yavari and Goriely, 2021] it was shown that for homogeneous orthotropic solids homogeneous deformations
are universal for any three constant unit vectors (N1,N2,N3) that are mutually orthogonal. In the reference
configuration we choose the Cartesian coordinates (X1, X2, X3) such that

N1 =
∂

∂X1
, N2 =

∂

∂X2
, N3 =

∂

∂X3
. (5.9)

The universality constraints still imply (4.39). For homogeneous deformations and constant (N1,N2,N3),
only the last two sets of universality constraints in (5.8) are nontrivial, and imply that

(W6,2),B = (W7,A),B = 0 , A,B = 1, 2, 3 . (5.10)

Using a fairly lengthy but standard argument (similar to those of §3.2) one can show that the constraints
(4.39) and (5.10) imply the following result.

Proposition 5.1. For inhomogeneous incompressible nonlinear orthotropic solids, Family 0 deformations
are universal for any energy function of the following form

W (X, I1, I2, I4, I5, I6, I7) = W (I1, I2, I4, I5, I6, I7) + H(I1, I2, I4, I5, I6, I7) ·X

+ W̃ (X3, I4, I6) +ıW (X2, X3, I4) + Ŵ (X1, X3, I6) ,
(5.11)

where (N1,N2,N3) are constant unit vectors given in (5.9).

Remark 5.2. Note that the last three terms of the energy function in (5.11) have identical forms to that
of compressible orthotropic solids (3.60).

5.2 Family 1

In [Yavari and Goriely, 2021] it was shown that for Family 1 universal deformations the universal material
preferred directions are

N1 =



±1

0

0


, N2 =



0

cosψ(X)

± sinψ(X)


, N3 =



0

sinψ(X)

∓ cosψ(X)


, (5.12)

where ψ(X) is an arbitrary function. The constraints (4.45) and (4.47) hold for orthotropic solids as well.
Similarly, from (5.8)1−2 one concludes that

∂W6

∂Y
=
∂W6

∂Z
=
∂W7

∂Y
=
∂W7

∂Z
= 0 . (5.13)

All the other universality constraints are satisfied. Therefore, we have the following result.

Proposition 5.3. For inhomogeneous incompressible nonlinear orthotropic solids with any of the universal
material preferred directions given in (5.12), Family 1 deformations are universal for any energy function of
the form W = W (X, I1, I2, I4, I5, I6, I7).
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5.3 Families 2 and 3

In [Yavari and Goriely, 2021] it was shown that for Families 2 and 3 the following family of material preferred
directions are universal.

N1 =



±1

0

0


, N2 =



0

cosχ(R)
R

± sinχ(R)


, N3 =



0

sinχ(R)
R

∓ cosχ(R)


, (5.14)

where χ(R) is an arbitrary function. The constraints (4.56) and (4.58) still hold. Similarly, from (5.8)1−2

one concludes that
∂W6

∂Θ
=
∂W6

∂Z
=
∂W7

∂Θ
=
∂W7

∂Z
= 0 . (5.15)

All the other universality constraints are satisfied. Thus, we have the following result.

Proposition 5.4. For inhomogeneous incompressible nonlinear orthotropic solids with any of the universal
material preferred directions given in (5.14), Family 2 and 3 deformations are universal for any energy
function of the form W = W (R, I1, I2, I4, I5, I6, I7).

Yavari and Goriely [2021] showed that for homogeneous incompressible orthotropic solids Family 4 de-
formations are not universal. This is the case for inhomogeneous incompressible orthotropic solids as well.

5.4 Family 5

In [Yavari and Goriely, 2021] the following universal material preferred directions were reported.

N1 =

 0

0

±1

 , N2 =

 cos ξ

± 1
R sin ξ

0

 , N3 =

 sin ξ

∓ 1
R cos ξ

0

 ,

N1 =

±1

0

0

 , N2 =

 0
1
R cos η

± sin η

 , N3 =

 0
1
R sin η

∓ cos η

 .
(5.16)

As was mentioned in §4.6, there was a mistake in one of the families of universal material preferred directions.
In (5.16)2 either cos η = 0, or sin η = 0, which are already included in (5.16)1. Therefore, the correct families
of universal material preferred directions are (we have relabeled them so that N3 is parallel to the Z-axis):

N1 =



cos ξ

± 1
R sin ξ

0


, N2 =



sin ξ

∓ 1
R cos ξ

0


, N3 =



0

0

±1


, (5.17)

where ξ is an arbitrary constant.
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In [Yavari, 2021] it was shown that the for Family 5 deformations constraints (4.19) imply that

∂W1

∂R
=
∂W1

∂Θ
=
∂W1

∂Z
=
∂W2

∂R
=
∂W2

∂Θ
=
∂W2

∂Z
= 0 . (5.18)

The above relations hold for inhomogeneous orthotropic isotropic solids as well. If we check the universality
constraints for the pair (N1,N2) given in (5.17), from §4.6 we know that W4,A = W5,A = W6,A = W7,A = 0,
and hence the energy function must be uniform:

Proposition 5.5. For inhomogeneous incompressible nonlinear orthotropic solids Family 5 deformations
are not universal.

Table 3 summarizes our results for inhomogeneous incompressible orthotropic solids.

Family Universal Deformations Universal material preferred directions Universal inhomogeneities

0 xa(X) = F aAX
A + ca Any three mutually orthogonal constant unit vectors (N̂1, N̂2, N̂3)

W = W (I1, I2, I4, I5, I6, I7) + H(I1, I2, I4, I5, I6, I7) ·X

+W̃ (X3, I4, I6) +ıW (X2, X3, I4) + Ŵ (X1, X3, I6)

1


r(X,Y, Z) =

√
C1(2X + C4)

θ(X,Y, Z) = C2(Y + C5)

z(X,Y, Z) = Z
C1C2

− C2C3Y + C6

N̂1 =



±1

0

0


, N̂2 =



0

cosψ(X)

± sinψ(X)


, N̂3 =



0

sinψ(X)

∓ cosψ(X)


W = W (X, I1, I2, I4, I5, I6, I7)

2


x(R,Θ, Z) = 1

2C1C
2
2R

2 + C4

y(R,Θ, Z) = Θ
C1C2

+ C5

z(R,Θ, Z) = C3

C1C2
Θ + 1

C2
Z + C6

N̂1 =



±1

0

0


, N̂2 =



0

cosχ(R)

± sinχ(R)


, N̂3 =



0

sinχ(R)

∓ cosχ(R)


W = W (R, I1, I2, I4, I5, I6, I7)

3


r(R,Θ, Z) =

√
R2

C1C4−C2C3
+ C5

θ(R,Θ, Z) = C1Θ + C2Z + C6

z(R,Θ, Z) = C3Θ + C4Z + C7

N̂1 =



±1

0

0


, N̂2 =



0

cosχ(R)

± sinχ(R)


, N̂3 =



0

sinχ(R)

∓ cosχ(R)


W = W (R, I1, I2, I4, I5, I6, I7)

Table 3: Universal deformations, universal material preferred directions, and universal inhomogeneities for incompressible
orthotropic solids for the six known families of universal deformations.

6 Incompressible Monoclinic Elastic Solids

In the case of monoclinic solids

ξa = gam

[
W1b

mn −W2 c
mn +W4 n

m
1 n

n
1 +W5 `

mn
1 +W6 n

m
2 n

n
2 +W7 `

mn
2 +

1

2
W8 `

mn
3

]
|n
. (6.1)

The universality constraint ξa|b = ξb|a forces the coefficient of each partial derivative of W to be symmetric.
Yavari and Goriely [2021] showed that for monoclinic solids there are an extra 78 terms corresponding to
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the following set:

Kiv = {8, 18, 19, 28, 29, 48, 49, 58, 59, 68, 69, 78, 79, 88, 89,

118, 119, 128, 129, 148, 149, 158, 159, 168, 169, 178, 179, 188, 189, 199, 228, 229,

248, 249, 258, 259, 268, 269, 278, 279, 288, 289, 299, 448, 449, 458, 459, 468, 469,

478, 479, 488, 489, 499, 558, 559, 568, 569, 578, 579, 588, 589, 599, 668, 669,

678, 679, 688, 689, 699, 778, 779, 788, 789, 799, 888, 889, 999} .

(6.2)

We follow the notation in [Yavari and Goriely, 2021] and write (n,m) = (n1,n2), and (lab, kab, qab) =
(`ab1 , `

ab
2 , `

ab
3 ). The terms corresponding to the set Kiv are:

A8
ab = qna |nb ,

A18
ab = qna |n I1,b + (qna I1,n)|b + (bna I8,n)|b + bna |n I8,b ,

A19
ab = (bnaI9,n)|b + bna |n I9,b ,

A28
ab = qna |n I2,b + (qna I2,n)|b − (cnaI8,n)|b − cna |n I8,b ,

A29
ab = −(cna I9,n)|b − cna |n I9,b ,

A48
ab = qna |n I4,b + (qna I4,n)|b + (na n

n I8,n)|b + (na n
n)|n I8,b ,

A49
ab = (na n

n I9,n)|b + (na n
n)|n I9,b ,

A58
ab = qna |n I5,b + (qna I5,n)|b + (lna I8,n)|b + lna |n I8,b ,

A59
ab = (lna I9,n)|b + lna |n I9,b ,

A68
ab = qna |n I6,b + (qna I6,n)|b + (mam

n I8,n)|b + (mam
n)|n I8,b ,

A69
ab = (mam

n I9,n)|b + (mam
n)|n I9,b ,

A78
ab = qna |n I7,b + (qna I7,n)|b + (kna I8,n)|b + kna |n I8,b ,

A79
ab = (kna I9,n)|b + kna |n I9,b ,

A88
ab = qna |n I8,b + (qna I8,n)|b ,

A89
ab = qna |n I9,b + (qna I9,n)|b ,

(6.3)

A118
ab = bna (I1,b I8,n + I1,n I8,b) ,

A119
ab = bna (I1,b I9,n + I1,n I9,b) ,

A128
ab = bna (I2,b I8,n + I2,n I8,b)− cna (I1,b I8,n + I1,n I8,b) ,

A129
ab = bna (I2,b I9,n + I2,n I9,b)− cna (I1,b I9,n + I1,n I9,b) ,

A148
ab = bna (I4,b I8,n + I4,n I8,b) + na n

n (I1,b I8,n + I1,n I8,b) ,

A149
ab = bna (I4,b I9,n + I4,n I9,b) + na n

n (I1,b I9,n + I1,n I9,b) ,

A158
ab = bna (I5,b I8,n + I5,n I8,b) + lna (I1,b I8,n + I1,n I8,b) ,

A159
ab = bna (I5,b I9,n + I5,n I9,b) + lna (I1,b I9,n + I1,n I9,b) ,

A168
ab = bna (I6,b I8,n + I6,n I8,b) + mam

n (I1,b I8,n + I1,n I8,b) ,

A169
ab = bna (I6,b I9,n + I6,n I9,b) + mam

n (I1,b I9,n + I1,n I9,b) ,

A178
ab = bna (I7,b I8,n + I7,n I8,b) + kna (I1,b I8,n + I1,n I8,b) ,

A179
ab = bna (I7,b I9,n + I7,n I9,b) + kna (I1,b I9,n + I1,n I9,b) ,

A188
ab = bna I8,bI8,n + qna (I1,b I8,n + I1,n I8,b) ,

A189
ab = bna (I8,b I9,n + I8,n I9,b) + qna (I1,b I9,n + I1,n I9,b) ,

A199
ab = bna I9,b I9,n ,

(6.4)
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A228
ab = −cna (I2,b I8,n + I2,n I8,b) ,

A229
ab = −cna (I2,b I9,n + I2,n I9,b) ,

A248
ab = −cna (I4,b I8,n + I4,n I8,b) + na n

n (I2,b I8,n + I2,n I8,b) ,

A249
ab = −cna (I4,b I9,n + I4,n I9,b) + na n

n (I2,b I9,n + I2,n I9b) ,

A258
ab = −cna (I5,b I8,n + I5,n I8,b) + lna (I2,b I8,n + I2,n I8,b) ,

A259
ab = −cna (I5,b I9,n + I5,n I9,b) + lna (I2,b I9,n + I2,n I9,b) ,

A268
ab = −cna (I6,b I8,n + I6,n I8,b) + mam

n (I2,b I8,n + I2,n I8,b) ,

A269
ab = −cna (I6,b I9,n + I6,n I9,b) + mam

n (I2,b I9,n + I2,n I9,b) ,

A278
ab = −cna (I7,b I8,n + I7,n I8,b) + kna (I2,b I8,n + I2,n I8,b) ,

A279
ab = −cna (I7,b I9,n + I7,n I9,b) + kna (I2,b I9,n + I2,n I9,b) ,

A288
ab = −cna I8,bI8,n + qna (I2,b I8,n + I2,n I8,b) ,

A289
ab = −cna (I8,b I9,n + I8,n I9,b) + qna (I2,b I9,n + I2,n I9,b) ,

A299
ab = −cna I9,b I9,n,

A448
ab = na n

n (I4,b I8,n + I4,n I8,b) ,

A449
ab = na n

n (I4,b I9,n + I4,n I9,b) ,

(6.5)

A458
ab = na n

n (I5,b I8,n + I5,n I8,b) + lna (I4,b I8,n + I4,n I8,b) ,

A459
ab = na n

n (I5,b I9,n + I5,n I9,b) + lna (I4,b I9,n + I4,n I9,b) ,

A468
ab = nan

n (I6,b I8,n + I6,n I8,b) + mam
n (I4,b I8,n + I4,n I8,b) ,

A469
ab = na n

n (I6,b I9,n + I6,n I9,b) + mam
n (I4,b I9,n + I4,n I9,b) ,

A478
ab = na n

n (I7,b I8,n + I7,n I8,b) + kna (I4,b I8,n + I4,n I8,b) ,

A479
ab = na n

n (I7,b I9,n + I7,n I9,b) + kna (I4,b I9,n + I4,n I9,b) ,

A488
ab = na n

n I8,b I8,n + qna (I4,b I8,n + I4,n I8,b) ,

A489
ab = na n

n (I8,b I9,n + I8,n I9,b) + qna (I4,b I9,n + I4,n I9,b) ,

A499
ab = na n

n I9,b I9,n ,

A558
ab = lna (I5,b I8,n + I5,n I8,b) ,

A559
ab = lna (I5,b I9,n + I5,n I9,b) ,

A568
ab = lna (I6,b I8,n + I6,n I8,b) + mam

n (I5,b I8,n + I5,n I8,b) ,

A569
ab = lna (I6,bI9,n + I6,nI9,b) + mam

n (I5,b I9,n + I5,n I9,b) ,

A578
ab = lna (I7,b I8,n + I7,n I8,b) + kna (I5,b I8,n + I5,n I8,b) ,

A579
ab = lna (I7,b I9,n + I7,n I9,b) + kna (I5,b I9,n + I5,n I9,b) ,

(6.6)
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and
A588
ab = lna I8,b I8,n + qna (I5,b I8,n + I5,n I8,b) ,

A589
ab = lna (I8,b I9,n + I8,n I9,b) + qna (I5,b I9,n + I5,n I9,b) ,

A599
ab = lna I9,b I9,n ,

A668
ab = mam

n (I6,b I8,n + I6,n I8,b) ,

A669
ab = mam

n (I6,b I9,n + I6,n I9,b) ,

A678
ab = mam

n (I7,b I8,n + I7,n I8,b) + kna (I6,b I8,n + I6,n I8,b) ,

A679
ab = mam

n (I7,b I9,n + I7,n I9,b) + kna (I6,b I9,n + I6,n I9,b) ,

A688
ab = mam

n I8,b I8,n + qna (I6,b I8,n + I6,n I8,b) ,

A689
ab = mam

n (I8,bI9,n + I8,nI9,b) + qna (I6,b I9,n + I6,n I9,b) ,

A699
ab = mam

n I9,b I9,n ,

A778
ab = kna (I7,b I8,n + I7,n I8,b) ,

A779
ab = kna (I7,b I9,n + I7,n I9,b) ,

A788
ab = kna I8,b I8,n + qna (I7,b I8,n + I7,n I8,b) ,

A789
ab = kna (I8,b I9,n + I8,n I9,b) + qna (I7,b I9,n + I7,n I9,b) ,

A799
ab = kna I9,b I9,n ,

A888
ab = qna I8,b I8,n ,

A889
ab = qna (I8,b I9,n + I8,n I9,b) ,

A999
ab = qna I9,b I9,n .

(6.7)

For inhomogeneous incompressible monoclinic solids, in addition to the universality constraints (4.19),
and (4.20) there are the following 16 extra sets of universality constraints (each term must be symmetric in
(ab) for A = 1, 2, 3, and B ≥ A):

C8A
ab = (F−1)An q

n
a|b + (F−1)Ab q

n
a|b + qna

[
(F−1)Bb (F−1)An,B − γmnb (F−1)Am

]
,

C18A
ab = bna

[
(F−1)An I8,b + (F−1)Ab I8,n

]
+ qna

[
(F−1)An I1,b + (F−1)Ab I1,n

]
,

C19A
ab = bna

[
(F−1)An I9,b + (F−1)Ab I9,n

]
,

C28A
ab = −cna

[
(F−1)An I8,b + (F−1)Ab I8,n

]
+ qna

[
(F−1)An I2,b + (F−1)Ab I2,n

]
,

C29A
ab = −cna

[
(F−1)An I9,b + (F−1)Ab I9,n

]
,

C48A
ab = na n

n
[
(F−1)An I8,b + (F−1)Ab I8,n

]
+ qna

[
(F−1)An I4,b + (F−1)Ab I4,n

]
,

C49A
ab = na n

n
[
(F−1)An I9,b + (F−1)Ab I9,n

]
,

C58A
ab = qna

[
(F−1)An I5,b + (F−1)Ab I5,n

]
+ `na

[
(F−1)An I8,b + (F−1)Ab I8,n

]
,

C59A
ab = `na

[
(F−1)An I9,b + (F−1)Ab I9,n

]
,

C68A
ab = mam

n
[
(F−1)An I8,b + (F−1)Ab I8,n

]
+ qna

[
(F−1)An I6,b + (F−1)Ab I6,n

]
,

C69A
ab = mam

n
[
(F−1)An I9,b + (F−1)Ab I9,n

]
,

C78A
ab = kna

[
(F−1)An I8,b + (F−1)Ab I8,n

]
+ qna

[
(F−1)An I7,b + (F−1)Ab I7,n

]
,

C79A
ab = kna

[
(F−1)An I9,b + (F−1)Ab I9,n

]
,

C88A
ab = qna

[
(F−1)An I8,b + (F−1)Ab I8,n

]
,

C89A
ab = qna

[
(F−1)An I9,b + (F−1)Ab I9,n

]
,

C8AB
ab = qna

[
(F−1)An (F−1)Bb + (F−1)Bn (F−1)Ab

]
.

(6.8)
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6.1 Family 0

In [Yavari and Goriely, 2021] it was shown that for homogeneous incompressible monoclinic solids homoge-
neous deformations are universal for any three constant unit vectors (N1,N2,N3) such that N1 and N2 are
non-parallel, and N3 is normal to the plane of N1 and N2. We assume that the angle between N1 and N2

is θ (0 < θ < π
2 ), and hence, g = N1 ·N2 = cos θ. In the reference configuration let us choose the Cartesian

coordinates (X1, X2, X3) such that8

N1 =
∂

∂X1
, N2 = cos θ

∂

∂X1
+ sin θ

∂

∂X2
, N3 =

∂

∂X3
, (6.9)

i.e.,

NA
1 = δA1 , NA

2 =


cos θ, A = 1

sin θ, A = 2

0, A = 3

. (6.10)

For monoclinic solids the constraints (4.39) still hold. Notice that only the last two sets of constraints in
(5.8) are nontrivial. The universality constraint (5.8)14 implies that

CMKN
K
2 NA

2 W6,AN = CNKN
K
2 NA

2 W6,AM , M,N = 1, 2, 3 . (6.11)

Explicitly, we have(
CM1 cos2 θ + CM2 cos θ sin θ

)
W6,1N +

(
CM1 cos θ sin θ + CM2 sin2 θ

)
W6,2N

=
(
CN1 cos2 θ + CN2 cos θ sin θ

)
W6,1M +

(
CN1 cos θ sin θ + CN2 sin2 θ

)
W6,2M .

(6.12)

These are three constraints corresponding to (M,N) = (1, 2), (1, 3), (2, 3), and read(
C12 cos2 θ + C22 cos θ sin θ

)
W6,11 −

(
C11 cos θ sin θ + C12 sin2 θ

)
W6,22

+
(
−C11 cos2 θ + C22 sin2 θ

)
W6,12 = 0 ,(

C13 cos2 θ + C23 cos θ sin θ
)
W6,11 +

(
C13 cos θ sin θ + C23 sin2 θ

)
W6,12

−
(
C11 cos2 θ + C12 cos θ sin θ

)
W6,13 −

(
C11 cos θ sin θ + C12 sin2 θ

)
W6,23 = 0 ,(

C13 cos2 θ + C23 cos θ sin θ
)
W6,12 +

(
C13 cos θ sin θ + C23 sin2 θ

)
W6,22

−
(
C12 cos2 θ + C22 cos θ sin θ

)
W6,13 −

(
C12 cos θ sin θ + C22 sin2 θ

)
W6,23 = 0 .

(6.13)

Suppose [CAB ] is diagonal. From (6.13)2, one concludes that cos θW6,13 + sin θW6,23 = 0, which must
hold for any θ ∈ (0, π2 ). This implies that W6,13 = W6,23 = 0. Substituting this back into (6.13)2 one
concludes that (C13 cos θ + C23 sin θ) (cos θW6,11 + sin θW6,12) = 0, which implies that W6,11 = W6,12 =
0. Substituting these into (6.13)3 one obtains

(
C13 cos θ sin θ + C23 sin2 θ

)
W6,22 = 0, which implies that

W6,22 = 0. Therefore, we have shown that

(W6,1),A = (W6,2),A = 0, A = 1, 2, 3 . (6.14)

The universality constraint (5.8)15 implies that

(CM1 cos θ + CM2 sin θ)
(
C1

K cos θW7,KN + C2
K sin θW7,KN

)
+
(
CMKC1

K cos θ + CMKC2
K sin θ

)
(cos θW7,1N + sin θW7,2N ) ,

(6.15)

is symmetric in (MN). For M = 1, N = 3, and diagonal [CAB ], the universality constraint is simplified to
read

C11 (2 cos θW7,13 + sin θW7,23) + C22 sin θW7,23 = 0 . (6.16)

8In order to make the calculations simpler we have chosen α = 0 in (3.65).
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This must hold for arbitrary C11 and C22, and hence, W7,13 = W7,23 = 0. Substituting this back into the
universality constraint and considering simple shear deformations for which C12 = C13 = 0, one concludes
that cos θW7,11 + 2 sin θW7,12 = 0, which must hold for an arbitrary θ. Thus, W7,11 = W7,12 = 0. Substitut-
ing these back into the constraint for simple shear, one concludes that W7,33 = 0. For M = 2, N = 3,
and simple shear deformations for which C12 = C13 = 0, the universality constraint is simplified to
read: C23 (2C22 + C33) sin2 θW7,22 = 0, which implies that W7,22 = 0. Therefore, we have concluded that
W7,AB = (W7,A),B = 0, A,B = 1, 2, 3.

For homogeneous deformations and uniform material preferred directions only the last set of constraints
in (6.8) are non-trivial and are rewritten in terms of the referential quantities as (for K,N = 1, 2, 3)

CMN

[
NM

1 NA
2 δBK +NM

2 NB
1 δAK +NM

1 NB
2 δAK +NM

2 NA
1 δBK

]
W8,AB

= CMK

[
NM

1 NA
2 δBN +NM

2 NB
1 δAN +NM

1 NB
2 δAN +NM

2 NA
1 δBN

]
W8,AB .

(6.17)

Thus, we have
C1N (cos θW8,1K + sin θW8,2K) + (CN1 cos θ + CN2 sin θ)W8,1K

= C1K (cos θW8,1N + sin θW8,2N ) + (CK1 cos θ + CK2 sin θ)W8,1N .
(6.18)

Eq. (6.18) are three constraints corresponding to (K,N) = (1, 2), (1, 3), and (2, 3), and read

(2C12 cos θ + C22 sin θ)W8,11 − 2C11 cos θW8,12 − C11 sin θW8,22 = 0 ,

(2C13 cos θ + C23 sin θ)W8,11 + C13 sin θW8,12 − (2C11 cos θ + C12 sin θ)W8,13

− C11 sin θW8,23 = 0 ,

(2C13 cos θ + C23 sin θ)W8,12 − (2C12 cos θ + C22 sin θ)W8,13 + C13 sin θW8,22

− C12 sin θW8,23 = 0 .

(6.19)

The above constraints need to be satisfied for an arbitrary matrix [CAB ] with unit determinant. For simple
shear in the X2X3-plane (C12 = C13 = 0), (6.19)3 gives C23 sin θW8,12 − C22 sin θW8,13 = 0, which must
hold for arbitrary C23, and hence W8,12 = W8,13 = 0. Thus, (6.19) is simplified to read

(2C12 cos θ + C22 sin θ)W8,11 − C11 sin θW8,22 = 0 ,

(2C13 cos θ + C23 sin θ)W8,11 − C11 sin θW8,23 = 0 ,

C13 sin θW8,22 − C12 sin θW8,23 = 0 .

(6.20)

For simple shear in the X1X2-plane (C13 = C23 = 0), (6.20)2 gives C11 sin θW8,23 = 0, which implies that
W8,23 = 0. Thus

(2C12 cos θ + C22 sin θ)W8,11 − C11 sin θW8,22 = 0 ,

(2C13 cos θ + C23 sin θ)W8,11 = 0 ,

C13 sin θW8,22 = 0 .

(6.21)

The last two equations imply that W8,11 = W8,22 = 0. Thus, (6.19) implies that (W8,1),A = (W8,2),A =
0, A = 1, 2, 3.

In summary, the universality constraints give us the following

(W1,A),B = (W2,A),B = (W5,A),B = (W7,A),B = 0 , A,B = 1, 2, 3 ,

(W4,1),A = (W6,1),A = (W6,2),A = (W8,1),A = (W8,2),A = 0 , A = 1, 2, 3 .
(6.22)

Using a lengthy but standard argument (similar to those of §3.2) one can show that the constraints (6.22)
imply the following result.

Proposition 6.1. For inhomogeneous incompressible nonlinear monoclinic solids, Family 0 deformations
are universal for any energy function of the following form

W (X, I1, I2, I4, I5, I6, I7, I8, I9) = W (I1, I2, I4, I5, I6, I7, I8, I9) + H(I1, I2, I4, I5, I6, I7, I8, I9) ·X

+ W̃ (X3, I4, I6, I8, I9) ,
(6.23)

where (N1,N2,N3) are constant unit vectors such that N3 is parallel to the Cartesian X3-axis.
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Remark 6.2. Note that the last term of the energy function in (6.23) has a form identical to that of
compressible monoclinic solids (3.84).

6.2 Family 1

In [Yavari and Goriely, 2021] it was shown that for Family 1 deformations of homogeneous incompressible
monoclinic solids the universal material preferred directions are

N̂1 =



0

cosψ1(X)

± sinψ1(X)


, N̂2 =



0

cosψ2(X)

± sinψ2(X)


, (6.24)

where ψ1(X) and ψ2(X) are arbitrary functions such that ψ1(X) 6= ψ2(X). The constraints (4.45), (4.47),
and (5.13) hold for monoclinic solids as well. The constraints C8A

[ab] = 0, for (A, a, b) = (2, 1, 2) and (A, a, b) =

(3, 1, 2), require vanishing of some lengthy expressions that we do not report here. Neither of these two
constraints can be satisfied, and hence

∂W8

∂Y
=
∂W8

∂Z
= 0 . (6.25)

All the other universality constraints are satisfied. Therefore, we conclude thatW = W (X, I1, I2, I4, I5, I6, I7, I8, I9)+

W̃ (X,Y, Z, I9). Noting that the term W̃ (X,Y, Z, I9) is mechanically inconsequential, we have proved the
following result.

Proposition 6.3. For inhomogeneous incompressible nonlinear monoclinic solids with any of the universal
material preferred directions given in (6.24), Family 1 deformations are universal for any energy function of
the form W = W (X, I1, I2, I4, I5, I6, I7, I8, I9).

6.3 Families 2 and 3

In [Yavari and Goriely, 2021] it was shown that for Family 2 and 3 deformations of homogeneous incom-
pressible monoclinic solids the universal material preferred directions are

N̂1 =



0

cosχ1(R)

± sinχ1(R)


, N̂2 =



0

cosχ2(R)

± sinχ2(R)


, (6.26)

where χ1(R) 6= χ2(R) are arbitrary functions.
For monoclinic solids, the constraints (4.56), (4.58), and (5.15) still hold. The constraints C8A

[ab] = 0, for

(A, a, b) = (2, 1, 2) and (A, a, b) = (3, 1, 2), require vanishing of some lengthy expressions that we do not
report here. Neither of these two constraints can be satisfied, and hence

∂W8

∂Θ
=
∂W8

∂Z
= 0 . (6.27)
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All the other universality constraints are satisfied. Therefore we conclude thatW = W (R, I1, I2, I4, I5, I6, I7, I8, I9)+

W̃ (R,Θ, Z, I9). Noting that the term W̃ (R,Θ, Z, I9) is mechanically inconsequential, we have proved the
following result.

Proposition 6.4. For inhomogeneous incompressible nonlinear monoclinic solids with any of the universal
material preferred directions given in (6.26), Family 2 and 3 deformations are universal for any energy
function of the form W = W (R, I1, I2, I4, I5, I6, I7, I8, I9).

Yavari and Goriely [2021] showed that for homogeneous incompressible monoclinic solids Family 4 defor-
mations are not universal. This is the case for inhomogeneous incompressible monoclinic solids as well.

6.4 Family 5

In [Yavari and Goriely, 2021] the following universal material preferred directions were reported:

Class (i) : N̂1 =



cos ξ1

± sin ξ1

0


, N̂2 =



cos ξ2

± sin ξ2

0


, ξ1 6= ξ2 , (6.28)

Class (ii) : N̂1 =



0

±1

0


, N̂2 =



0

cos η

± sin η


, sin η 6= 0 , (6.29)

Class (iii) : N̂1 =



0

0

±1


, N̂2 =



0

cos η

± sin η


, cos η 6= 0 . (6.30)

Noting that sin η cos η = 0, Classes (ii) and (iii) become unacceptable (N̂1 · N̂2 = 0), and hence the correct
universal material preferred directions are:

N̂1 =



cos ξ1

± sin ξ1

0


, N̂2 =



cos ξ2

± sin ξ2

0


, ξ1 6= ξ2 . (6.31)
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This means that the material preferred directions are two families of fibers that are parallel to the (R,Θ)
plane and are distributed uniformly in two distinct fixed directions.

In [Yavari, 2021] it was shown that the for Family 5 deformations constraints (4.19) imply that

∂W1

∂R
=
∂W1

∂Θ
=
∂W1

∂Z
=
∂W2

∂R
=
∂W2

∂Θ
=
∂W2

∂Z
= 0 . (6.32)

The above relations hold for inhomogeneous monoclinic solids as well. As was shown in §4.6 the universality
constraints (4.20) imply that W4,A = W5,A = W6,A = W7,A = 0. For the universal material preferred
direction (6.31), one can show that

C8A
[ab] = 0, for (A, a, b) = (1, 1, 2)⇒

C3
1

{
C3 sin ξ1

[(
1 + C2

2

)
cos ξ2 + C2 C3 sin ξ2

]
+ cos ξ1

[
C2

(
2 + 2C2

2 + C2
3

)
cos ξ2 + C3

(
2C2

2 + C2
3

)
sin ξ2

] }
= 0 ,

C8A
[ab] = 0, for (A, a, b) = (2, 1, 2)⇒

C13
{

cos ξ1
[(
−2 + C22(−6− 4C22 + C32)

)
cos ξ2 + C2 C3(−2− 4C2

2 + C2
3 ) sin ξ2

]
+ C3 sin ξ1

[
C2

(
1 + C22 + 6C32

)
cos ξ2 + C3

(
C2

2 + 6C2
3

)
sin ξ2

] }
= 0 ,

C8A
[ab] = 0, for (A, a, b) = (3, 2, 3)⇒

C6
1 C3

{
C3 sin ξ1

[(
1 + C2

2

)
cos ξ2 + C2 C3 sin ξ2

]
+ cos ξ1

[
C2

(
2 + 2C2

2 + C2
3

)
cos ξ2 + C3

(
2C2

2 + C2
3

)
sin ξ2

] }
= 0 .

(6.33)

None of the above constraints can be satisfied, and hence

∂W8

∂R
=
∂W8

∂Θ
=
∂W8

∂Z
. (6.34)

In summary, we have proved the following result.

Proposition 6.5. For inhomogeneous incompressible nonlinear monoclinic solids Family 5 deformations are
not universal.

Table 4 summarizes our results for inhomogeneous incompressible monoclinic solids.

7 Concluding Remarks

In this paper we studied universal deformations in inhomogeneous anisotropic bodies. Equilibrium equations
in the absence of body forces, and arbitrariness of energy functions in a given class of materials impose certain
constraints that we call universality constraints. We observed that the universality constraints of inhomo-
geneous solids include those of the corresponding homogeneous solids. In other words, for a given class of
materials universal deformations and universal material preferred directions are determined by the universal-
ity constraints of the corresponding homogeneous solids. Universal inhomogeneities (position dependence of
the energy function) are those inhomogeneities that are consistent with the universality constraints. We char-
acterized the universal inhomogeneities for inhomogeneous compressible transversely isotropic, orthotropic,
and monoclinic solids. In the case of inhomogeneous incompressible solids, for each of the six known families
of universal deformations, and material preferred directions we characterized the corresponding universal in-
homogeneities for inhomogeneous incompressible transversely isotropic, orthotropic, and monoclinic solids.
Table 1 summarizes our results for inhomogeneous compressible transversely isotropic, orthotropic, and
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Family Universal Deformations Universal material preferred directions Universal inhomogeneities

0 xa(X) = F aAX
A + ca Any two non-parallel constant unit vectors N̂1, and N̂2

W = W (I1, I2, I4, I5, I6, I7, I8, I9)

+ H(I1, I2, I4, I5, I6, I7, I8, I9) ·X

+W̃ (X3, I4, I6, I8, I9)

1


r(X,Y, Z) =

√
C1(2X + C4)

θ(X,Y, Z) = C2(Y + C5)

z(X,Y, Z) = Z
C1C2

− C2C3Y + C6

N̂1 =



0

cosψ1(X)

± sinψ1(X)


, N̂2 =



0

cosψ2(X)

± sinψ2(X)


W = W (X, I1, I2, I4, I5, I6, I7, I8, I9)

2


x(R,Θ, Z) = 1

2C1C
2
2R

2 + C4

y(R,Θ, Z) = Θ
C1C2

+ C5

z(R,Θ, Z) = C3

C1C2
Θ + 1

C2
Z + C6

N̂1 =



0

cosχ1(R)

± sinχ1(R)


, N̂2 =



0

cosχ2(R)

± sinχ2(R)


, χ1(R) 6= χ2(R) W = W (R, I1, I2, I4, I5, I6, I7, I8, I9)

3


r(R,Θ, Z) =

√
R2

C1C4−C2C3
+ C5

θ(R,Θ, Z) = C1Θ + C2Z + C6

z(R,Θ, Z) = C3Θ + C4Z + C7

N̂1 =



0

cosχ1(R)

± sinχ1(R)


, N̂2 =



0

cosχ2(R)

± sinχ2(R)


, χ1(R) 6= χ2(R) W = W (R, I1, I2, I4, I5, I6, I7, I8, I9)

Table 4: Universal deformations, universal material preferred directions, and universal inhomogeneities for incompressible
monoclinic solids for the six known families of universal deformations. For inhomogeneous monoclinic solids Family 4 and
Family 5 deformations are not universal. Also, note that N̂3 is normal to the plane of N̂1 and N̂2.

monoclinic solids. Tables 2, 3, and 4 summarize our results for inhomogeneous incompressible transversely
isotropic, orthotropic, and monoclinic solids.

This classification of universal solutions concludes our universal program for hyperelastic materials. It
provides a complete collection of solutions that can be used for applications and can be systematically
analyzed by stability methods to look for the existence of nearby solutions. In our construction we have
assumed that the choice of material preferred directions is consistent with the underlying symmetries of the
deformation (e.g. radial fibers for radial deformations). Therefore, our results do not preclude the existence
of other universal solutions that would not preserve the underlying symmetry of the deformations. However,
we believe that these solutions are unlikely to exist and we conjecture that this classification, like the cases
of isotropic incompressible solids, and isotropic anelastic solids is complete.
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