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Abstract

For a given class of materials, universal deformations are those that can be maintained in the ab-
sence of body forces by applying only boundary tractions. Universal deformations play a crucial role in
nonlinear elasticity. To date, their classification has been accomplished for homogeneous isotropic solids
following FEricksen’s seminal work, and homogeneous anisotropic solids and inhomogeneous isotropic
solids in our recent works. In this paper we study universal deformations for inhomogeneous anisotropic
solids defined as materials whose energy function depends on position. We consider both compressible
and incompressible transversely isotropic, orthotropic, and monoclinic solids. We show that the univer-
sality constraints—the constraints that are dictated by the equilibrium equations and the arbitrariness
of the energy function—for inhomogeneous anisotropic solids include those of inhomogeneous isotropic
and homogeneous anisotropic solids. For compressible solids, universal deformations are homogeneous
and the material preferred directions are uniform. For each of the three classes of anisotropic solids we
find the corresponding universal inhomogeneities—those inhomogeneities that are consistent with the
universality constraints. For incompressible anisotropic solids we find the universal inhomogeneities for
each of the six known families of universal deformations. This work provides a systematic approach to
study analytically functionally-graded fiber-reinforced elastic solids.

Keywords: Universal deformations, nonlinear elasticity, anisotropic elasticity, inhomogeneity, functionally-
graded materials.
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1 Introduction

In elasticity, for a given class of materials, universal deformations are those deformations that can be main-
tained in the absence of body forces by applying only boundary tractions for an arbitrary energy function in
that class.! They are particularly important in nonlinear elasticity since they exist independently of a partic-
ular choice of energy function. Therefore, they can be used experimentally to study material properties and
analytically as a basis for more complicated deformations or to gain insight into basic properties of materials.
The history of a theory of universal deformations goes back to the seminal work of Ericksen who showed
that for homogeneous compressible isotropic solids, universal deformations are homogeneous [Ericksen, 1955].
From that original seed, grew a large body of work addressing the same problems for materials that have
constraints such as incompressibility, may be anisotropic, may be inhomogenous, may be anelastic, or linear
as shown in Fig. 1. The problem of finding universal deformations in the presence of internal constraints
is more difficult [Saccomandi, 2001]. For homogeneous incompressible isotropic solids, in a second seminal
paper that was motivated by the earlier works of Rivlin [Rivlin, 1948, 1949a,b], Ericksen [1954] found four
families of universal deformations. He conjectured that a deformation with constant principal invariants has
to be homogeneous. This conjecture turned out to be incorrect [Fosdick, 1966], and motivated the discovery
of a fifth family of universal deformations [Singh and Pipkin, 1965, Klingbeil and Shield, 1966]. The six
known families of universal deformations are:

Family 0: Homogeneous deformations

Family 1: Bending, stretching, and shearing of a rectangular block

Family 2: Straightening, stretching, and shearing of a sector of a cylindrical shell

Family 3: Inflation, bending, torsion, extension, and shearing of a sector of an annular wedge

Family 4: Inflation/inversion of a sector of a spherical shell

Family 5: Inflation, bending, extension, and azimuthal shearing of an annular wedge

We should emphasize that for incompressible isotropic solids Ericksen’s problem has not been solved
completely to this day; the case of deformations with constant principal invariants is still an open problem.
However, the conjecture is that there are no other possible families of universal deformations. In related
works, there have been several studies of universal deformations and universal steady-state temperature fields

1See Pucci et al. [2015] for definitions of controllable, general, universal, and partial solutions in nonlinear elasticity.



in nonlinear thermoelasticity (see [Petroski and Carlson, 1968, Saccomandi, 1999, Dunwoody, 2005a,b], and
references therein).

Based on FEricksen’s seminal work, we embarked a few years ago into what we now refer to as the universal
program: to generalize Ericken’s results to anisotropic and inhomogeneous materials for all hyperelastic
materials, anelastic materials, and linear materials (see Fig.1). Indeed, the analogue of universal deformations
in linear elasticity are universal displacements [Truesdell, 1966, Gurtin, 1972, Yavari et al., 2020]. In [Yavari
et al., 2020], it was shown that universal displacements explicitly depend on the symmetry class of the
material; the larger the symmetry group is the larger the corresponding space of universal displacements
is. More recently, we studied universal inhomogeneities in anisotropic linear elasticity [Yavari and Goriely,
2022]. There have been recent extensions of Ericksen’s analysis to anelasticity. Yavari and Goriely [2016]
proved that in compressible anelasticity universal deformations must be covariantly homogeneous. In the
case of incompressible anelasticity, Goodbrake et al. [2020] observed that a key feature of the analysis is that
the extra fields entering the analysis should follow the same symmetry as the universal deformations. They
also showed that the six known families of universal deformations are invariant under certain Lie subgroups
of the special Euclidean group.

ANELASTICITY | ------------ NONLINEAR ELASTICITY |----------~-- LINEAR ELASTICITY
[Yavari-Goriely 2016 [Yavari-Goodbrake-Goriely 2020
Goodbrake-Yavari-Goriely 2020] / \ Yavari-Goriely 2022]

HOMOGENEOUS W INHOMOGENEOUS W
COMPRESSIBLE INCOMPRESSIBLE COMPRESSIBLE INCOMPRESSIBLE
ISOTROPIC ANISOTROPIC ISOTROPIC ISOTROPIC ANISOTROPIC ISOTROPIC
[Ericksen 1954] [Yavari-Goriely 2021] [Ericksen 1955] [Yavari 2021] [this work] [Yavari 2021]

Figure 1: The universal program: Finding all the universal deformations and displacements, together with the associated
universal material preferred directions, and universal inhomogeneities, for both compressible and incompressible solids. These
are the different cases considered so far with partial or complete solutions. Here, nonlinear elasticity refers to hyperleasticity
and the existence of a strain-energy density W is assumed that can either be homogeneous or non-homogenous, isotropic or
anisotropic.

Until recently, there was no systematic study of universal deformations in anisotropic solids. There were
early studies restricted to a subset of Family 1 deformations for two cases of homogeneous anisotropy, and
Family 3 deformations for an example of homogeneous anisotropy [Ericksen and Rivlin, 1954] (see also [Ad-
kins, 1955a,b]). However, many examples of universal deformations for anisotropic fiber-reinforced systems
were known and widely used [Spencer, 1982, Qiu and Pence, 1997, Melnik and Goriely, 2013, Holzapfel et al.,
2000, Demirkoparan and Pence, 2007, Goriely and Tabor, 2013, Demirkoparan and Pence, 2015, Goriely,
2017]. Recently, we studied universal deformations and universal material preferred directions in homoge-
neous compressible and incompressible anisotropic solids [Yavari and Goriely, 2021]. More specifically, we
considered compressible and incompressible transversely isotropic, orthotropic, and monoclinic solids. We
assumed that the material preferred directions can vary from point to point. In the case of compressible
solids we showed that universal deformations are homogeneous and universal material preferred directions
for the three classes of anisotropic solids must be uniform. In the case of homogeneous incompressible trans-
versely isotropic, orthotropic, and monoclinic solids, we showed that in addition to the nine universality
constraints for isotropic solids [Ericksen, 1954], there are extra 25, 74, and 152, respectively, extra univer-
sality constraints that must be satisfied. For each known family of universal deformations we obtained the



universal material preferred directions assuming that they have the symmetry of the corresponding universal

deformations (that are encoded in the symmetries of the right Cauchy-Green strain).?

Motivated by a result in [Golgoon and Yavari, 2021], Yavari [2021] extended the analysis of universal
deformations to inhomogeneous isotropic solids (with position-dependent strain-energy density), and showed
that in addition to those of homogeneous isotropic solids there are some extra universality constraints. It
was shown that inhomogeneous compressible isotropic solids do not admit universal deformations. In the
case of inhomogeneous incompressible solids the following results were obtained for each of the six known
families of universal deformations.

e For inhomogeneous incompressible isotropic solids it was incorrectly concluded that Family 0 deformations
are not universal. This is discussed in §4.1, and the corrected statement is given in Footnote 4.

e Family 1 deformations are universal for any energy function of the form W = W(X, I, I5), where (X, Y, Z)
is a Cartesian coordinate system with coordinate lines normal to the faces of an undeformed rectangular
block. Note that with respect to cylindrical coordinates (r,6,2) in the deformed configuration, Family
1 deformations have the form: (r,6,z) = (\/Cl (2X + Cy),Co(Y + C5), ﬁ — CyClY + 06)7 where
Cq, ..., Cg are constants.

e Families 2, 3, and 4 deformations are universal for any energy function of the form W = W(R, I, I5),
where R is the radial coordinate in the undeformed configuration of a cylindrical shell, an annular wedge,
and a spherical shell, for Families 2, 3, and 4, respectively.

e For inhomogeneous incompressible isotropic solids, Family 5 deformations are not universal.

The remaining problem to be solved to complete Ericksen’s program is to study elastic materials that are
inhomogenous, and anisotropic. Therefore, we study universal deformations for inhomogeneous anisotropic
solids and generalize the results of [Yavari and Goriely, 2021, Yavari, 2021]. We consider both compressible
and incompressible transversely isotropic, orthotropic, and monoclinic solids. It is shown that the universality
constraints—the constraints that are dictated by the equilibrium equations and the arbitrariness of the energy
function— for inhomogeneous anisotropic solids include those of inhomogeneous isotropic and homogeneous
anisotropic solids as special cases. For compressible solids, universal deformations are homogeneous and
the material preferred directions are uniform. For each of the three classes of anisotropic solids we find
the corresponding universal inhomogeneities—those inhomogeneities (position dependence of the energy
function) that are compatible with the universality constraints. For incompressible anisotropic solids we find
the universal inhomogeneities for each of the six known families of universal deformations.

This paper is organized as follows. In §2 we tersely review nonlinear anisotropic elasticity. In §3, we
consider inhomogeneous compressible transversely isotropic, orthotropic, and monoclinic solids. The univer-
sal deformations, universal material preferred directions, and universal inhomogeneities of inhomogeneous
incompressible transversely isotropic solids are analyzed for each of the six known families in §4. Similar
analyses for inhomogeneous incompressible orthotropic and inhomogeneous incompressible monoclinic solids
are given in §5 and §6, respectively. Conclusions are given in §7.

2 Nonlinear Anisotropic Elasticity

Kinematics. Consider an elastic body B. In nonlinear anelasticity the body is identified with a Rieman-
nian manifold (8B, G) whose metric G is used in calculating the natural distances between material points in
the body. In nonlinear elasticity (8, G) is flat, and is a submanifold of the Euclidean 3-space. A deformation
of the body is a map ¢ : B — &, where & is the Euclidean ambient space, and g is the Euclidean metric.
The material velocity is defined as

dp(X, 1)
ot

The spatial velocity is defined as v = Vo, ! The deformation gradient—the tangent map (or derivative) of
¢—is denoted by F = T'p. With respect to local coordinate charts {z%} and {X“} on & and B, respectively,

VBT, xS, ViX)=V(X,t)= . (2.1)

2Unfortunately, there was a small mistake in calculating the universal material preferred directions for Family 5 deformations.
The correct universal material preferred directions are given in (4.83), (5.17), and (6.31), for transversely isotropic, orthotropic,
and monoclinic solids, respectively.



deformation gradient is defined as

_ o¢"
- 0XxA
The deformation gradient is a linear map that maps vectors in the tangent space at a material point in the

reference configuration to vectors in the tangent space of the same material point in the current configuration.
The transpose of deformation gradient is defined as

F(X) : TxB = Tyx)S, F*a(X)

(X). (2.2)

FT: TS = TxB, (FV,v),=(V,F'v)g, VYVeTxB, veTlys, (2.3)

where (, ) and (, ), are the inner products induced by the material and ambient space metrics, respectively.
FT has the following components

(FT(X) e = gap () F’5(X)GAH(X) . (2.4)
The right Cauchy-Green deformation tensor is defined as
C(X)=FX)"F(X): TxB - TxB, C%=(F")*Fp. (2.5)
The pulled-back metric is denoted by C” = p*g, and is defined as

(U,W)_., = (FUFW)_, YU W € Tx3, (2.6)

where b is the flat operator induced by the metric g. C” has components Cyp = (gap © w)F“AFbB. The left
Cauchy-Green deformation tensor is defined as

Bf = p*(gf), B =(F )L (FHT, g7 (2.7)

The spatial analogues of C” and Bf are denoted by ¢” and b (the Finger deformation tensor), respectively,
and are defined as

< = 30*((;), Cab = (F_l)Aa (F_l)Bb Gap,

bf = .(GF), b =F 4 F'p G,

The second-order tensors C and b have the same principal invariants Iy, Is, and I3 that are defined as
[Ogden, 1984]

(2.8)

I =trb =% = b® gu,

I = 5 (12 = trb?) = 5 (1F = 1) = 5 (1F = 55 guc o). (2.9)

DN | =

I; = detb.

Balance laws. The referential forms of the mass conservation and the balance of linear and angular
momenta read
o
ot
where pg is the material mass density, B is body force per unit referential volume, A is the material
acceleration, and P is the first Piola-Kirchhoff stress. The spatial forms of conservation of mass and balance
of linear and angular momenta read

=0, DivP+p)B=pA, PFT=FPT, (2.10)

Lyp=0, dive+pb=pa, o =0, (2.11)

where p is the spatial mass density, o is the Cauchy stress, b = B o ¢, ! a is the spatial acceleration,
and Lyp is the Lie derivative of the spatial mass density with respect to the spatial velocity. P and o are
related as Jo® = P*AF’,. The Jacobian of deformation J = /T3 relates the material (dV) and spatial
(dv) Riemannian volume forms as dv = JdV, and is given by

detg
= F. 2.12
J =1/ ot G det (2.12)




Constitutive equations. For an inhomogeneous anisotropic hyperelastic solid the energy function (per
unit undeformed volume) has the following functional form

W=W(X,C, G, (1,...,Cn), (2.13)

where W explicitly depends on X (inhomogeneity), and the structural tensors {;,i = 1,...,n characterize
the material symmetry group of the solid. Using structural tensors the energy function becomes an isotropic
function of its arguments. Instead of (2.13) one can write the energy as a function of an integrity basis
for the set of tensors {C”, G,¢1,...,¢n}. Denoting the integrity basis by Ij,5 =1,...,m, one can write
W =W(X,I,...,In). The second Piola-Kirchhoff stress tensor has the following representation [Doyle and
Ericksen, 1956, Marsden and Hughes, 1994, Yavari et al., 2006]

oW & oI oW
— = W, — W, =W;(X, I1,....In) = —,
0~ =" oC 5= Wi (X s In) al;

S=2 j=1,...,m. (2.14)

The relations between the second Piola-Kirchhoff stress, and the first Piola-Kirchhoff and Cauchy stresses
are: SAB = (F~1HA, P8 = J(F~1)A(F~1)B, 0.

Isotropic solids. For an inhomogeneous isotropic solid, W = W(X, Iy, I, I3), where I, I, and I3 were
defined in (2.9). From (2.14) one writes

S =2W, G¥ +2W, (I, C™F — [3C72) 4 2W3 [3C7 L. (2.15)
The Cauchy stress has the following representation
2
ab

o= (W1 b + (1o Wa + I3 W3) g™ — Is Wa ™ | (2.16)

where ¢ = (F~H)M,_ (F~H)N, Gy g*™ ¢"". For an incompressible isotropic solid I3 = 1, and hence

S=—pCl42W, GF —2W, C2,

2.17
o=-pgt+2W b —2Wyc?, (2.17)

where p is the Lagrange multiplier associated with the incompressibility constraint J = /I3 = 1. Eq. (2.17)
in components reads ¢® = —p g® + 2W; b — 2W, 2.

Transversely isotropic solids. In a transversely isotropic solid at every point there is a single material
preferred direction, which is normal to the plane of isotropy at that point. We assume that a unit vector
N(X) identifies the material preferred direction at X € B. The energy function for an inhomogeneous
transversely isotropic solid has the form W = W(X, G, Cb7A), where A = N ® N is a structural tensor
[Doyle and Ericksen, 1956, Spencer, 1982, Lu and Papadopoulos, 2000]. The energy function W depends on
five independent invariants that are defined as

I=trC=C%",, IL=detCtr C ! =det(CA5)(C HPp, I3=detC=det(C*p)

I,=N-C-N=NANBC,p, I;=N-C2.N=NANBCp,CM,. (2.18)
The second Piola-Kirchhoff stress tensor has the following representation
5
S = ;2ngg, Wi =W;(X, I, ..., I5) == ?;Z ,j=1,...,5, (2.19)
where % o % ) 12071 o % .
A 20
50 — N®N, a—c"b =N®(C-N)+(C-N)®N.



Thus
S =2W; G +2W, (LC™' —I;C72) +2W3 [;C™!

2.21
+2Wy(N®@N) +2W5[N® (C-N) + (C-N)®@N] . (2.21)
The Cauchy stress has the representation [Ericksen and Rivlin, 1954, Golgoon and Yavari, 2018a,b]
2
ot = Vi (W1b™ + (I Wa + I3W3) g™ — IsWa ¢ + Wyn®n® + W5 %] | (2.22)
3
where n* = F% N4, and
0% = b n, + b n, . (2.23)

In the case of an incompressible transversely isotropic solid (I3 = 1), W = W (X, I1, I, I4, I5), and hence
S=-pC' +2W1G* +2W, (L, C™' = C72) +2W, (N® N) + 2W5 [N ® (C - N) + (C-N) ® N] . (2.24)

Similarly, the Cauchy stress has the following representation [Ericksen and Rivlin, 1954, Spencer, 1986,
Golgoon and Yavari, 2018a,b]

0% = —p g 4+ 2W, b — 2Wy ¢ + 2W, n® n® + 2W5 (na v*en? geq 4+ n® b2 n? gcd) ) (2.25)

Orthotropic solids. An orthotropic solid has reflection symmetry with respect to three mutually per-
pendicular planes at every point. Let three G-orthonormal vectors Ni(X), Ny(X), and N3(X) specify
the orthotropic axes at a point X in the reference configuration. The three tensors A; = N; ® Ny,
As =Ny ®Nsy, and A3 = N3 ® N3 are structural tensors. However, because A; + Ay + A3z = I, only two of
them are independent. The energy function of an inhomogeneous orthotropic solid has the functional form
W =W (X,G,C" A, Ay) [Doyle and Ericksen, 1956, Spencer, 1982, Lu and Papadopoulos, 2000]. Tt can
be rewritten as a function of the following seven independent invariants:

L =trC, I,=detCtrC !, I3=detC,

I4=N;-C-N;, Is=N;-C* Ny, (2.26)

Is =Ny-C-Ny, I; =N, -C?.N,.
Thus
ow

— j=1,...,7. 2.27
a]—j7 J ) ) ( )

7

oI;

S = Zzwjﬁ, W, = Wi(X, 11, ... Ir) ==
j=1

The second Piola-Kirchhoff stress tensor has the following representation
S =2W; G! +2W, (I, C™' — 3,C7%) + 2W3 [;C*
+2Wy (N1 @ Np) +2W5 [N; ® (C-Nyp) + (C-Ny) ® Ny| (2.28)
+2Ws (N2 ® N3) + 2W7 [Ny ® (C - N3) + (C - Ny) @ No] .
Similarl]y, the Cauchy stress is written as [Smith and Rivlin, 1958, Spencer, 1986, Golgoon and Yavari,
2018a,b

2
ab ab ab ab
0% =—= W1 b" + (Iy Wy + I3 W3)g® — I3 W5 ¢
VI3

+ Wang nt + W (09 b n geq + n 0% n geq) (2.29)
+ Won§ b+ Wy (ng % nf goa +n b8 goa) |

where n¢ = F*4N{*, and n§ = F?4N3'. In the case of an incompressible orthotropic solid (I3 = 1),
wW=Ww (X,Il, 12,14715, 167[7)- Thus, using (228), one has
S = —pC~! +2W1G* + 2W, (LC™! — C72)
+2W,4 (N7 ® Np) + 2W5 [N1 & (C'Nl)-l-(c -N1) ®N1] (2.30)
+ 2Ws (N2 ® Nz) + 2W5 [NQ ® (C . Nz) + (C . NQ) ® NQ] .



Similarly, the Cauchy stress tensor is written as

0 = —pg® + 2W, b — 2W, ¢ 4 2Wy nd nb + 2Ws £9° + 2We nd nd + 2W, 130 (2.31)
where (4% = n¢ 6% n¢ g.q + nb b4 né geq, and 4% = ng b* nd g.q + nb b4 nd geq.
Monoclinic solids. A monoclinic solid has three material preferred directions that are specified by three
unit vectors {IN1, No, N3} such that Ny - Ny # 0 and N3 is normal to the plane of N; and Ny [Merodio and

Ogden, 2020]. The energy function of a monoclinic solid depends on nine invariants [Spencer, 1986], seven
of which are identical to those of orthotropic solids (2.26). The two extra invariants are

Is=gN;-C-Ny, Iy=g?, (2.32)
where g = N7 - N5y. Note that

or
ocP

0l

g
=Z(N;®Ny+Ny®N — =
2( 1 ®No+Ny®@Ny) , oCP

(2.33)

For orthotropic solids the second Piola-Kirchhoff stress has the following representation

S =2W; G* +2W, (I, C™!' — I3 C %) + 2W3 I5C 1
+2W, (N7 ® Np) 4+ 2W5 [N ® (C-Np) + (C-Np) ® Ny
+ 2Wg (Ng @ Na) + 2W7 [No @ (C - Ng) + (C - N3) @ Ny
+9Ws (N1 @ Ny + Ny @ Ny )

(2.34)

where W; =W, (X, I, ..., Iy), i = 1, ..., 8. Similarly, the Cauchy stress can be written as

2
ab ab ab ab
=—— |W1 b + (Io Wy + Is W — I3 W
g Ts[ 1 (2 2 3 3)9 3Wac

+ Wangnb + Ws (0§ 0% nd g + 08 %0 geq) (2.35)
+ Weng nb + Wr (08 6% ng geq + n5 % nd ga)

+ gWs (n§ nb + nf ng) } .
In the case of incompressible monoclinic solids (Is = 1), W =W (X, I, I, Iy, I5, I, I7, Is, Iy). Thus

S=-pC ' +2W1G* +2W, (LC ' —C?)
+2Wy (N; ® Np) +2W5 [Ny ® (C-Nj) + (C-Np) @ Ny]
+ 2Ws (N2 @ Ny) + 2W7 [Ny ® (C - N3) + (C - N3) @ Ny
+gWs (N1 @ No + Ny @ Ny) .

(2.36)

Similarly, the Cauchy stress tensor is written as
o = —pg® 4+ 21 b — 203 Wy ¢ 4+ 2Wy né nb + 2Ws5 9% 4 2We nd nb + 2W, 20 + W 02, (2.37)

where (5° = g (n{ n} + nf ng).

3 Compressible Inhomogeneous Anisotropic Solids

3.1 Transversely isotropic solids

We first consider an inhomogeneous body made of compressible transversely isotropic solids. We do not
specify the material preferred direction N(X) a priori. In the absence of body forces, the equilibrium



equations in Cartesian coordinates read 0“1771, = 0. Substituting (2.22) into the equilibrium equations one
obtains [Yavari and Goriely, 2021]

Iy P Ty W 6P (I Wa + s Wa)0® — I3 Wa ¢ + Wy n® b + Wi €°°]
205 (T Wa o+ Iy Wa + Iy y Wy + Iy Wi )3° + W1 b + Wy b0
— I3, Wo ™ — I3 Wa py ¢ — I3 Wy ™

+ Waypn® n? + Wyn®, n + Wain® nbyb + Ws b 4 Wi E“b,b} =0.

For universal deformations the equilibrium equations hold for an arbitrary energy function W. Knowing
that W is an arbitrary function of its arguments, the coefficient of Wy, Wy, W5, W3, and W5 must vanish
separately. Thus [Yavari and Goriely, 2021]

Wi - bab7b =0,

Wy Ipyd™ — I3, =0,

Ws: I3 =0, (3.2)
Wi: (nn®), =0,

Wiy - Kab,b =0.

The above constraints simplify (3.1) to read
b Wy gy + (I26% — I3 ™) Wap + 136 Wy +nn® Wy + £ W5 = 0. (3.3)
Note that I3, = 0 from (3.2)3 and

Wiy =(F DY Wia+Wi Ly +Wialoy +Wig Ly +Wis Iy,
Wop = (F~)A Woa +Wig Iy + Wag In gy + Way Iy + Was Iy
Wiy = (F~)A Wa g + Wiz Iy + Wag Toy + Way Luy + Was Iy (3.4)
Wap = (F )Y Wya+WiaLiy+Way Iogy +Wag Ly + Was Iy,
Wsp = (F ) Wi a+Wis Iy + Wos Loy + Was Ly + Wis Is
where P s
Wi,A = aXViA, Wij = m, <7. (3~5)

Notice that the first term on the right-hand side of each equation in (3.4) vanishes for homogeneous solids
[Yavari and Goriely, 2021]. Substituting the above relations into (3.3) the coefficients of W13 and Wa3 read

ngi I3Il)b(sab20,

3.6
W23 : Iglgjbéab =0 ( )

Thus, I = Iz, = 0. Substituting these into (3.4) and using (3.3) the coefficients of W34 and W35 read

Wayg: I3lyp6® =0,

Wss : I315,6% =0. (3.1)
Hence, I, = Is, = 0. Therefore, we have the following universality constraints
Iy, I, and I3 are constant, (3.8)
by =c", =0, (3.9)
14, and I5 are constant, (3.10)
(n*nP), =2, =0. (3.11)



Note that (3.8) and (3.9) are the universality constraints for isotropic solids [Ericksen, 1955, Yavari and
Goriely, 2016] and imply that F® 4jp = 0, i.e., universal deformations are homogeneous. In addition, since
Ly = Iy a(F~1)4, = 0, we have I, 4 = 0. Similarly, I5 4 = 0. The constraints (3.10) and (3.11) imply that
N is a constant unit vector [Yavari and Goriely, 2021].

For inhomogeneous solids one has the following extra five sets of universality constraints:

(F)
(F)
(F~H)A% Ws4=0, (3.12)
(£7)
(F)

The first three constraints in (3.12) are identical to those of isotropic solids [Yavari, 2021], and imply that
Wia=Woa=W34=0, A=123. (3.13)

The constraint (3.12), implies that n?(F~1)4, Wya=Wya NA =0. As N is a constant unit vector we can
choose the Cartesian coordinates (X!, X2 X3) in the reference configuration such that

0

N == W 5 (3.14)

ie., N4 = 6. Here we have used the notation dx: to denote the unit (tangent) vector along the ith
Cartesian direction as is customary in differential geometry. With this choice of coordinates the constraint
Wy a N4 =0 reads

oW,
=0. 3.15
Note that n® = Fe, N4 = F“A(Sf‘ = F%.
Eq.(3.12)5 is equivalent to
(FHB b (F~ YA W54 =0, B=1,2,3. (3.16)
Using (2.23) the above constraints can be rewritten as
(NACBp NP + NBCAp NPYW5 4 =0, B=1,2,3. (3.17)

Knowing that N4 = 67}, this last expression can be rewritten as
CB W51 +6PCAH Ws4=0, B=1,2,3. (3.18)

For B = 2, it implies that C?; W51 = 0, which must hold for arbitrary homogeneous deformations, i.e.,
for arbitrary constant C?;. Thus, W51 = 0. Now the constraint for B = 3 is trivially satisfied. For
B=1,0% Ws.a + c3, Ws 3 = 0, which must be satisfied for arbitrary constants C?,, and C3;. Therefore,
W52 = W53 = 0. Thus, the constraint (3.12)5 implies that W5 4 = 0. In summary, we have the following
constraints

Wia=Woa=W3a=W5,4=0 A=1,23 & Wy;=0. (3.19)
This implies that
ow ow ow
X1 f1(X), Xz = f2(X, 1y), X5 f3(X, 1), (3.20)
Af1 _ Ofs

for some scalar functions fa. Note that 5% = 55%. Since fi does not depend on Iy, one has

(X, 1) = fo(X2, X3 1) + fo(X). (3.21)

10



Similarly, g)’?a = g};ﬁ implies that

f(X, L) = [3(X2, X% 1) + f3(X) .
From (3.20);, one writes
Xl

WX, 1) = AXE X2 X3 dx +h(X? X3 L),
X4

(3.22)

(3.23)

where X} is some fixed value of X1, h is some scalar function, and W (X, I;) and h(X?, X3, I;) are short for
W (X, I, I, I3, I, I5) and h(X?, X3, 1, I5, I3, 14, I), respectively. Taking partial derivative with respect to

X2 of both sides one obtains

ow X af (X!, X2, X3) Oh(X2?, X3, 1))

- axt 4 82 2 60
ox® = Jy ox? T oxe

_/Xl Of2(XY, X2, X3, 1)) X Oh(X2, X3, I;)

- Jx ox! 0X2 ’

f f Oh(X2, X3, 1,
(XY X2 X 1) — fa(XD, X2, X5, 1) + 2 AT L)

0X?
From (3.24) and (3.20)2 one concludes that
3h(X27X37II) 1 2 3
— axz = f2( Xy, X5, X7, 1) .
Thus ) )
X 2 v3 b's
Oh(X2, X3, I,
/ ( a}(Q : )dX2: f2(X67X27X3aI4)dX25
X2 X2
0 0
where X2 is some fixed value of X?. Hence
X2
X2 X°, 1) = (X35, X*, 1) + f2(X§, X%, X3 1) dX? .
X3
Using the above relation in (3.23), one writes
X! X2
W(Xajl):h(X37X37]1)+ fl(XlaX23X3)dX1+ f2(X53X27X37I4)dX2'
X5 X3

Taking partial derivative with respect to X3 of the above relation one obtains

o - L s /X1 SHX XL X) dx? ‘|'/X2 df2 (X5, X2, X3, 1y) dx?
0X?3 0X3 X X3 X3 e 7
= w _,_/Xl Ofs(X*, X2 X3 1) ax? +/X2 dfs(X¢, X2, X3, 1) 2
0X3 X ox1 X3 X2 ,
ah X27X33Ii . .
B %Hﬂlvﬁﬁm — (X3, X2, X3 1)

Thus using (3.20)3 one concludes that

Oh(XE, X3, 1))

5X3 = f3(X3, X3, X3, 1y).

11

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)



Hence

X3 2 3 X3
h(XZ, X3, I;
/ 8(0’—3’) dX3 = f3(X3, X3, X3, 1,) dX?, (3.31)
X3 0X xg
where X is some fixed value of X3. Thus
XS

hXE X3, 1) = X3, X3, L) + f3(X5, X3, X3, 1) dX3 . (3.32)

X§

Substituting the above relation into (3.28) one obtains

x! X2
WX, L) = h(X3, X3, I;) + AL X2 X dX! + (X3, X2, X3, 1,) dX?
1 2
- Xo Xo (3.33)
+ f3(X3, X8, X?, 1,) dX3.
X3

Substituting (3.21) and (3.22) into the above relation one finds that W (X, I;) = W (X)+W (I;)+W (X2, X3, I,).
Note that the term W(X) is mechanically inconsequential, and hence we have proved that the only univer-
sal deformations are homogeneous and the only possible dependence on the position is through I, and in
directions normal to a constant vector N:

Proposition 3.1. For compressible nonlinear transversely isotropic solids, universal deformations are ho-
mogeneous, the universal material preferred direction is at all points a constant unit vector N, and the
universal inhomogeneity has the following form

W(X, I, Iy, Is, Iy, Is) = W(Iy, Iy, Is, Iy, I5) + W(X?, X3, 1), (3.34)

where the Cartesian X' -coordinate line is parallel to N.

3.2 Orthotropic solids

For inhomogeneous compressible orthotropic solids there are two sets of universality constraints. The first
set of constraints are identical to those of homogeneous compressible orthotropic solids and read [Yavari and
Goriely, 2021]:

I, I, and I3 are constant, ( )
by =c"y =0, (3.36)
I, and I5 are constant, (3.37)
(nin}) =155 =0, (3.38)
Is, and I are constant, (3.39)
(ngn3)p =15"5 = 0. (3.40)
These constraints imply again that universal deformations are homogeneous and the material preferred

directions are uniform. In the reference configuration we choose the Cartesian coordinates (X!, X2, X?)
such that
0 0 0

Ni=o51 Ne=g55m, Ne=gxm

(3.41)
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The second set of universality constraints are:

(F77)

(F7)

(F~)

(FH4, Wy =0, (3.42)
(F~)

(F7)

(F)

The first three constraints are identical to those of isotropic solids [Yavari, 2021], and imply that W7 4 =
Wi a = W3 4 = 0. Similarly to the universality constraints of transversely isotropic solids, (3.42), and
(3.42)g imply that

= = = = = . .4
axA N = ox1 =Y axAN2 = 5x2 =0 (343)
The universality constraints (3.42)5 and (3.42)7 imply that
Wsa =Wz a=0, A=1,23. (3.44)
This means that oW P oW
X1 = f1(X, Is), X = f2(X, 1), %3 = [3(X, 1y, Ig) - (3.45)
Note that
0f1(X, Is) _ 0f2(X,1;)  0fi1(X,Is) _ 0f3(X, 1y, I) 0f2(X, Is) _ 0f3(X, 1y, 1) (3.46)
0X? oxt 7 0Xx3 o0Xx1 ’ 0X3 0X? ' '
Thus _ =
fl(Xa-TG):fl(X17X37I6)+f1(X)7 (347)
(X, L) = (X%, X3 1) + f2(X).
Using (3.45);, one writes
Xl
W(X,I;) = f(XY X2 X3 I dX! + h(X? X3 1), (3.48)
X5

where h is some scalar function, and X{¢ is some fixed value of X!. Taking partial derivative with respect to
X? of both sides one obtains

ow X af(Xt X2 X3, 1) Oh(X2, X3, I;)

- xl 0 o o7
ox® = Jy, oX? > A
1
:/X Ofp (X1, X2 X2 y) (or OR(X2, XP, 1)) (3.49)
X3 axX1 axz

Oh(X2, X3, 1,
— (X X2 X L) - fo(X0, X2 x5, 1) + DE X

0X?2
From (3.49) and (3.45)2 one concludes that
Oh(X?, X3, I;
oM T — g X X0 ). (3.50)
Thus ) )
X 2 3 X
Oh(X2, X3, 1) ,
/Xz ——xz dx? = . f2(X3, X%, X3, 1,)dX?, (3.51)
0 0
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where X2 is some fixed value of X2. Hence

X2
h(X2 X3 1) = h(XZ, X3 I;) + f2(X3, X%, X3, 1) dX2.
X3
Using the above relation in (3.48), one has
Xl X2
W(X, L) = h(X3, X3, I,) + XY X2 X3 I6)dX ! + f2(X5, X2, X3 1) dX?2.
X§ X3

Taking partial derivative with respect to X3 of the above relation one obtains

B 1 2
oW _ Oh(Xg, X*, 1) N Of(XY, X2 X3, T) ax 4 X 0fa(XE, X2, X3, 1) I
0X3 0xX3 X1 0X3 Xz 0X3 ’
_ On(XE, X3, 1)) /Xl Ofs(X", X2, X3, I, Ig) dX1+/X2 0fs(X8, X2 X311, 15) s
0X3 X2 0X1 X2 0X? ’
oh(XE, X3, I,
= % + f3(X1,X2aX37-[4aI6) - f3(Xéng,X3aI4vI6) .
Thus using (3.45)3 one concludes that
oh(X3, X3, 1,
% = f3<X(%an7X37I47IG) .
Hence - -
Oh(XE, X3, I,
/ %dX‘”’ = f3(Xa, X2, X3, I, Is) dX 3,
X3 X3
where X3 is some fixed value of X?. Thus
X3
h(X3, X3 1) = h(X3, X5, I;) + » f3(X5, X3, XP, 1, Ig) dX? .
0
Using the above relation in (3.53), one obtains
X! X2
W(X, ;) = h(XZ, X3, 1;) + 1 f(XY X2 X3 1) dX ! + ] f2(X3, X2, X3, 1,) dX?
XO XO
X3
+ f3(XéaX027X3aI4;IG)dX3-
X3
Substituting (3.47) into (3.58) one finds
xt X2
W(X7I’L):W(X)+W(Il)+ f_l(leX37I6)Xm+ f_Q(X27X37]4)dX2
X2 X2
XS 9 0
+ | fa(Xg, X5 XP Iy, Ig) dX
XS

0

Noting that the term W(X) is mechanically inconsequential, we have proved the following result.

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

Proposition 3.2. For compressible nonlinear orthotropic solids universal deformations are homogeneous,
the universal material preferred directions are everywhere the same three mutually orthogonal constant unit

vectors N1, Ns, and N3, and the universal inhomogeneity has the following form
W(X, Iy, Iy, I3, Iy, I5, I, I7) = W (I1, Iz, I3, Iy, I5, Ig, I7)
+ W(XP, Iy, Ig) + W(X?, X3, 1) + WX, X2, Ig),

where the Cartesian coordinate lines are the orthotropy directions.
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While the form of this strain-energy density seems involved, it can be written explicitly in terms of the
Cartesian components of C as

W(X,C) = W(C) + W(X?,Ciy, Caz) + W(X2, X3, C11) + W(X', X3, Ca) . (3.61)

3.3 Monoclinic solids

Note that orthogonality of the material preferred directions was not assumed when deriving the constraints
(3.35)-(3.40), i.e., these universality constraints hold for monoclinic solids as well. However, there are the
following extra universality constraints [Yavari and Goriely, 2021]:

Is, and Iy are constant, (3.62)

(ngn3)p=15"=0. (3.63)

For compressible monoclinic solids the universality constraints (3.35)-(3.40) imply that universal deforma-
tions are homogeneous, and the three unit vectors Nj,No, and N3 are constant. This means that (3.62),
(3.63) are trivially satisfied. Let us assume that the angle between N; and Ny is § (0 < 6 < 7). In the
reference configuration we choose a Cartesian coordinate system (X!, X2, X3) such that

0
N;=—. .64
5= 5 (3.64)
In general, N; makes and angle o with the X;-axis, and thus
N; = cosa 0 +sina 9 Ny = cos(a+ 6) 0 + sin(a + 0) (3.65)
P axT ax2’ T ax1 0x2" '

The second set of universality constraints for inhomogeneous monoclinic solids include those of orthotropic
solids, i.e., Egs.(3.42). There is one extra universality constrain that reads:

(P (F) A Wy a = 0. (3.66)
This is equivalent to (NP N3' + N{*NP) Wy 4 = 0, and is trivially satisfied for B = 3. For B = 1,2 it gives

us
2cosa cos(a+6) Wg 1 +sin(2a+6) Ws o =0,

. L (3.67)
sin(2a + 0)Wg 1 + 2sina sin(a + 0) W2 = 0.
These need to be satisfied for arbitrary «, and 8, and hence
W1 =Wss=0. (3.68)
The first three universality constraints in (3.42), and (3.42)5 and (3.42)7 imply that
Wia=Woa=Ws4=Ws4a=Wy;4=0, A=1,23. (3.69)
The constraint (3.42)4 implies that
oW, We . O0Ws
8XAN{“:cosozaXl—|—smon:O, (3.70)
which must hold for any «, and hence
oW, 0wy
= =0. 3.71
oxXt  9Xx? (8:71)
The constraint (3.42)g implies that
aWﬁ A 8W6 . 8W6
WNQ :COS(Q+9)ﬁ+SIH(OL+6) 8X2 :O (372)
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This needs to hold for any 0 < 6 < 7, and hence

oW

oxt
From Egs. (3.68), (3.69), (3.71), and (3.73) one has

OWs
0X?

ow

ow
ﬁ = fl(Xa-[Q)v

Erel = fo(X, Iy)

Using (3.74)1, one can write
Xl

X5

fl(X17X2aX37

ow
) ﬁ:f:S(X?IZhIGvISa]b)'

Ip)dX* + h(X? X3 T;).

Taking partial derivative with respect to X2 of both sides one obtains

OW _ [ ORKL XX ) | DR X0 1)
0xX2 — Jx 0X? oxz
- OBOAXE XN L) i WX T
-~ Jx oX1 0X2 ’

= f2(X1>X2aX37[9) - f2(X(%>X2aX37IQ) +

From (3.76) and (3.74)5 one concludes that

ah(XQ,X‘?,Ii)
0X?2
Thus

Oh(X2, X3, 1)
9X2

= f2(X57X27X37I9) .

X2

(X2, X3 1) = h(X2, X3 I;) +
X3

Using the above relation in (3.75), one writes

Xl
W(X,I;) = h(X5, X% I;) +
x3

(XY X2 X3 ) dX ! +

fa(X3, X2, X3, 14, I9) dX 2.

X2

Xg

Taking partial derivative with respect to X3 of the above relation one obtains

oW On(X3, X3,1I,) /Xl af1 (X1, X2, X3, I)

dx! +/X2 0f2(X3, X*, X?, I5)
0xs3

X3

dx?t

oX3 0X3 xi oX3
_ 6h(Xg7X3’7L') /X1 af?’(XlaXQaX37I4a16718719)
o 8X3 Xé 3X1
Xx? 1 yv2 yv3
+/ 8f3(X07X 7X 5147]67-[87-[9) dX2,
Xg 8X

Oh(X3, X3, 1))

=0 2y (X X2 XP I, e, s, 1) — f3(Xg, XG, X2 I, I, Is, 1)

X3
Thus using (3.74)3 one concludes that

Oh(XE, X3, 1))
0x3
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= f3(X01aX027X3,I47IGaI8719) .

. f2(X5, X2, X3, Io) dX?2.

dx?,

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)



Hence

X3
h(XE X3, 1) = h(X3, X3, 1) + f3(X3, X2, X3, 14, I, Ig, Io) dX3 . (3.82)
X3
Using the above relation in (3.79), one obtains
x?! X2
W(X, ;) = h(X3, X3, I;) + f(XY X2 X3 ) dX ! + f2(X5, X2, X3, Iy) dX?
1 2
. %o o (3.83)
+ f3(X[%7X§aX37I47I67-[87-[9)dX3~
X3

0

Note that the second and third terms on the right-hand side are mechanically inconsequential, and hence,
we have proved the following result.

Proposition 3.3. For compressible nonlinear monoclinic solids universal deformations are homogeneous,
the universal material preferred directions are everywhere the same three constant unit vectors N1, No, and
N3, such that N3 is perpendicular to the plane of N1 and No, and the universal inhomogeneity has the
following form

W(X7 Ilu -[27 -[37 —[47 -[57 167 I77 -[87 19) = W(Ilu IQ7 -[37 I4u -[57 167 I77 ‘[87 19) + W(X37 ‘[47 167 I87 ‘[9) ) (384)
where the Cartesian X3-coordinate line is along Ns.

Table 1 summarizes our results for inhomogeneous compressible anisotropic solids.

Symmetry Class Energy Function Universal Energy Function

Transversely Isotropic W(XY, X2 X3 11,15, I3, 14, I5) W (I, Iz, I3, 14, I5) +W(X2,X3,I4)

W (L, Io, I3, Iy, I, Is, I7) + W (X3, I, I5)
Orthotropic I/V()(l,)(Q,)(?’7 117127137 [47 15, 167[7)

+W (X2, X3, 1,) + W(XL, X3, I)

Monoclinic W(XY, X2 X3, 1, Io, I3, Iy, I, Is, Iy, Is, Io) | W (I, I, I, I, Is, I, Iy, I, Io) + W (X3, Iy, I, Is, Io)

Table 1: Universal inhomogeneities for compressible transversely isotropic, orthotropic, and monoclinic solids.

4 Incompressible Inhomogeneous Transversely Isotropic Elastic
Solids

For a body made of an incompressible transversely isotropic solid, the equilibrium equations in the absence
of body forces read:

Db gab =2 [Wl beb — Wy 4 Wyn® nb 4 W gab] b (4.1)
This is equivalent to exactness of the 1-form

&= Gam WD — Wa ™™ + Wyn™n"™ + W5 £, dz® = E,dz?, (4.2)

In
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where

f = [Wlb”—Wgc"+W4nan"+W5€"]

*Wln WZnC +W4nnan +W5n€ +W1 aln T WQC;LM+W4(nann)|n+w5gg\n'

The exactness of & implies that d§ = 0 [Yavari, 2013], or equivalently, &,;, = &4, Where

Ealp = Wibg s — Wa g jnp + Wi (nan™ ) jnp + Ws €5 10p
+ Wl)nbgw —Wap CZ|b + Wan (nann)‘b +Ws fg‘b
+ Wipbgin — Wap i + Wap (nan™)jn + Ws o by |
+ Wiinpby — Wapnp ¢ + Wapnp nan™ + Wiy £y -

Note that W; = Wi(X, I1, 2,14, I5), i = 1,2,4,5, and thus

Wiy = (F )4 Wia+ Wi Ly +Wialopy + Wig Ly + Wis Isp
Wop = (F)A, Woa + Wig L1y + Waaloy + Way Iy + Wos I5
Wap=(F D) Wya+Wia Ly +Waslop + Wag Loy + Was Is
Wi = (F ) Wsa+Wis Ty +Woslop + Was Luy + Wis Iy .

Note also that
Wipn = W), = Win Lnppn + Wiz Lojpn + Wi Lajpn + Wis Ijpn + Wit Iip + Wiz Lo
+ Wiggn Lap + Wisn Isp + [(F71)% Wi 4]

In *

The last term on the right hand-side is simplified as
(P12 Wi 4]
A — ’Ymnb (F_I)Am WI,A .

Notice that

0
Wia=(FHE, W
La=FHE Wi ap + x4 [
=(F Y Wiag +Wiialin+Wigalon+Wigals,+Wisals,.

Wiy I + Wi Iy + Wig Iy, + Wis I5 )]

Thus
[(EDWial, = [FHPaE ) s =2 (B )] Wia+ (F 9% (F7 )W as
+ (F YA Wit L + Wig Loy + Wiy Iy + Wis I ]
=[(F"HP.(F )% 5 =7 (F)*] Wia
1

T3 [(F Y% (F 1P+ (F )Py (F )4, Wi as

+ (F YA Wi L + Wig Iny + Wig Iy + Wis Is ) -

(4.3)

(4.5)

(4.6)

(4.8)

(4.9)

Let us denote the independent third order derivatives of the energy function by Wi, = M%B%? (i<j<k).

Thus

Witn = (F Y2 Wit a+ Wit Lin + Wie Ion + Wita Ly + Wais I,
Wigm = (F )2, Wiga + Wita I 4 Wiz I + Wiog Ly + Wigs I
Wigm = (FY2, Wiga + Wina Lip + Wisa I + Wiga Iy + Wias Is 1
Wisn = (F™)A, Wis.a + Wits Iin 4 Wigs Ton + Wias Ly + Waiss I -
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Hence?

W1|bn =

Similarly,

WZ\bn =

Wiyjon =

Wit Lo + Wiz Lopn + Wi Lyjpn + Wis Isjpn

+ Wi LDy + Wie(Ton Ly + I1n Iop) + Wina(Lan Tnp + L1 Iap)

+Wits(Usn Lip + Tin Isp) + Wiaalon Loy + Wiga(Lan Inp + Iap I2.)

+ Wias(Is n Iop + Lo Isp) + Wiaada p Loy + Wias(Is p Lap + Is b Lo + WissIs n I

+ [(F_l)Bb (F_l)An,B - ’Ymnb (F_l)Am] Wl,A (411)
+§[<F*1>An<F Y2 (PP ()] Wi

+ [(FhHA I1b+ bI1 ] Wit a+ [(F )4 Ly + (F )4 o] Wiz a

+ [(FA Loy + ( Ay Ly Wiga + [(F) 0 Iy + (F) Y Is.0] Wis -

Wiz Iijpn + Waz Injpn + Waa Lyjpn + Was Isjpn

+Wita i iy + Wiaa(Ton L1 p + Lin o) + Waaa Lo Iop
+ Wosalypn Loy + WassIs p Isp + Wioa(Ian Inp + Lap 11 n)
+ Wias(Isn Inp + L1n Isp) + Wooa(Ian Iop + 1ap Iop)

+ Waos(Isn Iop + Isp Ion + Woas (Isn Loy + Isp Lan)
+[(F7H5, (F*)AH,B =" (F71) 4] Wa,a

(F A (FYP+ (FHP L, (F7YY] Waas

hHF
F YA L, +(FH4 0 n] Wiza + [(F “hAL Ly + (F_l)Abfz,n] Waz A
F YA, Ly + (F Y)Y I ] Woaa+ [(F “HAL Isy + (Fﬁl)AbI&n] Was, 4,

(4.12)

+

— = NI

Wia Lijpn + Waa Injpn + Waa Lyjpn + Was Isjpn

FWiali iy +Wana Lo Iop + Waga Lo Ly + Wass Is n Isp
+WiaaIon I p + i Iop) + Wiga(Lan Dy + Lap I )

+ Woaa(Iyp Iop + Lo Iap) + Waas(Is.n Inp + Isp [1.n)

+ Waus(Isn Loy + Lo Isp) + Waas(Isn Loy + I5p Lan)

(4.13)
+ [(Fil)Bb (Fﬁl)An,B - 7m7lb (Fil)Am] W47A

1 _
t3 [(F YA (F Y+ (FHP (P Waan
+ [(FHA I1b+ ) Iin] Wiga + [(F)A Loy + (F )4 1o, Woaa
+ [(F~ DAL Ty + ( )4 Iy ] Waaa + [(F AL Iy + (F7H4, Is | Was,a

3The factor

“%” on the sixth line is missing in Eqs. (4.7)-(4.9) in [Yavari, 2021]. However, this typo did not affect any of

the results of that work.
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and

Wsipn = Wis Iijon + Was Lojpn + Was Lajpn + Wss Isjon
+Wis i D1y +Waas Lo n Do p + Waas Iy Loy + Wass Is n I p
+ Wiss(Ion iy + L1 I2p) + Waas (L Inp + Iap I21)
+ Wiss(Isn Do + L1n Isp) + Woas (Lan Iop + Lap I2.m)
+ Wass(Isn Iop + Ion Is ) + Wass(Isn Lap + Isp 1o n)

(4.14)
+ [P (F ) 5 =™ (F) 0] W a

1

+5 [(F” 1)An(F HP ( NP (1] Ws ap
[(F DA I+ ( Ay L] Wisa + [(F)A Ly + (F71) A I ] Wos a
+ [(F 4 Loy + ( Ay Iin] Wasa + [(F)A Isp + (F )4 I5 ] Was,a

The symmetry &, = &), forces the coefficient of each partial derivative of the energy function to be
symmetric. Following the notation introduced in [Yavari and Goriely, 2021}, we define A%, to be the matrix
of the coefficient of W,,;, where k is a multi-index. The first nine terms are identical to those of homogeneous
isotropic solids: k € Kiso = {1,2,11,22,12,111,222,112,122}. They read

Ay = b3 b »

ﬂgb = —CZum,

Agt = Vg n Tup + (05 Tin)p

AZy = ~Cain Loy — (cg Ton)yy -

Ay = (U Ton)y + U Top — [(cZ L)+ i Tus) (4.15)
Agy' = by Iin iy,
ﬂzzz =—cylanlap,

A2 =0 Ly lop + 1 Iop) — 2 I Tnp,

ﬂ122 =byIoplon —cp (Iiplop+ 11 nlap)

where b7 = 0" ¢pmq, and ¢ = ™" gmq. It is well known that the symmetry of the above nine terms admits

six families of deformations [Ericksen, 1954, Singh and Pipkin, 1965, Klingbeil and Shield, 1966]. For both

homogeneous and inhomogeneous transversely isotropic solids, we have 25 extra terms:
K ={4,5,44,55,14, 15,24, 25, 45,444,555, 114, 115,124,125,

(4.16)
144,145,155, 224, 225, 244, 245, 255, 445, 455} .

These terms read [Yavari and Goriely, 2021]:

ﬂ:zlb = (nq ”n)\nbv

Ay = L nb »

Agy = (nq n")in Loy + (nan™ Lin)pp

A%y =0 Iy + (Cr Is )y »

Ay =010 Lap + (03 Lan) iy + (na ™) Iip + (nan™ Iin) (4.17)
Ay =V Isp + 00 Is )y + Con Do + (00 i)

A2y = (nan™)n Loy + (na ™ Loy — €l Tap + (<) Ian)pp)

A%y =0 I + (00 I )iy — [ s + (i Isn)pp]

Agy = (nan™)n Isp + (na 0™ Isn)pp + Lo pn Lap + (65 Lun)pp s
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and 444
n
Agy" =ngn™" Iyplap,

Ay’ =Ly IsnIsp,

At =0 (Iyn Iy + Ly In) + nan™ I, I,

Any? =6 s Iy + Iy Iip) + 00 I I

ﬂ124 by (I Loy +TapIopn) — ¢y (I Iip + Iap Iin) ¥ nan™ (Lo Inp + Iop 1)
A =00 (Isn Iop + Isp Iop) — ¢ (Isn Iip + Isp 1) + 00 (Ion Iy + Top I )
A =00 Iy Luy +nan™ (Lo Ly +Tap )

ﬂ145 by Isn Loy + Isp Ian) +man”™ (Isn Iip + Isp Dy n) + 0 (Tan iy + Lap Iin)
AL =00 Iy Isp + 00 (Isn Iy + Isp i)

At =nan Ipn Iop — i (I Iop + Tap I2,0)

A =00 Iy oy = (s Lo+ Isp o)

A2t = = Iy Ly +man™ (I Iop + Lap 12 )

A28 = g™ (I o + Isp Iom) + 07 (I Top + L Ton) — ¢ (Isn Iap + Isp Iam)
TP =0 (Isp Iop + Isp I n) — 250 I5p

Ay’ =nan” (I Lap + Isp In) + L Lo Lay

Ay =nan Isn Iy + 03 (I Loy + Isp Lap) -

(4.18)

It turns out that the known universal deformations are invariant with respect to certain Lie subgroups of
the special Euclidean group [Goodbrake et al., 2020]. In [Yavari and Goriely, 2021] we conjectured that for
each family of universal deformations the corresponding universal material preferred direction vector N is
invariant under the same Lie subgroup. For each of the six families of universal deformations we found the
corresponding universal material preferred directions.

For inhomogeneous incompressible transversely isotropic solids, in addition to the universality constraints
(4.15), (4.17), and (4.18), there are the following eighteen extra sets of universality constraints (each term
must be symmetric in (ab) for A =1,2,3, and B > A):

)
Gab - (F 1)A ba|b + (F_l bba\n +b [(F_l)Bb (F_l)An,B _'Ymnb (F_l)Am] )
)

)4
Ch = (F O e+ (F )N+ [(FHP (F ) % s =" (F) 0],
Copt = by [(F ) L+ (F )% L)
Cit = [(F )% by + (F )Y Lyl (4.19)
Cap =0y [(F Y Y L+ (F ) % o] = [(F ) % I + (P Iy
Capt? = b [(F1) A (B2 + (FTH2, (FHM]
Cop P =y [(FH) A (FHPy+ (PP (FAN]
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Cat = (F7HA, (nan™)jp + (F7H)% (nan™)pn +nan™ [(FH 2 (F7H 5 — 7™ (F7H%0]

Cot=F Nty + (F DN+ 6 [(F )P (F )Y s =9 e (F ) 0]

Cot=vr [(F Y Ly + (F )Y Ip] +nan™ (P Ly + (F Y4 1)

CoHA =t [(F ) 0 I+ (F ) I] + 00 [(F7) % Ly + (F7H) Y I

et == [(F )Y Ly + (F )Y L] +nan™ [(F7) Y Loy + (F7) 4 I]

CHA = —cl [(F ) Iy + (F ) I ] + 00 [(F79)A, Ly + (F)4 I, (4.20)
Copt =nan [(F7N) Iy + (F N4 I

Cot =nan" [(F) Iy + (F ) Is ] + 00 [(F7H) 2 Loy + (F )Y Luw]

Rt = [(F ) Iy + (F )Y Isa)

G;l;;lB =n, n" [(F—l)An (F—l)Bb + (F—l)Bn (F—l)Ab] ,
Con? =Ly [(FH) A (FHPy + (FHP (FHh]

The set of universality constraints (4.19) are identical to those of inhomogeneous isotropic solids [Yavari,
2021]. For a given family of deformations and material preferred directions that are consistent with (4.15),
(4.17), and (4.18), the corresponding inhomogeneities that respect (4.19) and (4.20) are celled the universal
inhomogeneities. In the following subsections, for each of the six families of universal deformations the
corresponding universal inhomogeneities will be determined. This will be done by looking at each term in
(4.19) and (4.20) and examining its symmetries. If a particular term cannot be symmetric the corresponding
derivative of W has to vanish, giving us a constraint on the form of W.

4.1 Family 0: Homogeneous deformations

With respect to the Cartesian coordinates {X“4} and {z%} in the reference and current configurations,
respectively, a homogeneous deformation has the representation z%(X) = F*4 X4 + ¢, where [F®4] is a
constant matrix and [c?] is a constant vector. The incompressibility constraint is then det[F*4] = 1. For a
homogeneous deformation the right Cauchy-Green tensor has the constant components Cap = F%4F® 4 d4p,
which implies that C” is invariant under the action of T'(3) C SE(3)—the group of translations. In [Yavari
and Goriely, 2021] it was assumed that N(X) is invariant under T'(3) as well, i.e., N is a constant unit
vector. We choose the Cartesian coordinates (X1, X2, X?2) such that

0

e., N4 = §{. With this assumption the universality constraints (4.17) and (4.18) are satisfied. For
homogeneous deformations, the first five sets of universality constraints (4.19) are trivially satisfied. The
last two sets force the deformation to be the identity [Yavari, 2021]. This implies that

Wiap=Wyap=0, A DB=123. (4.22)

For isotropic solids, the relations Wi ap = (W1.4) g =0, and Wa ap = (W2, 4) 5 = 0 imply that

oW odli% odi%

8X1 = fi(h, L), TX;:fz(h,Iz), TX;,:fzs(Ihfz), (423)
odi% IW: oW ’
87)(3 = g1(h, 1), an = go(Ih,I2), 6X§ = g3(11,12).

Note that

0fi(I,Iz)  0gi(I1,Iz)  Ofa(lh,I2)  0Oga(l1,Iz)  Ofs(h,Iz)  Ogs(ly, I2)
ol B ol ’ ol B ol ’ ol N ol '

(4.24)
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From (4.23)1, one concludes that

Wi(X, I, 1) = fo(I1, Io) + fi(l, L)X + fo(lh, L) X? + f3(L, L)X (4.25)
Thus
W(X,Il,Ig):/fo(Il,Iz)dfl+X1/f1(11,12)dI1+X2/f2(11,12)d11
(4.26)
+X3/f3(-[17]2)d-[1 +R(XaI2)7
for some function R(X,I). Hence
[ 0fo(I1, I2) 1/5f1(-71,12) 2/3f2(11712)
Wa(X, I, I) 7/ oL+ X oA+ X oL
8f3(11a12) 8R(Xal2)
X3 | 22 dgr _
+ / o, T Ton
O0fo(I1,12) 1 [ 091(11, I2) 2/592(11712)
_ 99211, 12) 4.2
/ oL dh+ X / oL+ X or - dn (4.27)
8g3(11,12) 8R(X,12)
X3 | =2l gr _—
+ / o, T on
dfo(Iy, T OR(X, I
= / Ofoh, 1) dly + g1 (11, 1) X + go (11, 1) X? + g3 (11, 1) X? + OR(X, I2) .
812 312
Substituting the above identity into (4.23)2 one concludes that
0 OR(X,I;) 0 ORX,I;) 0 OR(X,Iy) 0 (4.28)
oxt 9,  9X2 9,  0X3 9, '
This implies that
OR(X,I5)
oL r(Iy), (4.29)

and hence R(X, I5) = R1(X)+R3(I2). Using thisin (4.26), up to a mechanically inconsequential X dependent
term one concludes that for an incompressible isotropic solid the energy function is a linear function of the
Cartesian coordinates, i.e.,

WX, I1,I) = W(I, L)+ H(I1, 1) - X, (4.30)

for some vector H(I, I5).*

In the case of inhomogeneous transversely isotropic solids, one still has the constraints (4.22). The first
nine sets of universality constraints (4.20) are trivially satisfied for homogeneous deformations and constant
N. The last two sets of constraints in (4.20) are nontrivial. The universality constraints corresponding to
Eq.(4.20)1¢ read

Ng [NA (FHB, + NP (Fﬁl)Ab] Wy ap = mp [NA (F~ 1B, + NP (Ffl)Aa] Wy aB - (4.31)
Knowing that N4 = 67!, the above constraints are rewritten as
[na (P14 —np(F~1)*%] Waia =0, a,b=1,23. (4.32)
This is equivalent to

FOuF N [nag(F~H)%% —np(FH)A Waia =0, M,N =123, (4.33)

4In [Yavari, 2021] from (4.22) it was incorrectly concluded that W (X, Iy, I2) = W (I3, I2). Proposition 4.1 in [Yavari, 2021]
should be corrected to read: “For inhomogeneous incompressible nonlinear isotropic solids, Family 0 deformations are universal

for any energy function of the form W(X, I1,I2) = W(I1,I2) + H(I1, I2) - X.”
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which is simplified to read
Cvr Waan —CniWain =0, M,N=1,2,3. (4.34)
These are three constraints corresponding to (M, N) = (1,2), (1,3), and (2, 3), and read

CiiWai2 —Coi Wy =0,
Cii Wy — C31 Wa11 =0, (4.35)
Co1 Wa3 —C31 Wa12=0.

Notice that these need to be satisfied for an arbitrary matrix [C4 ] with unit determinant. This means that
Wiai1 = Wy =Wy 13 =0.
The universality constraints corresponding to Eq.(4.20)1; read

(A (P + (F7)P 0 ()] W a
A 1\B 1\B 1A (4.36)
=G [(F )% (F ) e+ (F Y5 (F )% Weap, ab=1,2,3.
This can be simplified to read
CF [Criy Ws v + Crvr W in — Ont Wk — O Wsim) =0, M, N =1,2,3. (4.37)
These are three constraints corresponding to (M, N) = (1,2), (1,3), and (2, 3), and read
(2C"1Ca1 + C?1C2 + C*1Ca3) Wi 11 — (2C11Chy + C?1C13) W12 + C*1Co1 Wi 13
- 021011W5,22 — C3C1 1 Ws,03 =0,
(2C"1C31 + C*1C32 + C*1C33) Wi 11 + C*1C3Ws 12 — (2C1Chy + C*1Cha) Wi 13 (4.38)

- C21C11W5,23 - C31C11W5,33 =0,
(2011 C31 + C*1C35 + C*1C33) Wi 12 — (201 1Ca1 + C?1Caz + C?1Co3) Wi 15 + C1C31 W 22
+ (C?1C31 — C?1C91) W 23 — C*1Co1 W5 33 = 0.
These must be satisfied for an arbitrary matrix [Cap] with unit determinant. If [Cap] is diagonal, one
concludes that W5 12 = W5 13 = 0. Considering simple shear in the X1 X?2-plane (C13 = Ce3 = 0), one
concludes that W5 11 = Wy 20 = W5 23 = 0. Substituting these in the above equations, one concludes that

W5.33 = 0. Therefore, Wy ap = 0.
In summary, for the universality constraints to hold one must have

Wia)p= Waou)g=Ws1)p=Ws4)5=0, A B=123. (4.39)

Using arguments similar to those used in deriving (4.30), one can show that the above constraints imply the
following proposition.

Proposition 4.1. For inhomogeneous incompressible nonlinear transversely isotropic solids with material
preferred direction parallel to the X'-axis in a Cartesian coordinate system (X', X2, X?), Family 0 defor-
mations are universal for any energy function of the following form

W (X, I, Iy, 14, I5) = W(I1, Io, Iy, I5) + H(Iy, I3, 14, I5) - X + W(X2,X3,I4) ) (4.40)

Remark 4.2. Note that the last term of the energy function in (4.40) has a form identical to that of
compressible orthotropic solids (3.34).
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4.2 Family 1: Bending, stretching, and shearing of a rectangular block

Consider a rectangular block and a Cartesian coordinate system (XY, Z) with coordinate planes parallel to
the faces of the block. In the current configuration cylindrical coordinates (r, 8, z) are used. With respect to
these coordinates, the deformations given by Family 1 have the following representation

T(XaKZ): \/01(2X+C4)7 0(X7Y7Z):02(Y+C5)7 Z(Xaxz): 7CQO3Y+065 (441)

C1Cs
where C1, ..., Cg are constants. The right Cauchy-Green strain reads
e 0 0
Casl=| o czloex+ey+cg -S| (4.42)

and is independent of Y and Z, i.e., C” is invariant under the action of T'(2) C SE(3). Yavari and Goriely
[2021] assumed that N has the same symmetry, i.e.,

N'(X)

NX.Y,Z)= | y2(x)| - (4.43)

N¥(X)

where (N1(X))? 4+ (N?(X))? + (N3(X))? = 1. It was shown that the universal material preferred direction
has the following possible forms

+1 0
N = O 5 N == COS’l/J(X) 5 (444)
0 +siny(X)

where (X)) is an arbitrary function. Notice that (4.44); corresponds to a uniform distribution of fibers
parallel to the X-axis. In the other universal material preferred direction distribution (4.44),, for fixed X
fibers make an angle ¥(X) with the Y-axis, and are distributed uniformly in the Y Z-plane.

In [Yavari, 2021] it was shown that the constraints (4.19) imply that

oWy OWy oW,  OW,
oy — 9z 9y 9z =0 (4.45)
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The above relations hold for inhomogeneous transversely isotropic solids as well. For the universal material

preferred direction (4.44)1, one can show that®

2,1,2) = C?=0,

= ( )
(3 1 2)=> 010203—0
=(2,1,2) =
=(3,1,2)

) 9

(C1(Cy +2X)]2 Oy =0,

NG

3 1,2 = 0203 [Cl(C4+2X)] =0.

These constraints cannot be satisfied, and hence

8W4_8W4_8W5_8W5_0
oy 9z oy 0z

Similarly, for the universal material preferred direction (4.44), one has the following constraints:

. 6[4 p) = 0, for (A, a,b) = (2,1,2) requires that
C2\/C1(Cy + 2X) cos ¥ [2(Cy + 2X )4 sinp — 3cos )] = 0.
. G[‘;b] =0, for (4,a,b) = (3,1,2) implies that
C3/C1(Cy 4 2X) [C1C5C5 cos® ¢ + (Cy + 2X )9 cos 24p +sin2¢)] = 0.
G["a‘g] =0, for (4,a,b) = (2,1, 2) requires that
Ca\/C1(Cy +2X) {2(04 +2X)y [C1CF sin24p (C1Cy + 2C1 X + CF) + C cos 2¢)]
— 20 C2 cos® ) [5C1(Cy + 2X) + 3C3] + 3Cs sin 2¢} -
6[5'2] =0, for (A,a,b) = (3,1,2) requires that

(Ca +2X)% cos 20 [CF CF (C1(Cu +2X) + CF) +1]

+(Cy + 2X){C§c§cg cos2¢) (C1 Cy + 2C1 X + C3) +sin2¢ [2C5 C3(Cy + 2X) + 1]

+C1C3C [CRCH(C1Ca+201X +CF) = 2] | =0

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

None of the above constraints can be satisfied, and hence, (4.47) holds for this case as well. From (4.45) and
(4.47) one concludes that up to a mechanically inconsequential function of (X,Y, Z), the energy function
must have the form W = W (X, I, I, I, I5). For energy functions of this form, in (4.19) and (4.20) one only
needs to check the symmetry of the terms with A =1, and A = B = 1. All those terms are symmetric.

Proposition 4.3. For inhomogeneous incompressible nonlinear transversely isotropic solids with any of the
universal material preferred directions given in (4.44), Family 1 deformations are universal for any energy

function of the form W = W(X, 11, 2,14, I5).

5All the symbolic computations in this paper were performed using Mathematica Version 12.3.0.0, Wolfram Research,

Champaign, IL.
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4.3 Family 2: Straightening, stretching, and shearing of a sector of a cylindrical
shell

Consider a sector of a cylindrical shell that is parametrized by cylindrical coordinates (R,©, 7). In the
deformed configuration Cartesian coordinates (x,y, z) are used. Family 2 deformations have the following
representation

1 C) C: 1
Z)=-C,C2R? Z) = Z) =2 —Z 4.52
ZI:(R,C"‘), ) 20102R +C47 y(Ra(—:)a ) Clc2+c57 Z(R7@7 ) 0102@+ CQ +067 ( 5 )
and hence _ .
C? CyR? 0 0
[Capl = 0 S+l oy | - (4.53)
CICI T C3
C 1
0 G é% c3

It is seen that the right Cauchy-Green strain is independent of © and Z. In [Yavari and Goriely, 2021] it
was assumed that N has the same symmetry, i.e.,

NY(R)

N(R.6,2) = | n2(R)| » (4.54)

N3(R)

such that (N1(R))2+R?(N%(R))?+(N3(R))? = 1. It was shown that there are two solutions for the universal
material preferred direction:

+1 0
N = 0 5 N - % cos X(R) 3 (455)
0 +sin x(R)

where x(R) is an arbitrary function. In the case of (4.55); fibers are distributed radially. In the solution
(4.55)9, if cos¥(R) # 0,£1 fibers are distributed helically, if cos ¥ (R) = 0 they are distributed parallel to
the axis of the shell, and if cos¢(R) = £1 they are concentric circles in the (R, ©)-plane.

In [Yavari, 2021] it was shown that the constraints (4.19) imply that

oW, oW,  OWy  0OW,

6 ~ oz e oz U (4.56)

The above relations hold for inhomogeneous transversely isotropic solids as well. For the universal material
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preferred direction (4.55)1, one can show that

GﬁlA] =0, for (A,a,b
GﬁlA] =0, for (A,a,b
Ciiy =0, for (A,a,b
G[E;A] =0, for (4,a,b

2,1,2

=( = CIC3 =0,
=(3,1,2
= (
= (

= C102303:0,
= C!CIR*=0,
= C}CIC3R*=0.

(4.57)

r 2,1,2

3,1,2

_ = D
—_ — — —

These constraints cannot be satisfied, and thus

oWy OWy OWs W5
80 9z 90 9z =0 (4.58)

Similarly, for the universal material preferred direction (4.55)2 one has the following constraints:

. G[‘;‘g] =0, for (A, a,b) = (2,1,2) requires that
cos X(R) [RX'(R)sin x(R) 4+ cos x(R)] = 0. (4.59)

. G[‘ﬁ] =0, for (4,a,b) = (3,1,2) implies that
sin 2y (R) — 2R/ (R) cos2x(R) = 0. (4.60)

. G[E’a‘g] =0, for (A, a,b) = (2,1,2) requires that

RY/'(R) [(1+ C3)sin2x(R) — C1C3Rcos2x(R)]

+ cos x(R) [3C1C3Rsin x(R) +4 (1 + C2) cos x(R)] = 0. (4.61)

. 6[5;;] =0, for (4,a,b) = (3,1,2) requires that
—R (14 C}R* 4 C3) X/'(R) cos2x(R) + (3 + CTR* + 3C3) sin2x(R) + 201 C3R = 0. (4.62)

None of the above constraints can be satisfied,% and thus, (4.58) holds for this case as well. From (4.56) and
(4.58) one concludes that up to a mechanically inconsequential function of (R, O, Z), the energy function
must have the form W = W(R, I, I, I4, I5). For energy functions of this form, in (4.19) and (4.20) one only
needs to check the symmetry of the terms with A =1, and A = B = 1. All those terms are symmetric.

Proposition 4.4. For inhomogeneous incompressible nonlinear transversely isotropic solids with any of the
universal material preferred directions given in (4.55), Family 2 deformations are universal for any energy

function of the form W = W (R, I, I, 14, Is).

4.4 Family 3: Inflation, bending, torsion, extension, and shearing of a sector of
an annular wedge

Family 3 deformations, with respect to the cylindrical coordinates (R, ©, Z) and (r, 0, z) in the reference and
current configurations, respectively, have the following representation

2
T(R7®?Z): R—+C57 H(Ra®7z):C1@+CQZ+Cﬁ7 Z(R,@,Z):C3@+C4Z—|—C77
C1Cs—CyCs

(4.63)

6Note that we are finding the universal inhomogeneities for an arbitrary universal material preferred direction in (4.55)2,
and hence, cos x(R) # 0, in general, i.e., (4.59) cannot be satisfied.
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and hence

K(%;RQ) 0 0
[Cas] = 0 G+ [E+0] GG [E+0]+0a] (4.64)
0 CG [ B+ 0|+ i+ [E 405

where K = C1Cy — C2C5. Notice that C is independent of © and Z. In [Yavari and Goriely, 2021] it was
assumed that N has the same symmetry, i.e.,

NY(R)

N(R.0.2)= | 2| - (4.65)

N3(R)

where (N1(R))? + R?(N?(R))? + (N3(R))? = 1. It was shown that there are two solutions for the universal
material preferred direction:

+1 0
N = 0 5 N = % COS¢<R) 5 (466)
0 +siny(R)
where ¢(R) is an arbitrary function.
In [Yavari, 2021] it was shown that for this family of deformations constraints (4.19) imply that
ow, oWy,  OW, OW;
LT T2 72 ), (4.67)

00 07z 00 0z

The above relations hold for inhomogeneous transversely isotropic solids as well. For the universal material
preferred direction (4.66);, one can show that

e[ab] = r (4,a,b) = (2,1,2) = C4 (-2C2C5C5+2C, C,Cs + R*) =0,
Ciipy =0, for (A,a,b) = (3,1,2) = C5(—2C2C5C5 +2C, C4 C5 + R?) =0, (468
Chiy =0, for (A,a,b) = (2,1,2) = C4 (—4CyC3C5 +4C1 C4Cs + R?) =0, '
Ciiy =0, for (A,a,b) = (3,1,2) = C5(—4C,C5C5 +4C1 C4 C5 + R*) = 0.
These constraints cannot be satisfied, and hence
oWy _ oWy _OWs _ OWs5 _ 0 (4:69)

00 07z 00 0Z
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Similarly, for the universal material preferred direction (4.66), G[‘fl‘g] =0, for (4, a,b) = (2,1, 2) requires that:

(Cy Cy Cs — Cy C5Cs + R?) {20? C2 05 — 402 0y O3 Cy Cs + C2 Cy C2 C5 Rsin 20(R)

— O} C4R? + cos2¢(R) [2C} C3 Cs — CF Cy (4C5 C3 Cs + R?) 4+ 2C1C5C5Cs + C5C4 R

+2C, C2 C2 C5 — 2C, C2 O3 C4 Cs Rsin 2¢)(R) (4.70)
—2RY/(R)(Co C5 — C1 Cy) (—=C1 C4 Cs + C2 C5 Cs — R?) [C2 Reos 24(R) — C4 sin 2¢(R)]

—3C, Cy Cy R?sin 2¢(R) + C3 C3 Cs Rsin 2¢)(R) + C3 C3 R*sin 2¢(R) — C3 C, R4} =0.

The constraints Gfﬁ] = 0, for (4,a,b) = (3,1,2), GE{Z‘] = 0, for (4,a,b) = (2,1,2), and G[sa/g] = 0, for
(A4,a,b) = (3,1,2) require vanishing of some lengthy expressions that we do not report here. None of these
four constraints can be satisfied, and thus, (4.69) holds for this case as well. Similar to Family 2 deformations,
from (4.67) and (4.69) one concludes that up to a mechanically inconsequential function of (R, ©, 7), the
energy function must have the form W = W(R, Iy, I, I4,I5). For energy functions of this form, in (4.19)
and (4.20) one only needs to check the symmetry of the terms with A =1, and A = B = 1. All those terms
are symmetric.

Proposition 4.5. For inhomogeneous incompressible nonlinear transversely isotropic solids with any of the
universal material preferred directions given in (4.66), Family 8 deformations are universal for any energy
function of the form W = W (R, I, I, 14, I5).

Physically, this universal inhomogeneity and directions can be understood as follows: A particular case
consists of a single homogeneous cylindrical tube with helical preferred directions. Now, consider a series
of encased homogeneous cylindrical tubes in the reference configuration, each with its own helical material
preferred directions as describe in [Goriely, 2017]. The solution from Proposition 4.5 is a continuous version
of this problem where the variation in helical fibers and material properties only depends on R.

4.5 Family 4: Inflation/inversion of a sector of a spherical shell

Family 4 deformations with respect to the spherical coordinates (R, O, ®) and (r,0, ¢) in the reference and
current configurations, respectively, have the following representation

r(R,0,®) = (£R*+C?), 6(R,0,)=+0, ¢(R,0,0)=0. (4.71)
Thus _ _
(C%RW 0 0
[Cap] = 0 (C3 + R3)2/3 0 , (4.72)
0 0 (€3 + R3)*sin” @

which can be written as [Goodbrake et al., 2020]

L (o o R
Cb(X):RiR(@R—l—Q

1-ReR 4.73
(C} + ry)"V? g TR e

where 1 is the identity tensor, and R = % This implies that at a given point X, C is invariant under all
those rotations that fix X. Yavari and Goriely [2021] assumed that N(X) has the same symmetry, i.e., it is
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invariant under all those rotations that fix X. Thus, N(X) is parallel to X, and knowing that it is a unit

vector one concludes that X
N(X)=+- =+R. (4.74)
X
This means that the universal material preferred direction is radial, i.e., with respect to the spherical coor-
dinates

+1

N(X) = . (4.75)

In [Yavari, 2021] it was shown that for this family of deformations constraints (4.19) imply that

oWy oW, oW, W,
0~ 96 00 0d (4.76)

The above relations hold for inhomogeneous transversely isotropic solids as well. For the universal material

preferred direction (4.75), one can show that
G[ﬁ] =0, for (A,a,b
G[ﬁ] =0, for (A,a,b

(A,a,b) = (2,1,2

( ) =
G[sa‘g] =0, for (A,a,b) =

( ) =

3,1,3) = 4C3R—R*=0,

)= 4C;R—-R'=0,

)
2,1,2)= —8CYR°+R*=0,

)

o~ o~ o~ o~

(4.77)
Chy =0, for (A,a,b) = (3,1,3) = —8C?R°+R®=0.
These constraints cannot be satisfied, and hence
oWy _ oWy _ OWs _ OWs _o. (4.78)

00 o 00 o

From (4.76) and (4.78) one concludes that up to a mechanically inconsequential function of (R,©, ®), the
energy function must have the form W = W(R, I, I, I4, I5). For any energy function of this form, in (4.19)
and (4.20) one only needs to check the symmetry of the terms with A =1, and A = B = 1. All those terms
are symmetric.

Proposition 4.6. For inhomogeneous incompressible nonlinear transversely isotropic solids with the univer-
sal material preferred directions given in (4.75), Family 4 deformations are universal for any energy function
of the form W = W (R, I, I, I, I5).

Again, this result can be understood physically as the continuous limit of a finite number of encased
homogeneous spherical shells with different material properties.

4.6 Family 5: Inflation, bending, extension, and azimuthal shearing of an an-
nular wedge

Family 5 deformations with respect to the cylindrical coordinates (R, ©, Z) and (r, 6, z) in the reference and
current configurations, respectively, have the following representation

1

r(R,0,2)=CiR, 0(R,0,7)=CrlogR+C30+Ci, 2(R,0,7) = 5
1v3

Z+Cs. (4.79)
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Thus

[Casl = | c2coc3r c2ozrz 0 | (4.80)

1
0 0 cice

which only depends on R. Yavari and Goriely [2021] assumed that N has the same symmetry, i.e.,

N'(R)

N*(R)

where (NY(R))?+(N?(R))?+(N3(R))? = 1. They obtained the following two solutions for universal material
preferred directions

0 cos &
N = Lcosn| N = +&sing| (4.82)
+sinn 0

for arbitrary constants 7, and £. Unfortunately, there was a mistake in checking the universality constraints
for solution (4.82);: This solution satisfies all the universality constraints other than the symmetry of the
coefficient of Wy for (a,b) = (1, 3), which gives C3 cosnsinn = 0. Note that sinn = 0 in (4.82); corresponds
to cos§ = 0 in (4.82)2. This means that the correct set of universal material preferred directions for Family
5 are:

0 cosé&
N = 01> N = j:% siné| - (4.83)
+1 0

for an arbitrary constant &.
In [Yavari, 2021] it was shown that the for Family 5 deformations constraints (4.19) imply that

ow, oWy oWy,  OWy OWy  OW,

R " 06 07 OrR 90 ~ oz U (4.84)
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The above relations hold for inhomogeneous transversely isotropic solids as well.
For the universal material preferred direction (4.83)1, all the terms in (4.20)(;_g) are symmetric. In the
last two sets of equations the following four terms are not symmetric:

Cip? #0, for (A, B,a,b) = (1,3,1,3),
G4AB 7eo or (A, B,a,b) = (2,3,1,3),
5AB #£0, for (A, B,a,b) = (1,3,1,3), (4.85)
5AB #£0, for (A, B,a,b) = (2,3,1,3).
This implies that
PWy _ PWy _ PWs _ OWs 0 (4.86)

OR0Z 000Z 0OR0OZ 0007

From (4.84) and (4.86) one concludes that W (X, Iy, Iy, Iy, Is) = W (I, I, I, Is)+W (R, ©, Iy, I; )+ W (Z, I, I5).
For an energy function of this form, in (4.19) and (4.20) one only needs to check the symmetry of the terms
with A =1, and A = B = 1. It turns out that all those terms are symmetric.
For the universal material preferred direction (4.83)2, one can show that

G[ab] =0, for (A,a,b) =(1,1,2) = Cycos&[Cacosé + C3siné] =0,

G[ab] =0, for (A,a,b) =(2,1,2) = 4 [(1 + C'Q) cos? ¢ — C2 sin §] =0,
G[ab] =0, for (A,a,b) = (3,2,3) = C} C3 [(—1 4 C3) cos® £ + C3sin& (203 cos 4 C3siné)] =
Chy =0, for (A,a,b) = (1,1,2) =

CH{2C; [1+ €3+ CF + (1+ C3) cos 2¢] + Cy (14 3CF + CF) sin2¢ | =

(4.87)
Chiy =0, for (4,a,b) = (2,1,2) =
Cf{ [(1 +C2)% + C?ﬂ cos2¢ + (1+C3 — C3) (1+C3 + C3 + CoC3sin 2€) } =
Ciy =0, for (A,a,b) = (3,2,3) =
Cf C3{2C; [1+ G5+ CF + (1+ C3) cos 2¢] + Cs (1+ 3C5 + CF) sin2¢ | =
None of the above constraints can be satisfied,” and hence
owy, oW, oWy, OWs OWs OWs
4 = 4 = 4 = = = = 0, (4.88)

OR 00 07z OR 00 07

From (4.84) and (4.88) one concludes that the energy function must be homogeneous. This means that
Family 5 deformations are not universal for inhomogeneous incompressible transversely isotropic solids with
the universal material preferred directions (4.83).

Proposition 4.7. For inhomogeneous incompressible nonlinear transversely isotropic solids with the uni-
versal material preferred directions given in (4.83)1, Family 5 deformations are universal for any energy
function of the form W(X, I, Io, Iy, Is) = W (I1, Io, Iy, Is) + W (R, ©, I, Is) + W(Z, 14, I5). Family 5 defor-
mations are not universal for inhomogeneous incompressible transversely isotropic solids with the universal
material preferred directions (4.83)s.

Table 2 summarizes our results for inhomogeneous incompressible transversely isotropic solids.

"Note that we are finding the universal inhomogeneities of the energy function for an arbitrary member of this class. That
means that cos€ # 0, in general, i.e., (4.87)1 cannot be satisfied.

33



Family Universal Deformations Universal material preferred directions Universal inhomogeneities
0 29(X) = Fo4 XA + ¢ Any constant unit vector N W =Wy, Is, Iy, Is) + H(Iy, I, I, Is) - X + W(XZ,XS.LL)
+1 0
r(X,Y,Z) = \/C1(2X + Cy)
1 0(X,Y,Z)=Cao(Y +C5) N= 0 N= cos p(X) W =W(X, I, 15,14, I5)
2(X,Y,Z) = g& — CoCsY + C
0 +siny(X)
+1 0
z(R,0,Z) = 1C1C3R? + Cy
O _ e N N r W _
2 y(R,0,7) = (7\C02 +051 N= 0 N= cos x(R) W =W(R, I, I5,14,I5)
2(R,0,2) = 152@ + C—ZZJrCﬁ
0 +sin x(R)
+1 0
2
r(R,8,7) = \/ creiees + Cs R R
3 0(R,0,2) =10+ C2Z + C;s N=1y N= cos x(R) W =W(R, I, I, 11, I5)
2(R,0,7) = C30 + CsZ + C7
0 +sin x(R)
+1
r(R,0,8) = (£R* + ()
4 0(R,0,P) =+0O N= 0 W =W(R,I1,I>,14,I5)
#(R,0,2) =2
0
0
r(R,0,Z)=C1R
5 0(R,0,7) =Cslog R+ C50 + Cy N= 0 I/V:W(Ih[g,h,[g,)+W(R~9~I4715)+W(Z7I4,Ia)
_ 1
2(R,0,2) = mZJrCs
+1

Table 2: Universal deformations, universal material preferred directions, and universal inhomogeneities for incompressible
transversely isotropic solids for the sixz known families of universal deformations.

5 Incompressible Orthotropic Elastic Solids

For inhomogeneous orthotropic solids

€a = Jam W10 — Wa ™ + WynT'nl + W5 07" + W ni*ni + Wy eg’”"]‘ (5.1)

n -
In order to satisfy the symmetry &,;, = &), for an arbitrary energy function the coefficient of each partial
derivative of W must be symmetric. There are five groups of terms. The first four were derived in [Yavari
and Goriely, 2021]. In order for this work to be self contained, all the five groups are reported below. The

first four groups of terms that must be symmetric for both incompressible and compressible orthotropic
solids are:

i) Nine terms that need to be symmetric for isotropic solids as well:

Ko = {1,2,11,22,12, 111,222, 112,122} . (5.2)
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ii) 25 terms associated to Ny:

K; = {4,5,44,55,14, 15,24, 25,45, 444, 555, 114, 115,124, 125,

144,145, 155,224, 225, 244, 245, 255, 445,455} . (5:3)
iii) 25 terms associated to Na:
K =1{6,7,66,77,16,17,26,27,67,666, 777,116,117,126, 127, (5.4)
166, 167,177, 226, 227, 266, 267, 277,667,677} .
iv) 24 terms corresponding to coupling of Ny and Ny:
Kiii = {46,47,56,57,146,147,156, 157, 246, 247, 256, 257, 446, 447, (5.5)

456, 457, 556, 557, 466, 467, 566, 567, 477, 577} .

v) 33 terms that correspond to the inhomogeneity of the energy function. 18 of these are identical to
those of isotropic (4.19) and transversely isotropic solids (4.20).

In [Yavari and Goriely, 2021] it was noticed that K; and K;; universality constraints have forms identical
to those of K universality constraints (4.16). This implies that (N7, Ng, N3) is universal for orthotropic
solids if i) N1, Ny, and N3 are universal for transversely isotropic solids, and ii) the three pairs (N1, Ny),
(N3, N3), and (N3, Ny) satisfy the K;;; universality constraints. We follow the notation introduced in [Yavari
and Goriely, 2021], and let (n,m) = (n1,ny), and ({9, £9%) = (¢4°,£3%). The coefficients of the derivatives
of the energy function associated to the set K;;; are:

ﬂgg =g Isn 12"}”, + Is p[ig 12"]‘,1 + [mg Iy p m"]|b + Iy p[mg m"]|n ,

A = [na Irp 0" o + Iz p[na 0" + (g Lan)p + Ao jnlay (5.6)
ﬂg’bﬁ = (g Ton)ip + (i Lo p + (ma Is o m™ )1y + (mam™) 1n 15 p ’
gy = (8 Tr)p + Coin Trp + (B I )p + Rl I
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and

147
ﬂab

157
ﬂab

ﬂ446
ﬂ447
ﬂ456
ﬂ457
AL

ﬂ467
ﬂ477
ﬂ556
ﬂ557
ﬂ566
ﬂ567
ﬂ577

=by (Isp Lo+ Ianloyp)
=0y (IapIrm +IanI7y) ,
=by (Usp lon + Is.n lop)
=by (Isp Irn + Isn I7)
=cy (Iap Lo+ Lanlop) ,
=cy (Iap Irn + IanIry)
=cy (Isplon +Isnlsp) ,
=cy Isp It + IsnI7p)

" (Lap Lo + Lan Loy
0" (Iap It + Lan Irp
" (Is
"(

=ngn ,

)

+C (14’1; IG,n + I4,n IG,b) )

. (5.7)
+ 00 (Tap I+ LunIzp)

blen + Isn sy
Isy I70 + I I7 g
=mem"™ (Iyp I m + Ion Lop) ,
=mqm" (Lyp Irp + Lo I7p) + Ry (Iap L + Lan Isp)
=R (Iyp Irp + L Iny)
=" (Isp Lo + Isn I6p)

00 (Isp I + Is p I7p)

mgm"™ (Isp I + I5.n I6p) |
=mem" (Isp I n + Is n I7p) +
=k (Isp I+ Is o I7p)

=ngn

=ngn

Y — —

ky (Isp Ion + I I6p)

For inhomogeneous incompressible orthotropic solids, in addition to the universality constraints (4.19),

and (4.20) there are the following 15 extra sets of universality constraints (each term must be symmetric in
(ab) for A=1,2,3, and B > A):

66 (F_1 n (Mg m”)|b +(F~ )Ab (myq m")‘n + mgm" [(F_l)Bb (F_l)An,B — b (F_l)Am] ,
Cipt = (F ) 0kl + (F) A AL + £ [(F7) P (F) A 8 =" (F7) 0]

Cost =t [(FH) 0 Iop + (F ) % Ion] +mem™ [(FH)A, Iy + (FH)4 L1,

ClHrt=vr [(F Y Iy + (F )Y Iy + 82 [(F ) 0 Ly + (F YA I

CoA = —cl [(F ) Iop + (F )y Ion] +mam™ [(F )4 Ly + (F ) L]

CHA = —c [(F ) 0 Iry + (F7) A o] + A2 [(FH) A L + (F )Y L]

6’32‘4 =ngn" [(F~ 1)’4 Isp + (F™ 1) v g n] + mgm" [(F_l)An I4’b—|—(F_1)Ab I4’n] ,

Calt = ngn™ (P2 Inp + (F Y)Y I ] + A2 [(F1) A Ly + (F7 1) 1] (5.8)
Copt =00 [(F YA Lep + (F )Y Isn] +mam™ [(F)A, Isp + (F )% I5 4]

Cut =0 [(F Y Iy + (F )Y Inp] + A7 [(F) % Iy + (F )Y I
G66A =m,m" [(F_l)An Isp + (F_l)Ab Ian] ,

GG7A
G77A

C)GAB

=R [(F_l)An Isp + (F~H4, Iﬁm] + mgm" [(F_l)An
ko [(F) 0 Iy + (F~) Y I
mgm" [(F_l)An (F_l)Bb + (F_l)Bn (F_l)Ab] )

Iy + (FH4 Ir ]

Co ¥ =k (PO (FHPy + (F )P (BT
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5.1 Family 0

In [Yavari and Goriely, 2021] it was shown that for homogeneous orthotropic solids homogeneous deformations
are universal for any three constant unit vectors (N1, Ng, N3) that are mutually orthogonal. In the reference
configuration we choose the Cartesian coordinates (X!, X2, X3) such that

0 0 0

Ni=o5r Ne=g55m Ne=gx

(5.9)

The universality constraints still imply (4.39). For homogeneous deformations and constant (N, Ny, N3),
only the last two sets of universality constraints in (5.8) are nontrivial, and imply that

Ws2)p=Wra)p=0, A B=123. (5.10)

Using a fairly lengthy but standard argument (similar to those of §3.2) one can show that the constraints
(4.39) and (5.10) imply the following result.

Proposition 5.1. For inhomogeneous incompressible nonlinear orthotropic solids, Family 0 deformations
are universal for any energy function of the following form

W(X, I, Iz, 14, I5, Is, I7) = W (I, Iz, 14, I5, 16, I7) + H(I1, I3, 14, I5, 16, I7) - X (5.11)
+W(X3 I, Ig) + W(X2, X3, L) + W (XY, X3, ), '

where (N1, Ng, N3) are constant unit vectors given in (5.9).

Remark 5.2. Note that the last three terms of the energy function in (5.11) have identical forms to that

of compressible orthotropic solids (3.60).

5.2 Family 1

In [Yavari and Goriely, 2021] it was shown that for Family 1 universal deformations the universal material
preferred directions are

+1 0 0
Ni=1y N2 =1 cos P(X) N3 = sin (X)) (5.12)
0 +siny(X) Fcosp(X)

where (X)) is an arbitrary function. The constraints (4.45) and (4.47) hold for orthotropic solids as well.
Similarly, from (5.8)1_2 one concludes that

oW _ OWs _ Wy _ oWy _

)4 0z )4 0z

(5.13)

All the other universality constraints are satisfied. Therefore, we have the following result.

Proposition 5.3. For inhomogeneous incompressible nonlinear orthotropic solids with any of the universal
material preferred directions given in (5.12), Family 1 deformations are universal for any energy function of
the form W = W(X, 11712,14,15716717).
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5.3 Families 2 and 3

In [Yavari and Goriely, 2021] it was shown that for Families 2 and 3 the following family of material preferred
directions are universal.

+1 0 0
N; = 0 R N, = cos x(R) s N3 = sin x(R) , (5].4)
R R
0 +sin x(R) Fcos x(R)

where x(R) is an arbitrary function. The constraints (4.56) and (4.58) still hold. Similarly, from (5.8);1_9

one concludes that We OWs OW- OW 5.15
6 6 7 T-0
- =0. 1
00 0Z 00 07 o

All the other universality constraints are satisfied. Thus, we have the following result.

Proposition 5.4. For inhomogeneous incompressible nonlinear orthotropic solids with any of the universal
material preferred directions given in (5.14), Family 2 and 3 deformations are universal for any energy
function of the form W = W (R, I1, Iz, 14, I5, I, I7).

Yavari and Goriely [2021] showed that for homogeneous incompressible orthotropic solids Family 4 de-
formations are not universal. This is the case for inhomogeneous incompressible orthotropic solids as well.

5.4 Family 5

In [Yavari and Goriely, 2021] the following universal material preferred directions were reported.

0 cos& sin &
Ni=|0|, Ny;= :l:% sinf| , Nz= :F% cosé| ,
| +1) | 0 0
(5.16)
[+1] [0 0
Ni=]0]|, Np=|gcosy|, Nz=|Fsiny
| 0 | £sinn Fcosn

As was mentioned in §4.6, there was a mistake in one of the families of universal material preferred directions.
In (5.16)9 either cosn = 0, or sinn = 0, which are already included in (5.16);. Therefore, the correct families
of universal material preferred directions are (we have relabeled them so that N3 is parallel to the Z-axis):

cos & sin & 0
Ny = :i:% sin&| ° Nz = :F% cos| Ns=19 | (5.17)
0 0 +1

where £ is an arbitrary constant.
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In [Yavari, 2021] it was shown that the for Family 5 deformations constraints (4.19) imply that

owy, oWy oWy  OWy OWy  OWs

R ~ 06 07 ~OrR 90 oz U (5.18)

The above relations hold for inhomogeneous orthotropic isotropic solids as well. If we check the universality
constraints for the pair (N1, N2) given in (5.17), from §4.6 we know that Wy 4 = W5 4 = W5 4 = W7 4 =0,
and hence the energy function must be uniform:

Proposition 5.5. For inhomogeneous incompressible nonlinear orthotropic solids Family 5 deformations
are not universal.

Table 3 summarizes our results for inhomogeneous incompressible orthotropic solids.

Family Universal Deformations Universal material preferred directions Universal inhomogeneities
W =W, I, In, 15, Is, I7) + H(I1, Is, 11, I5, I, I7) - X
0 29(X) = Foy XA + ¢ Any three mutually orthogonal constant unit vectors (N1 N, Ng)
FW (X3, I, Ig) + W(X2, X3, 1) + W(X', X3, 1)
+1 0 0
r(X,Y,Z) = \/C1(2X + Cy)
1 0(X,Y,Z) = Cy(Y +Cs) Ny 0 N; = cos(X) | ° N3 = sin(X) W =W(X,I1,I5,14,1I5, I, I7)
(XY, Z) = (;‘sz — CrC3Y +Cs
0 +siny(X) Feos(X)
+1 0 0
*(R,0,Z) = 1C1C3R* + C,4
0 .7)— _© . — o — . — SR g T
2 y(R,©,2Z) = ACs Jng1 Ni=|g|: No= cosy(R) N3 = sinx(R) W =W(R, I, I, Iy, I5, I, I7)
z2(R,0,Z) = 659+ 5Z2+GCs
0 +sin x(R) Feos x(R)
+1 0 0
r(R,0,2) =/ ceer
3 6(R,0,2) = C10 + C2Z + Cg Ny o] No= 1 cosx(r) | * N5= | sinv(R) W =W(R, Iy, Iz, 14, I5, I, I7)
2(R,0,2) =C30 + C4Z + C
0 +sin x(R) Feosx(R)

Table 3: Universal deformations, universal material preferred directions, and universal inhomogeneities for incompressible
orthotropic solids for the sixz known families of universal deformations.

6 Incompressible Monoclinic Elastic Solids

In the case of monoclinic solids

1
S = Gam [WID™™ = Wo ™ + Wani'n} + Ws 6" + Woni'ng + Wy 57 + SW f5"| . (6.1)

|n

The universality constraint §,;, = |4 forces the coefficient of each partial derivative of W' to be symmetric.
Yavari and Goriely [2021] showed that for monoclinic solids there are an extra 78 terms corresponding to
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the following set:

Ky = {8,18,19,28,29, 48, 49, 58, 59, 68, 69, 78, 79, 88, 89,
118,119, 128,129, 148, 149, 158, 159, 168, 169, 178, 179, 188, 189, 199, 228, 229,
248, 249, 258, 259, 268, 269, 278, 279, 288, 289, 209, 448, 449, 458, 459, 468, 469, (6.2)
478, 479, 488, 489, 499, 558, 559, 568, 569, 578, 579, 588, 589, 599, 668, 669,
678,679, 688, 689, 699, 778, 779, 788, 789, 799, 888, 889, 999} .

We follow the notation in [Yavari and Goriely, 2021] and write (r,m) = (ni,ny), and (£, £ ¢%) =
(£9°,¢8°03%). The terms corresponding to the set K, are:

ﬂsb = qgmb,

Agy =q0in D1+ (@0 Tin)pp + (07 Isn) s + 0o Isp

Ag) = (b Ton) 1 + 1 Lo

A2 = a0 Lo + (00 o)y — (s )i — Chn Isp »

A% == Tom)pp — Cipn Tow

Ay = Las + @0 Lin)p + (nan Is ) + (o n™)p Isp
Ay = (nan™Ign)p + (nan™)j Iop

A = ql i Isp + (@0 Isn)p + (00 Is ) pp + (2 pn Iso (6.3)
A% = Ton)ip + (01 Top

A% = ql Lo+ (0 Ton)p + (Mam™ Is )y + (Mo m™), Isp
ﬂ69 (mam™ Ign)jp + (Mam™) ) Loy,

Ay =quin s+ @0 Trn)p + (B2 Is) o + A n Is

AL = (Bl Ion)p + A2 oy,

AS = a0 Isn + (@0 Is ) »

Ay = qamlop + (a8 Tom)p

Agy® = by (Ip Isn + I Is)

Agy” = by (Ip Ion + T Io)

A% =00 (I Isn + Ion Isp) — it (I Isn + T Isy)
Agi? =00 Iy Tom + Ton Iop) — ¢t (Iip o+ I Toy)
148 =0 (IupIsn + Lo lsp) + 1o 0™ (IipIsn + 1 Isyp)
149 = by (Lap Loy + Lan Lop) +ng 0" (Iiy Lom + L1n Ioyp) ,
158 bg(Iob18n+l5n18b)+[n(Ilb18n+lln18b)7
159 =by (Isplom +Isnlop) + 05 (IipIopn +Tindop) , (6.4)
168 =by (TIsp I + Lo Isp) + mam™ (I y I + I Isp)
169 = b7 (Iop Lo + Ion Iop) +mam™ (Iny Ion + I1n Iop)
178 =by (Irp Isn + Irn Isp) + By (Iip Is i + 1o I8 )
179 =0y Irplom + Irnlop) + AL (Liplon +Tinlop),

ﬂiES b Ig pIsn + 97 (I Isn + Tin Isp)
AL =0 (Isp Iop + Tsn Top) + 97 (Inp Io + Tin Top)
AL =0 Igy 1o

a
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A = = (Lo Is g + Ton Isy)

A == (L Tom + Ion Iop)

A2 = =l (Lo Isn + Lup Isp) + nan”™ (Iop Is p + Ion Isp)
2N =~ (Iyp Ty + Tan Top) + 124 0™ (Ing To.n + T2 Top)
A% = CZ(I5bISn+I5nISb)+f"(fzbfsn+12n18b),
A2 =~ (Isp Iy + Isn Iop) + (7 (Top Io . + Inn Iop)
A ==t (Top Is g + T Isp) + mam™ (I Is g + T2 Isp)
A2 = —c (TIop Ign + Ts.p o, ,,)+ma m™ (Inp Ion + Ion Iop)
TP =~ (I p Ig o+ Trn Isp) + B (Top Isp + Ion Isp)
AN =~ (Irp I + Trn Iop) + A7 (Inp Ion + o Iop)

AZS = —cl Isplsgn + 9 (Iop Isn + 120 Isp)
ﬂ%g = —cy (Usp lon + Isndop) +q (I2p o + T2 Iop)

299 n
As = —cuIop Ign,

ARE = pgn™ (Typ Igm + Ian Isp)
j{449 =ng 0" (IapLlon + Lanloyp) ,

ﬂ458 =ngn" (IspIspn + Isp Isp) + 00 (Lap I + Lan Isp)

AL =ngn" (Isp Iy + I5 0 Iop) +

[(TZ (14,1) Ig,n + 14,77, Ig,b) )

TGS = ngn™ (I Is g + Ion Isp) + ma m™ (Iugy Isn + Lo Isy)

/7469 =ngn" (I Ion + Isn Iop
AN = ny 0" (I p Ig,n + Iz 0 Isp

)
)+

+mgm"™ (Inp Loy + Iapnlop) ,
(147[, 18,71 + I4,n IS,b) )

T = 10 (T Ty + Tron To) + B2 (I Toon + T Iop)
AT =ngn" Isp Isp + q (Lo Is + Lan Isy)
ﬂ489 =ngn" (Isp Lo + Isn Lop) + g0 (Lap Lo + Ian Iop)

JZ499 =nen"Igp Iy p,

ﬂ558 =" (15717 I+ Isn Ig)b) ,

A =" (Isp Iom + Isn Iop)

)
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=g (IspIg.n + I n Igp) + mam™ (Isy I + Is n Isp)

=00 (Tsplon + Lo nlop) +magm™ (Isp Lo pn + IsnIop)
A = (1 (I p Ig o + Trn Is ) + B2 (Isp Is o + Isn Isp)

=00 (Irp Lo+ IrnIop) + A (Isp Iom + Isn Lop) ,

(6.5)



and
A =0 Isy s+ qn (Isp Is 4 Isn Isp)

AZ =0 (Isp Iop + Isn Iop) + 90 (Isp Ion + Isn o)
Ay’ =3 Top 1o

ﬂ668 =mgm" (I Isn + Isn Isp) »
ﬂ =mgm" (I p Ion + Ion Lop)
AT = mgm™ (Inp Isn + T Is) + B (TIsp Isn + . Isp)
AZ = mam™ (Igp Iy + It Ioy) + A2 (Isp Ion + Lon o)
ﬂ688 mam™ Is p Is pn + G2 (Iop Isn + Ion Isp)

AS = mam™ (Is pIg,n + Isndop) + 92 (Iop Io.n + Isn Iop)
A% = mg m" Igp Iy p,

AL =RY (Irp I + Irn Isp)

AL =K (I I + Irn dop)

ALS =R Iy Isn + q) (Irp Is o + I7.0 Isp)

AL =R (Isp Ion + Isn Top) + g (Irp Ion + Iz Iop)
AN =R T4 Iy p

A =i Isp Isn s

Az’ = qi Usp lon +Isn Ioyp)

A =ql Igp Io .

For inhomogeneous incompressible monoclinic solids, in addition to the universality constraints (4.19),
and (4.20) there are the following 16 extra sets of universality constraints (each term must be symmetric in
(ab) for A=1,2,3, and B > A):

Gab = (F~H4, qg\b + (F_1>Ab qg|b + 94 [(F_l)Bb (F_1>An7B =7"nb (F_l)Am} J

CoAt=br [(F Y Isp+ (F )Y Is ] + 0 [(FHA Ly + (B YA 1)

Copt =bp [(F ) Lo+ (F ) o]

CHt ==l [(F ) sy + (F) Y Is ] + ) [(F) 0 Loy + (F) Y L)

CHY ==t [(F ) Lo+ (F ) Ton]

Coxt =nen™ (PO Iy + (F )4 Is ) + g0 [(F7H)A Ly + (F )4 1]

Cit =ngn" [(F )4 Iy + (F )Y I

CRt =qr [(F ) Ly + (F )Y L] + 00 [(F) 0 Isp + (F7) 5 Ism) (6.8)
cHt = [(F~ DA Iy + (F7H4, Iy, ,

GSEA =my,m" [(F ) nlgy + (F~ ) b I&n] +q7 [(Ffl)An Isp + (Ffl)Ab 1'67"] ,
6’69’4 mgm" [ F~ )A Ioy + (F~ ) v 1y n] )
Cot =hy [(F ) Y Lo+ (F )Y Isn] + a0 [(F ) % Inp + (F )Y I

a l(F7) )4
Cot =hy [(F ) % Top+ (F ) Iom]
CHA =qr [(F ) Isp + (F )N Is ]
CoHt =qr [(F )Y Top + (F ) Io ]
CH'P =qr [(F)A (F NPy + (FHP, (FH)™)]
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6.1 Family O

In [Yavari and Goriely, 2021] it was shown that for homogeneous incompressible monoclinic solids homoge-
neous deformations are universal for any three constant unit vectors (N7, Ng, N3) such that N; and Ny are
non-parallel, and N3 is normal to the plane of N; and Ny. We assume that the angle between N; and Ny
is 0 (0 <6 < 7), and hence, g = Ny - Ny = cosf. In the reference configuration let us choose the Cartesian
coordinates (X1, X2, X3) such that®

0 0 : 0 0
Nl:ﬁ’ NQZCOSQW—FSIHQW, N3:ﬁ’ (69)
ie.,
cosf, A=1
N =67, N3'={sing, A=2. (6.10)
0, A=3

For monoclinic solids the constraints (4.39) still hold. Notice that only the last two sets of constraints in
(5.8) are nontrivial. The universality constraint (5.8)14 implies that

Cr NE N W any = Cng NE NS We ang, M,N=1,2,3. (6.11)
Explicitly, we have

(C’M1 cos? 0 + O cos 6 sin 9) Wein + (C’Ml cos0sinf + Cpya sin? 9) Wes.an

2 . . s (6.12)
= (Cn1cos® + Cnacosfsind) We 1ar + (Cni cosOsinf + Co sin® 6) We ans -
These are three constraints corresponding to (M, N) = (1,2), (1, 3), (2, 3), and read
(012 COS2 0 + 022 cos 0 sin 0) W6711 — (011 cos @ sin 6 + 012 sin2 0) W6722
+ (—CH cos? 6 + Cys sin? 9) We12 =0,
(013 cos? 0 + Cas cos O sin 9) We,11 + (Clg cos 0 sin 0 + Cosg sin? 9) W12 (6.13)

— (C’n cos? 0 + Oy cos 0 sin 9) We,13 — (C’u cosfsinf + Cqo sin? 9) We23 =0,
(013 COS2 0 + 023 cos f sin 0) W6712 + (013 cos fsin 6 + 023 SiIl2 0) W6722
— (Clg cos? 0 + Cysy cos O sin 9) We 13 — (Cu cos 0sin f + Cay sin? 0) We23 =0.

Suppose [Capg] is diagonal. From (6.13)2, one concludes that cosf Ws 13 + sin Wg 23 = 0, which must

hold for any 6 € (0,%). This implies that Wg 13 = We23 = 0. Substituting this back into (6.13) one
concludes that (Cy3cosf + Cagsin) (cosd Wi 11 + sinf W 12) = 0, which implies that Ws 11 = Ws12 =
0. Substituting these into (6.13)3 one obtains (Clg cos 0 sin 0 + Cog sin® 9) We 22 = 0, which implies that

We,22 = 0. Therefore, we have shown that
(W) a=Ws2)a=0, A=1,23. (6.14)
The universality constraint (5.8)15 implies that

(Car1cosf + Chrasinf) (ClK cos O Wy kN + Cy X sing W7,KN)

K K - . (6.15)
+ (C’MKC’1 cosO + CrrrCy S1n9) (cos@ Wrin +sinf Wran) ,

is symmetric in (M N). For M = 1, N = 3, and diagonal [C'4p]|, the universality constraint is simplified to
read
Cu1 (2 cos W7713 + sin 6 W7723) + Caosin W7723 =0. (616)

81n order to make the calculations simpler we have chosen o = 0 in (3.65).
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This must hold for arbitrary C1; and Csz, and hence, W7 13 = Wy 23 = 0. Substituting this back into the
universality constraint and considering simple shear deformations for which C12 = C13 = 0, one concludes
that cos @ Wy 11 +2sin0 Wy 12 = 0, which must hold for an arbitrary §. Thus, W7 11 = W7 12 = 0. Substitut-
ing these back into the constraint for simple shear, one concludes that Wy 33 = 0. For M = 2, N = 3,
and simple shear deformations for which Ci;3 = Ci3 = 0, the universality constraint is simplified to
read: Ca3 (2C29 + Cs3) sin? 0 Wy 22 = 0, which implies that W7 22 = 0. Therefore, we have concluded that
Wz aB = (W7xA>,B =0,A,B=1,2,3.
For homogeneous deformations and uniform material preferred directions only the last set of constraints
in (6.8) are non-trivial and are rewritten in terms of the referential quantities as (for K, N = 1,2, 3)
oy [V 87 58 + N NP o+ NI N 7+ N3 N ] W .
— Carse [N N 68 + NJ NP 64 + NM NP 6% + NJM NP 58] Wa.az (617

Thus, we have
Cin (cos O Wy 1k +8in0 Wy o) + (Cny cos 0 + Cnosind) Ws 1

=Cig (COS& WS,lN + sin f W&QN) + (CKl cos + Cko sin0) W&lN .
Eq. (6.18) are three constraints corresponding to (K, N) = (1,2), (1,3), and (2, 3), and read

(2C12 cos 0 + Cagsinf) Wg 11 — 2C11 cos @ W 12 — Cr18in Wg 00 =0,
(2C13 cos0 + Cazsinf) Wg 11 + Cigsin Wg 15 — (2C11 cos € + Cyasin0) Wy 13

— CyysinfWyas =0, (6.19)
(2C13 cos @ + Cagsinf) Wy 12 — (2C12 cos 0 + Caz sin @) Wy 13 + Ch3sin @ Wy 29

— Ci2sinf Wg o3 =0.

(6.18)

The above constraints need to be satisfied for an arbitrary matrix [C'4g] with unit determinant. For simple
shear in the X2X3-plane (C1a = C13 = 0), (6.19)3 gives Cazsinf Wg 12 — Cagsin Wy 13 = 0, which must
hold for arbitrary Cas, and hence Wy 12 = Wg 13 = 0. Thus, (6.19) is simplified to read
(2012 cos + CQQ sin 9) W&ll — 011 sin 6 W&QQ = 0,
(2013 cos B + Cag sin 9) W&u — (C18in6 W8723 =0, (620)
013 sin 6 WS,QQ — 012 sin 6 Wg,gg =0.
For simple shear in the X' X?-plane (C13 = Ca3 = 0), (6.20)2 gives C11 sinf Wy 93 = 0, which implies that
W&Qg = 0. Thus
(2012 cos B + Coys sin 9) W&ll — Ch18in6 W&QQ =0,
(2013 cos B + Cag sin 9) W&H =0, (621)
013 sin 0 WS,QQ =0.
The last two equations imply that Wg 11 = Wg o2 = 0. Thus, (6.19) implies that (Ws 1) 4 = (Ws2).4 =
0, A=1,23.
In summary, the universality constraints give us the following
(WI,A)7B = (WQ,A),B = (W5,A),B = (W7,A),B =0, A7B =123,

6.22
(War)a=Ws1)a= Ws2)a=Wsgi)a=Ws2)a=0, A=123. (6.22)

Using a lengthy but standard argument (similar to those of §3.2) one can show that the constraints (6.22)
imply the following result.

Proposition 6.1. For inhomogeneous incompressible nonlinear monoclinic solids, Family 0 deformations
are universal for any energy function of the following form

W(X, I, Io, 14, I5, Ig, I7, Is, Ig) = W (I, Io, Iy, I5, I, I7, Is, Ig) + H(I1, I2, Iy, I5, Ig, I7, Is, Io) - X (6.23)
+W(X® Iy, I, Is, o) , '

where (N1, Ny, N3) are constant unit vectors such that N3 is parallel to the Cartesian X3-axis.
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Remark 6.2. Note that the last term of the energy function in (6.23) has a form identical to that of
compressible monoclinic solids (3.84).

6.2 Family 1

In [Yavari and Goriely, 2021] it was shown that for Family 1 deformations of homogeneous incompressible
monoclinic solids the universal material preferred directions are

0 0
N = cosy(X) | N, = cosa(X) | (6.24)
+sin e (X) + sin ¢ (X)

where 1 (X) and 2(X) are arbitrary functions such that 1 (X) # 12(X). The constraints (4.45), (4.47),
and (5.13) hold for monoclinic solids as well. The constraints G[%é] =0, for (4,a,b) =(2,1,2) and (A,a,b) =
(3,1,2), require vanishing of some lengthy expressions that we do not report here. Neither of these two

constraints can be satisfied, and hence
oWg  OWs

oy 0z
All the other universality constraints are satisfied. Therefore, we conclude that W = W (X, I, I, Iy, Is, Is, I7, Is, Io)+

W(X ,Y, Z Iy). Noting that the term W(X ,Y, Z Io) is mechanically inconsequential, we have proved the
following result.

=0. (6.25)

Proposition 6.3. For inhomogeneous incompressible nonlinear monoclinic solids with any of the universal
material preferred directions given in (6.24), Family 1 deformations are universal for any energy function of
the form W= W(X) Il7 I?a 145 157 IGa 177 187 19)

6.3 Families 2 and 3

In [Yavari and Goriely, 2021] it was shown that for Family 2 and 3 deformations of homogeneous incom-
pressible monoclinic solids the universal material preferred directions are

0 0
Ni=losxa(R) | © N2= | cosxa(R) | - (6:26)
+sinx1(R) +siny2(R)

where x1(R) # x2(R) are arbitrary functions.
For monoclinic solids, the constraints (4.56), (4.58), and (5.15) still hold. The constraints G[Sa‘g] =0, for

(A,a,b) = (2,1,2) and (A,a,b) = (3,1,2), require vanishing of some lengthy expressions that we do not
report here. Neither of these two constraints can be satisfied, and hence

OWs  OWs
00 ~ 0z

=0. (6.27)
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All the other universality constraints are satisfied. Therefore we conclude that W = W (R, I1, I, I4, I, Is, I7, I3, Ig)+

W(R, ©,Z,1y). Noting that the term W(R, 0, Z, 1) is mechanically inconsequential, we have proved the
following result.

Proposition 6.4. For inhomogeneous incompressible nonlinear monoclinic solids with any of the universal
material preferred directions given in (6.26), Family 2 and 3 deformations are universal for any energy
function of the form W = W (R, I, I, 1y, I5, I, I7, Ig, I9).

Yavari and Goriely [2021] showed that for homogeneous incompressible monoclinic solids Family 4 defor-
mations are not universal. This is the case for inhomogeneous incompressible monoclinic solids as well.

6.4 Family 5

In [Yavari and Goriely, 2021] the following universal material preferred directions were reported:

- cos &y _ _ cos & _
Class (i): N; = tsing | Ny = +singy| §1 # &a, (6.28)
0 0
0 0
Class (i) : Nyi=|,q|, Na= cosny |+ Smn#0, (6.29)
0 +sinn
0 0
Class (iii): Ni= ||, Na= cosny |+ COsN#0. (6.30)
+1 +sinn

Noting that sinncosn = 0, Classes (ii) and (iii) become unacceptable (N - Ny = 0), and hence the correct
universal material preferred directions are:

cos 1 cos &y
Ny = +sing& | Ny = +sin& | §1# &2 (6.31)
0 0
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This means that the material preferred directions are two families of fibers that are parallel to the (R, ©)
plane and are distributed uniformly in two distinct fixed directions.
In [Yavari, 2021] it was shown that the for Family 5 deformations constraints (4.19) imply that

ow, oW, oWy, oWy oW, OW,

R " 90 07 OrR ~ @0 oz (6.32)

The above relations hold for inhomogeneous monoclinic solids as well. As was shown in §4.6 the universality
constraints (4.20) imply that Wya = W54 = Ws a4 = Wr 4 = 0. For the universal material preferred
direction (6.31), one can show that

Ciy =0, for (A,a,b) = (1,1,2) =
Ci{Cysingy [(1+CF) cos € + €3 Cysin o]
+cos & [Ca (24205 + CF) cos&a + Gy (20 + C3) sing] } =0,
Cipy =0, for (A,a,b) = (2,1,2) =
013{ cos&y (=2 + 022 (=6 — 402 + C3)) cos & + Co O3(—2 — 4C3 + C3)sin&a]  (6.33)
+ Cysingy [Ca (14 €22+ 6C3%) cos & + Cy (CF +6C3) sina] | =0,
Ciy =0, for (A, a,b)
o 03{03 sing&; [(1+ C2) cos& + Cy Cy sin &s]

= (3,2,3) =

+coséy [Cy (24205 + C3) cos & + C5 (2C5 + C3) sin & | } =0.

None of the above constraints can be satisfied, and hence

OWs  OWs  OWs
OR 00 07 (6:34)

In summary, we have proved the following result.

Proposition 6.5. For inhomogeneous incompressible nonlinear monoclinic solids Family 5 deformations are
not universal.

Table 4 summarizes our results for inhomogeneous incompressible monoclinic solids.

7 Concluding Remarks

In this paper we studied universal deformations in inhomogeneous anisotropic bodies. Equilibrium equations
in the absence of body forces, and arbitrariness of energy functions in a given class of materials impose certain
constraints that we call universality constraints. We observed that the universality constraints of inhomo-
geneous solids include those of the corresponding homogeneous solids. In other words, for a given class of
materials universal deformations and universal material preferred directions are determined by the universal-
ity constraints of the corresponding homogeneous solids. Universal inhomogeneities (position dependence of
the energy function) are those inhomogeneities that are consistent with the universality constraints. We char-
acterized the universal inhomogeneities for inhomogeneous compressible transversely isotropic, orthotropic,
and monoclinic solids. In the case of inhomogeneous incompressible solids, for each of the six known families
of universal deformations, and material preferred directions we characterized the corresponding universal in-
homogeneities for inhomogeneous incompressible transversely isotropic, orthotropic, and monoclinic solids.
Table 1 summarizes our results for inhomogeneous compressible transversely isotropic, orthotropic, and
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Family Universal Deformations Universal material preferred directions Universal inhomogeneities

W =W(ly, I, I, Is, I, I1, Is, Io)
0 2(X) = FouXA 4 ¢ Any two non-parallel constant unit vectors Ny, and Ny

+H(Iy, Iz, 14, I5, Is, I7, Is, Ig) - X

+ﬁ’(X3J/1,IG-,IsJQ)

0(X.Y,Z) = Cao(Y +Cs) Ni= | osin(x) |+ Ne= W =W (X, 1, I, I, I, Is. I1. Is, Io)

r(X.Y,Z) = \/C1(2X + Cy)
cos Yo (X)

(XY, Z) = ?Z(z —CyC3Y 4+ C

+sin(X) +sin(X)
0 0
z(R,0,Z) = $C1C3R? + C4
2 y(R,0,2) = % +C5 N, = cosyi(R) | No=| .06 v2(R) | X1(R) # x2(R) W =W(R, Iy, I, 14, I5, I, I7, I, Iy)
z2(R,0,7) = C?&@Jr (‘%Z +Cs
+sinxi(R) +sinx2(R)

r(R,©,2) =/ ‘C.cffcgcu +Gs

3 0(R,0.Z)=C10+ C2Z + Cs Nl ~ | cosxi(R) |’ N, = cosxa(R) | X1(R) # x2(R) W =W(R, I, Iy, 14, I, Is, I1, Is, Iy)
2(R,0,2)=C30 + CyZ + Cr

+sinx1(R) +sinx2(R)

Table 4: Universal deformations, universal material preferred directions, and universal inhomogeneities for incompressible
monoclinic solids for the siz known families of universal deformations. For inhomogeneous monoclinic solids Family 4 and
Family 5 deformations are not universal. Also, note that N3 is normal to the plane of N1 and Na.

monoclinic solids. Tables 2, 3, and 4 summarize our results for inhomogeneous incompressible transversely
isotropic, orthotropic, and monoclinic solids.

This classification of universal solutions concludes our universal program for hyperelastic materials. It
provides a complete collection of solutions that can be used for applications and can be systematically
analyzed by stability methods to look for the existence of nearby solutions. In our construction we have
assumed that the choice of material preferred directions is consistent with the underlying symmetries of the
deformation (e.g. radial fibers for radial deformations). Therefore, our results do not preclude the existence
of other universal solutions that would not preserve the underlying symmetry of the deformations. However,
we believe that these solutions are unlikely to exist and we conjecture that this classification, like the cases
of isotropic incompressible solids, and isotropic anelastic solids is complete.
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