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Abstract

Universal deformations of an elastic solid are deformations that can be achieved for all possible
strain-energy density functions and suitable boundary conditions. They play a central role in nonlinear
elasticity and their classification has been mostly accomplished for isotropic solids following Ericksen’s
seminal work. Here, we address the same problem for transversely isotropic, orthotropic, and monoclinic
solids. In this case, there are no general solutions unless universal material preferred directions are also
specified. First, we show that for compressible transversely isotropic, orthotropic, and monoclinic solids
universal deformations are homogeneous and that the material preferred directions are uniform as well.
Second, for incompressible transversely isotropic, orthotropic, and monoclinic solids we derive the corre-
sponding universality constraints. These are constraints that are imposed by equilibrium equations and
the arbitrariness of the energy function. We show that these constraints include those of incompressible
isotropic solids. Hence, we consider the known universal deformations for each of the six known families
of universal deformations for isotropic solids and find the corresponding universal material preferred di-
rections for transversely isotropic, orthotropic, and monoclinic solids. This work provides a systematic
way to study fiber-reinforced elastic solids analytically.

Keywords: Universal deformations, nonlinear elasticity, anisotropic elasticity.

Contents

1 Introduction

2 Nonlinear Anisotropic Elasticity

3 Compressible Anisotropic Solids

4 Incompressible Transversely Isotropic Elastic Solids

4.1 Family 0: Homogeneous deformations . . . . . . .. .. ... oo
4.2 Family 1: Bending, stretching, and shearing of a rectangular block . . . .. .. ... .. ...
4.3 Family 2: Straightening, stretching, and shearing of a sector of a cylindrical shell . . . . . . .
4.4  Family 3: Inflation, bending, torsion, extension, and shearing of a sector of an annular wedge
4.5 Family 4: Inflation/inversion of a sector of a spherical shell . . . . ... ... ... ... ...
4.6 Family 5: Inflation, bending, extension, and azimuthal shearing of an annular wedge . . . . .

*To appear in the Journal of the Mechanics and Physics of Solids.
fCorresponding author, e-mail: arash.yavari@ce.gatech.edu

10
13
13
14
16



5 Incompressible Orthotropic Elastic Solids 21
6 Incompressible Monoclinic Elastic Solids 24

7 Concluding Remarks 30

1 Introduction

Universal (controllable) deformations for a given class of materials are those deformations that can be
maintained in the absence of body forces by applying only boundary tractions for all strain-energy functions
in that class. In the case of (unconstrained) compressible isotropic elastic solids, Ericksen [1955] proved
that the only universal deformations are homogeneous deformations. The constrained case is more involved
[Saccomandi, 2001]. For instance, in the case of incompressible isotropic solids, Ericksen [1954], motivated
by the earlier works of Rivlin [Rivlin, 1948, 1949a,b], found four families of universal deformations. He
conjectured that a deformation with constant principal strain invariants must be homogeneous. Fosdick
[1966] found a counter-example, and this led to the discovery of a fifth family of universal deformations
independently by Singh and Pipkin [1965] and Klingbeil and Shield [1966]. The six known families of
universal deformations are:

Family 0: Homogeneous deformations

Family 1: Bending, stretching, and shearing of a rectangular block

Family 2: Straightening, stretching, and shearing of a sector of a cylindrical shell

Family 3: Inflation, bending, torsion, extension, and shearing of a sector of an annular wedge

Family 4: Inflation/inversion of a sector of a spherical shell

Family 5: Inflation, bending, extension, and azimuthal shearing of an annular wedge

Carroll [1967] and Fosdick [1968] showed that these families are universal dynamically as well for those
motions whose acceleration is curl-free, i.e., is gradient of a potential function. Ericksen’s problem in the
case of incompressible isotropic solids has not been completely solved to this date as the case of deformations
with constant principal invariants is still open but the conjecture is that there is no other possible family.
In the setting of linear elasticity, Yavari et al. [2020] showed that universal displacements explicitly depend
on the material symmetry class; the smaller the symmetry group is the smaller the corresponding space
of universal displacements is. Yavari and Goriely [2016] showed that in compressible anelasticity universal
deformations are covariantly homogeneous. For the generalization of Ericksen’s work to incompressible
anelasticity, Goodbrake et al. [2020] showed that a key feature of the analysis is that the extra fields entering
the analysis should follow the same symmetry as the deformation.

There has not been any systematic study of universal deformations in anisotropic solids. Ericksen and
Rivlin [1954] analyzed a subset of Family 1 for two cases of homogeneous anisotropy. They also analyzed
Family 3 for an example of homogeneous anisotropy. See also [Adkins, 1955a,b]. Yet, we know plenty of
examples of anisotropic fiber-reinforced systems [Spencer, 1982, Qiu and Pence, 1997] with one (i.e. trans-
versely isotropic) or two (i.e. orthotropic) specified preferred directions that sustain universal deformations
either in rectangular [Melnik and Goriely, 2013] or helical geometry [Holzapfel et al., 2000, Demirkoparan
and Pence, 2007, Goriely and Tabor, 2013, Demirkoparan and Pence, 2015, Goriely, 2017]. The question is
then to find all such systems. Here, we do not specify the material preferred directions a priori; we find con-
ditions for the existence of universal deformations and then find the universal material preferred directions
that satisfy these constraints.

We consider the following six classes of anisotropic materials: i) compressible transversely isotropic, ii)
compressible orthotropic, iii) compressible monoclinic, iv) incompressible transversely isotropic, v) incom-
pressible orthotropic, and vi) incompressible monoclinic solids. Using the representation of Cauchy stress
for each class we find the universality constraints imposed by both the equilibrium equations in the absence
of body forces, and the arbitrariness of the energy function. Perhaps unsurprisingly, our analysis shows that
the set of universality constraints for each class includes those of isotropic solids. In the case of compressible
solids it implies that universal deformations must be homogeneous and we show that the extra universality
constraints force the universal material preferred directions to be uniform for non-isochoric deformations.



In the case of incompressible solids we find, for each of the six known families of universal deformations,
the corresponding universal material preferred directions assuming that they respect the symmetry of the
universal deformations encoded in the right Cauchy-Green tensor.

This paper is organized as follows. In §2 we briefly review nonlinear anisotropic elasticity. In §3, we
consider compressible transversely isotropic, orthotropic, and monoclinic solids. The universal deformations
and universal material preferred directions of incompressible transversely isotropic solids are analyzed for
each of the known six families in §4. In §5 and §6 similar analyses are presented for incompressible orthotropic
and incompressible monoclinic solids. Conclusions are given in §7.

2 Nonlinear Anisotropic Elasticity

Kinematics. In nonlinear anelasticity a body @ is identified with a Riemannian manifold (B, G), where
G is the material metric that characterizes the natural distances in the body. In nonlinear elasticity, which
is the focus of this paper (B, G) is a submanifold of the Euclidean 3-space. A deformation of the body is a
mapping ¢ : B — &, where (8, g) is another Riemannian manifold — the ambient space, which is assumed
to the Euclidean 3-space. The material velocity Vi : B — T,,,(x)S is defined as V(X) = V(X, 1) = W.
The spatial velocity is defined as v .= V o ¢, ! The primary object to study deformations in nonlinear
elasticity is the deformation gradient, which is the tangent map (or derivative) of ¢ and is denoted by
F = Tp. At each material point X € B, deformation gradient is a linear map F(X) : TxB — Ty, x)S. With
respect to local coordinate charts {z} and {X4} on & and @B, respectively, the deformation gradient has
components

O
Fy(X) = X). 2.1
A(X) = 24 (X) 21)
The transpose of deformation gradient is defined as
FT: T8 = TxB, (FV,v),=(V,Flv)g, VYVeTxB, veTlys, (2.2)
and has components
(FT(X)"a = gan(x) F’5(X)GP(X). (2.3)

The right Cauchy-Green deformation tensor is defined as C(X) = F(X)'TF(X) : TxB — Tx® and has
components C’AB = (FT)A,Fg. Note that Cap = (gap © ¢)F?4F®p, which means that C’ = p* (g), where
b is the flat operator induced by the metric g. The left Cauchy-Green deformation tensor is defined as
B! = ¢*(g*), which has components BAB = (F~1)4,(F~1)B;, g. The spatial analogues of C” and B¥ are

¢” and b¥, respectively, and are defined as

¢ =0.(G), = (F ). (F N, Gas,

# # b b ~AB (24)
b = p.(G?), b* = F*,F°gG*7.

bt is called the Finger deformation tensor. The tensors C and b have the same principal invariants I, I,
and I3 [Ogden, 1984], which are defined as
L =trb =% = b" ga,

I = % (I} —trb?) = - (17 — b b%,) =

1
5 <112 - babde Gac gbd) ) (25)

DN | =

I; = detb.

Balance laws. Conservation of mass and the balance of linear and angular momenta in material form read

Ipo

7 _ 9 2.6
=0, (2.6)

DivP + PQB = poA, (27)

PF™ =FP', (2.8)



where pg is the material mass density, B is body force per unit undeformed volume, A is the material
acceleration, and P is the first Piola-Kirchhoff stress. The relation between P and the Cauchy stress o is
Jo® = P*AFY, where J is the Jacobian of deformation that relates the material (dV) and spatial (dv)
Riemannian volume forms as dv = JdV, and is defined as

det g
= F. 2.
J =1/ e det (2.9)

The balance equations in terms of the spatial mass density p and the Cauchy stress o read

Lyp =0, (2.10)
divo + pb = pa, (2.11)
o' =o, (2.12)

where b = Bo ¢, ! a is the spatial acceleration, and Lyp is the Lie derivative of the spatial mass density
with respect to the spatial velocity.

Constitutive equations. For an anisotropic hyperelastic solid the energy function (per unit undeformed
volume) is written as

W =W(C" G,(h,... Cn)s (2.13)

where {;,i = 1,...,n are the structural tensors that characterize the material symmetry group of the solid.
Structural tensors make the energy function an isotropic function of its arguments. Hilbert’s theorem tells
us that for any finite number of tensors there is a finite number of isotropic invariants that form an integrity
basis for the space of isotropic invariants of the collection of tensors. Therefore, if I;,7 = 1,...,m, form
an integrity basis for the set of tensors in (2.13), one has W = W (X, I, ..., I,;,). Using the Doyle-Ericksen
formula [Doyle and Ericksen, 1956, Marsden and Hughes, 1994, Yavari et al., 2006], one obtains the following
representation for the second Piola-Kirchhoff stress tensor

oW = oI, ow
S:QEEE:E:HWEép Wii=or, j=1....m. (2.14)
j=1 J

Note that S48 = (F~1)4, P8 = J(F~HA, (F~ 1B, o9,

Isotropic solids. For an isotropic solid, the energy function has the form W = W (I3, I, I3), where Iy, I,
and I3 are the principal invariants of the right Cauchy-Green deformation tensor given in (2.5). From (2.14)
we have

S = 2W,GF + 2Wy(I,C~ ! — [3C72) + 2Ws13C~ 1. (2.15)

Similarly, the Cauchy stress has the representation

2
ab ab ab ab
o = — Wlb —‘r(IQWQ—FIg“/g)g —Ig”gc s (216)
VI [ )

where ¢ = (F~Y)M, (F~H)N, Gy g@™g"". For incompressible isotropic solids I3 = 1, and one writes
S=—pC~ 142, GF — 2W,C2, (2.17)
where p is the Lagrange multiplier associated with the incompressibility constraint J = /I3 = 1. The

Cauchy stress similarly reads
o™ = —pg®® 4+ 2W b — 2W, . (2.18)



Transversely isotropic solids. A transversely isotropic solid has a single material preferred direction
at every point that is normal to the plane of isotropy at that point. Let us assume that the unit vector
N(X) identifies the material preferred direction at a point X € B. The energy function has the form
W = W(G,C" A), where A = N ® N is a structural tensor [Doyle and Ericksen, 1956, Spencer, 1982, Lu
and Papadopoulos, 2000]. The energy function W depends on the following five independent invariants

I=trC, L=detCtrC™!, I3=detC, I,=N-C-N, I;=N-C? N. (2.19)
In components
I =C%, I, =det(C)(CY)Pp, Iy =det(CAB), I, = N NBCap, Iy = NANBCp,CM 4. (2.20)

The second Piola-Kirchhoff stress tensor is written as

5
oI, oW
S:E oW, —2 W, =——.,7=1,....5 2.21
j:1 Jac 9 J 8[] ) .7 ) 9 ) ( )
where oI oI ol

g, 22 _nLetone?, 8B oot
8Cb 5 3Cb 2 3 ) 3Cb 3 )
Y oI (2.22)

4 5
71 _N@N, -2 _N®(C-N)+(C-N)®N.
5Ch oN, -5 ® ( )+ ( ) ®

From (2.22), the second Piola-Kirchhoff stress tensor has the following representation

S = 2W1G* + 2Ws (LC™! — [;C™%) + 2W3[,C 1

(2.23)
+2W, (N®N) +2W5 [N® (C-N)+ (C-N)@NJ .

The Cauchy stress tensor has the following component representation [Ericksen and Rivlin, 1954, Golgoon
and Yavari, 2018a,b]

2
O'ab = ﬁ [Wlbab + (IQWQ + IgWg)gab — I3Wy Cab + Wy n“nb + Ws éab] R (224)
3
where n® = Fo, N4, and (** = n*b*n, + nb?n.. For an incompressible transversely isotropic solid

(13 = 1)7 W = W(117IQ,I4,I5). Thus
S=—pC~ ! +2W1G* 4 2W, (LC™' — C2) + 2Wy (N®@ N) + 2W; [N® (C-N) + (C-N) @ N] . (2.25)

The Cauchy stress tensor is represented in components as [Ericksen and Rivlin, 1954, Spencer, 1986, Golgoon
and Yavari, 2018a,b]

% = —pg® + 2W1b% — 2W, ¢ 4 2W, nn® + 2W5(n%b"ngeq + nPbng.q) . (2.26)

Orthotropic solids. Orthotropic solids at every point have reflection symmetry with respect to three
mutually perpendicular planes. Suppose that three G-orthonormal vectors N;(X), No(X), and N3(X)
specify the orthotropic axes in the reference configuration at a point X. One choice of structural tensors
is Ay = N7y ® Ny, As = Ny ® Ny, and A3 = N3 ® N3. However, only two of them are independent as
A+ Ay + A3 = 1. Thus, the energy function has the functional form W = W (G, C”, A}, A,) [Doyle and
Ericksen, 1956, Spencer, 1982, Lu and Papadopoulos, 2000] and is represented in terms of the following seven
independent invariants

IlztI‘C, IQZdetCtI‘ Cil, Ig:detC,
I,=N;-C-N;, I;=N;-C? Ny, (2.27)
Is=Ny-C-Ny, I[;=N,-C%?.N,.



Thus

],
S:E 2Wj& Wj::%, j=1,...,7. (2.28)
J

The second Piola-Kirchhoff stress tensor has the following representation

S =2W,G* + 2W, ([,C™! — [;C™?) + 2W3[5C 1
+ 2Wy (N1 ®N1)+2W5 [Nl ®(C N1)+ (CNl) ®N1] (229)
+ 2Ws (N2 ® Ng) + 2W7 [Ny @ (C - Np) 4 (C - N2) ® Ny .

The Cauchy stress tensor is represented in component form as [Smith and Rivlin, 1958, Spencer, 1986,
Golgoon and Yavari, 2018a,b]

2

ab ab ab ab
g5 =——= Wlb + IQWQ~‘rI3W3 g —IgWgC
/7[3 ( )

+ Wyninb + W; (n‘fbbcnilgcd + nl{bacnfgcd) (2.30)
+ Ws ngng + W~ (ngbbcnggcd + ngbacnggcd) } ,

where n§ = F*4N{*, and ng = F?4 N3
For incompressible orthotropic solids (Is = 1), W = W (Iy, I, I4, Is, Is, I7). Therefore, using (2.29), one
obtains the following representation

S =—pC ' +2W1G! + 2, (IL,C™' — C?)
+ 2Wy (Nl ®N1) + 2W5 [Nl ® (CN1)+(C Nl) ®N1] (231)
+2Ws (N2 ® N3) +2W7 [Ny @ (C - N3) + (C - Ny) ® Ng] .

Similarly, the Cauchy stress tensor is given as
o0 = —pg® + 2W bW — 2W, ¢ + 2Wy ng nb + 2W5 £9° + 2Ws ng nb + 2W5 £3° (2.32)

where 9% = n¢ b n¢ g.q + nb b9 né geq, and 5% = ng b nd geq + nb b4 nd geq.

Monoclinic solids. An example of a transversely isotropic solid is a composite that is made of an isotropic
matrix reinforced by a single family of aligned fibers [Spencer, 1986]. At the macroscopic scale fibers are the
integral curves of the vector field N. Similarly, an orthotropic solid can be visualized as an isotropic matrix
reinforced by two orthogonal families of fibers. For a monoclinic solid Ny - Ny # 0 but Ny is still normal to
the plane of Nj and Ny [Merodio and Ogden, 2020]. For such solids, the energy function depends on nine
invariants [Spencer, 1986]. Seven of them are identical to the orthotropic invariants (2.27). The two extra
invariants are

Is=gN;-C-Ny, Iy=g°, (2.33)

where g = Ny - N3. The term g is included in the expression of Ig to ensure that Ig is invariant under both
transformations N; — —Ny, and Ny — —Ns5. Note that

afg _g
ock 2

From W = W(Il,lg,lz;,14715,16,17718,19), one obtains

0l

N;®N;+ N, ®N —
(N1 ®@ N2+ N2 ®Ny) , EreL

=0. (2.34)

S =2W G +2W, ([,C™! — [3C72) + 2W,313C !
+2W,4 (N7 @ Np) 4+ 2W5 [N1 ® (C-Np) + (C-Np) ® Ny
+ 2Ws (N2 @ N) + 2W7 [Ny @ (C - N2) + (C - N3y) ® Ny
+gWs (N1 ®@ No + Ny @ Ny) .

(2.35)



The Cauchy stress has the component representation

2
O'ab :f {Wlbab + (IQWQ + 13W3)gab — IgWQ Cab
3
+ Wy n”fnl{ + Ws (n‘f bbe n’f Ged + nl{ b*e n'f gcd) (2.36)
+ Ws ngng + Wr (ng pbe ng Ged + ng b*¢ ng gcd)

+ gWs (n{ nb +nb ng)} )

For incompressible monoclinic solids (Is = 1), W = W (11, I, I4, I5, Ig, I7, Is, Iy). Therefore, using (2.29),
one obtains the following representation
S = —pC~! +2W1G* + 2W, (LC™' — C7?)
+ 2Wy (N1 & Nl) + 2W5 [Nl ® (C . Nl) + (C . Nl) ® Nl]

2.37
+ 2Ws (N2®N2)+2W7 [N2®(0N2)+(CN2)®N2] ( )
+gWs (N1 ® Ny + N2 @ Ny ) .
Similarly, the Cauchy stress tensor is given as
0™ = —pg®® 4 2W1 b — 213 Wo ™ + 2Wy n§ nh + 2Wi £5° + 2We ng nb + 2Wr £5° + W £5° (2.38)

where (3° = g(n$ n + n8 ng).

Remark 2.1. In many references [Merodio and Ogden, 2006, Vergori et al., 2013] the dependence of the
energy function on Iy is ignored since from (2.34)s it does not enter the expression of stress. However, in
finding the universality constraints one cannot ignore this dependence as we will see in §6.

3 Compressible Anisotropic Solids

Transversely isotropic solids. Let us consider a body made of a compressible transversely isotropic
solid. At this point we do not specify the material preferred direction N. In the absence of body forces,
the equilibrium equations are dive = 0, and in components J“b‘b = U“b,b + %0 + 4009 = 0, where
Ve = %g“k (gkb,c + Gkeb — goe,k) are the Christoffel symbols of the Levi-Civita connection associated with
the metric g. It is convenient to use Cartesian coordinates in the ambient space, and hence, J“byb = 0. The
Cauchy stress has the representation (2.24). Substituting (2.24) into the equilibrium equations one obtains

— I %13,b (Wb + (L. Wy + I3W3)5% — LWa ¢ + Wyn®n® + W]
+ 2[;§ |:(I2’bW2 + IQWbe + 1375W3 -+ IgWg,b)(sab + Wlbab’b -+ Wl’bbab (3 1)
— IB)bWQ Cab - IgWg’b Cab — IgWQ Cab’b .

+ Wapn®nb + Wyn® yn® + Wynn®, + Wi, 070 + Wy eab,b} =0.

This should hold for an arbitrary energy function. As W is an arbitrary function of its arguments, the
coefficient of Wy, Wy, W3, W3, and W5 must vanish separately. Therefore

Wi bab7b =0,

Wy Inppd™ —I3¢™, =0,

Wi: Iy =0, (3.2)
Wit (nn), =0,

Wi : Eab,b =0.



Hence, (3.1) is simplified to read
babWLb + (125ab — .[3 Cab)WQ,b + Ig(gabW:},b + na le W4,b + fab W5,b = 0 (33)

Note that (I3, = 0)

Wip = Wil p+Wialap + Wialsp + Wisls

Wap = Wialyp + Waalsp + Woslsp + Wasls

Wsp = Wizl p + Waslap + Waalsp + Wssls (3.4)

Wap = Wiadip + Waaloy + Waalsy + Wasls p,

Wiy = Wisliy + Wasloy + Waslyp + Wsslsy,

where W;; = %. Substituting the above relations into (3.3) the coefficients of W3 and Wag read

Wiz I3l 6" =0,

3.5
W23 : 13]2’b5ab =0. ( )

Thus, I, = I>, = 0. Substituting these into (3.4) and using (3.3) the coeflicients of W34 and W35 read

W34 : Ig[4)b(5ab = 0,

3.6
W35 : 13[5,b5ab =0. ( )
Therefore, I, = I5, = 0. In summary, we have the following universality constraints
I;, I, and I3 are constant, (3.7)
by =", =0, (3.8)
14, and I5 are constant, (3.9)
(n*n®), =07, =0. (3.10)

Note that (3.7) and (3.8) are the universality constraints for isotropic solids [Ericksen, 1955, Yavari and
Goriely, 2016] and imply that F'* 45 = 0, i.e., homogeneous deformations. Note that I, = La(F~H)4, =0,
and hence I 4 = 0. Similarly, Is 4 = 0.

Suppose C’ has eigenvalues A2 > A2 > A3, Let us consider a homogeneous deformation for which the
eigenvalues are distinct, i.e., A > A3 > A2, and choose a Cartesian coordinate system {X“} for the reference
configuration whose axes are the principal directions of C?. With respect to this coordinate system N has
components N4. Knowing that N is a unit vector we have

(NY)? 4+ (N?)2 + (N3 =1. (3.11)
The constraint I, = o? reads
M(NYHZ+A3(N?)2 + N3N =a?. (3.12)
Similarly, the constraint I5 = 32 reads
NN+ A3 (N?)? + A5(NP)? = 32, (3.13)

where o and 3 are constants. These three constraints can be written as a system of linear equations for
dN4:
NYN' + N2dN? + N3dN3 =0,
N NTINY + A2N2dN? + A\2N3dN3 =0, (3.14)
AINLANY + MIN2dN? + \jN3dN3 =0.



The determinant of this linear system is N'N2N3(A2 —A2)(A\2—A\2)(A\2—\?). If N'N2N3 # 0, then dN = 0,
and hence N is a constant unit vector. Suppose N3 =0 (N =0 or N? = 0 would be similar). Thus

NN + N2dN? =0,

N NYIN' + A2N2dN? =0, (3.15)

MNNTAN' + \MAN2dN? =0.
Using the first equation, the second and third equations are simplified to read ()\% - A%)N IdN! = 0, and
(A =A3)NLdN?' = 0, respectively. Thus, N'dN! = 0. If N! = 0, then (N?)? = 1, and hence N is a constant
unit vector. If dN! = 0, then N2dN? = 0. If N2 = 0, then (N')?2 = 1, and hence N is a constant unit
vector. If dN? = 0, then N is a constant unit vector. Therefore, we conclude that N is a constant unit

vector.
There are two more universality constraints (3.10) that need to be checked. Note that

(n*n®)p = (F*aF* pNANT) L (F7H)%, (3.16)
which trivially vanishes for homogeneous deformations and constant N. Similarly
0y =0y (F~HMy, (3.17)
and
0% = NANPCopdBO(F 4 FP g + FP 4 Fp) . (3.18)

For homogeneous deformations and constant N, £° ,; = 0, and hence ¢2°;, = 0 is trivially satisfied. In
summary, we have proved the following proposition.

Proposition 3.1. For compressible nonlinear transversely isotropic solids the only universal deformations
are homogeneous deformations, and the anisotropy must be homogeneous, i.e., the material preferred direction
1s everywhere the same constant unit vector N.

Orthotropic solids. Using a similar argument, the universality constraints coming from the equilibrium
equations for arbitrary compressible orthotropic solids are
I, I, and I3 are constant, (
bab,b _ Cab,b — O, (
14, and I5 are constant, (3.21
() = 475 =0, (
Is, and I are constant, (
(ngnb)py =134 =0. (3.24

The first two universality constraints imply that universal deformations must be homogeneous and the
remaining universality constraints force the material preferred directions to be uniform.

Proposition 3.2. For compressible nonlinear orthotropic solids the only universal deformations are homo-
geneous deformations, and the anisotropy must be homogeneous, i.e., the material preferred directions are
everywhere the same three mutually orthogonal constant unit vectors N1, Ng, and N3.

Monoclinic solids. In deriving the constraints (3.19)-(3.24) orthogonality of the material preferred direc-
tions was not used. This means that the same universality constraints must hold for monoclinic solids as
well. In addition to (3.19)-(3.24), one has the following extra universality constraints:

Ig, and Ig are constant , (3.25)

(ngnf)p =034 =0. (3.26)



Therefore, universal deformations are homogeneous and N1, Ny, and N3 are constant unit vectors. This
in turn implies that Igs and Iy are constant, and (3.25), (3.26) are trivially satisfied. Hence, equilibrium
equations hold for arbitrary monoclinic energy functions. Therefore, in Proposition 3.2 “orthotropic” can be
replaced by “monoclinic”.

4 Incompressible Transversely Isotropic Elastic Solids

In the absence of body forces, and using (2.26), the equilibrium equations read

1
ip,b gab = [Wlbab — Ws Cab + Wy nonb + Ws éab] b (41)
Or 1
5pﬂ = Gam (W™ — Wo ™" + Wyn™n" + W Zm”hn . (4.2)
Thus 1 )
idp = ip,ad:ca = Gam [W1D™" — Wo ™" + Wan™n™ + W ém”]ln dz®, (4.3)

where d is the exterior derivative. In other words, & = ggm [W1b™" — Wo ™" + Wyn™n™ + W Em"]ln dz®
is an exact 1-form. A necessary condition for £ to be an exact form is that dé = 0 [Yavari, 2013]. This is
equivalent to &, 5 = &p o But note that £, = a6 — 7 ab &e- Therefore, £, = &4 is equivalent to Ealb = Eblas
which is more convenient to use in curvilinear coordinates as the metric of the ambient space is covariantly
constant, i.e., gqp|c = 0. Thus, the universality constraints read

Jam [Wlbmn —Wo ™ +Wyn™n™ + W émn]lnb = Gbom [Wlbmn —Wo ™ +Win"n" + Ws gmn] (44)

Ina *

One can write

Salp = Yam (Wlbm”mb — Wa ™ + Wa (00" )1y + W5 £ 1

+ Wl,nbmn\b - W2,n Cmn\b + W4,n (nmnn)\b + W5,n gmn|b
+ Wb = Wap ™y + Wap (00" + W £,

+ W1|nbbmn - WQ\nb A"+ W4|nb nn" + W5|nb gmn> .
Note that W; = W;(I1, I, 14,1I5), i = 1,2,4,5, and hence

Wip = Wil p +Wialop + Wialap + Wisls
Wap = Wialypy + Waaloy + Woulyp + Wosls
Wap = Wialip +Wosloy + Waalyp +Wasls
Wsp = Wislip + Waslap + Waslsp + Wsslsy .

Note also that

Wiien = Witlijpn + Wialojpn + Wialspn + WisIsppn + Wit ndip + Wiz nlop + Wianlap + Wisnlsp . (4.7)

Denoting the independent third order derivatives of the energy function by Wi, = 81%3%, (i <j<k),
i0l1j ¢

we have
Wit = Witidin +Wiials n + Wiigly n + Wiisls

Wiom = Wiiali n +Wigals n + Wiagly p + Winsls r
Wism = Witaly n + Wiaals n + Wiaaly  + Wigsls o,
Wisn = Wiislin +Wiaslopn + Wiaslap + Wiss sy, -

(4.8)
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Therefore,
Wiibn = Witlijpn + Wizlopn + Wiadyjen + Wislsp,

+ Wi n I p + Wi dip + Lindop) + Wita(Landip + Iindap)

+Wiis(Is nL1p + T ndsp) + Wigelondop + Wisa(La nIop + Iapla.n) (4.9)
+ Wias(Is nIop + I nIsp) + Wiaalanlap + Wias(Is n Loy + Is plan

+ WissIsnlsp -

Similarly,
Wajpn = Wialijpn + Waalopp, + Waalypn + WasIspn

+Whiolindip + Wisa(Iondip + L1 ndap) + Waoolo nlap
+ Woaaly nIap + Wass Is nIs b + Wioa(Ion 1 p + Tapl1n) (4.10)
+ Wias(Is nd1p + Iind5p) + Wosa(Tandop + Laplan)
+ Waas(Is ndop + Is pd2m + Woas(Is nlap + Isplan)
Wapn = Wialijpn + Waalopn + Waalyjpn + WasIspn
+ Witadi o1 p + Waoalo ndop + Wasals ndap + WassIs 15y
+Wisa(Tondip + I ndop) + Wiaa(Tan i p + Lapdi ) (4.11)
+ WosaIunIop + Iondap) + Wias(Isnd1p + I p 11 n)
+ Wous(Is ndop + Iondsp) + Waas(Is ndapy + Is plan) s

and
Wsjon = Wislijpn + Waslapn + Waslypn + WssIsjpn

+ Wiislindi,p + Waaslo ndop + Waasla nIay + WissIs oI5
+ Wiss(Ion i p + T ndop) + Wias(Landip + Laplan) (4.12)
+ Wiss (s ndlip + 1 nd5p) + Woas(TanIop + Laplopn)

+ Wass(Is ndop + Iondsp) + Wass(Isnlap + Isplan) -

For &up = &pja to hold the coefficient of each partial derivative must be symmetric. We define Aj, as
the matrix of coefficient of W,., where x is a multi-index. For isotropic solids there are 9 terms: k € Kjso =
{1,2,11,22,12,111,222,112,122}. In the case of transversely isotropic solids there are 25 extra terms:

K = {4,5,44,55,14,15,24, 25,45, 444, 555, 114, 115, 124, 125,

(4.13)
144,145, 155, 224, 225, 244, 245, 255, 445, 455} .

Each matrix provides 3 conditions so that there are, in total, 102 equations for the 8 unknowns given by
the 6 components of the Finger tensor bf and the 2 independent components of the unit vector N. A
deformation ¢ is universal with universal material preferred direction N if and only if A%, is symmetric for
all k € KU Kigo.

As for the incompressible case, the analysis of this problem is greatly simplified by first considering the
coefficients of the 9 terms that appear in the isotropic case as well, which are [Ericksen, 1954]:

Agy = by jon

ﬂsb = _Cglbru

Ay = bapndiy + 05 1in), 5

AZy = —Canlzp — (cilan), -

AR = il n)yy + Viemlan = [(chTin)y + g - (4.14)
At =bihnliy,
A =i hnlay,

AL =0 (Lplom + Tinap) — iyl g,
JZ;EQ =byloplan — ¢ (I plom + T nlop)

11



where b" = b™" g4, and ¢ = """ gpnq.t Symmetry of the nine terms in Egs.(4.14), in addition to homoge-
nous deformations, admit five classes of deformations [Ericksen, 1954, Singh and Pipkin, 1965, Klingbeil and
Shield, 1966]. In the sequel, we will find the universal preferred material directions for these six families of
deformations. The case of constant I; and I is still an open problem, for which we will not be able to say
anything about the universal preferred material directions other than those of the Family 5 deformations.

For transversely isotropic solids, in addition to symmetry of these 9 terms, the following 25 terms must
be symmetric as well. The coefficients of the first-order and second-order derivatives of the energy function
are:

ﬂgb = (nann)\nm

ﬂgb = gg\nln

Ay = (nan™)jndap + (nan™ L)

Ay =00 Is 4+ (Lo Ts.0)p

Ay =0 1ndap + 00 Lan)pp + (nan™)jnd1p + (nan™Iin)p (4.15)
Agy = b2 I+ 00 s0) i + O Iip + (G2 L)

Ay = (nan™)ulap + (nanIop)p — [chinlas + (hlan)p)

AZy =0 ndop + (U n)p — [chindsn + (i lsn)p)

AL = (nan™)inlsp + (nan™ s n) iy + 0 Lap + (0 La )

The coefficients of the third-order derivatives of the energy function are:

./7444 =nn"Iypnlap,
AP =005 15

AR =00 (I iy + Liplhn
Ag® = b (Isndip + Ispli
AR =00 (Iyndop + Laplan) — ¢ (Innlip + Laplin) + nan™ (IonIip + Iopli )
AL =0 (Isndop + Is plon) — b (Isndyp + Isplin) + 00 (Iondip + TopTh0)
AN =0Ty Ly +nan™ (LD + Lipliy)

AL =00 (Isndap + Isplan) + nan™ (IsnIip + Ispli ) + 00 (Iondiy + Iiplin)
AL =005 5 s+ 00 (Is D1 p + Is pIh )

A =non" Iy Iy — 2 (Iunlop + Liplan)

AZP =0 oy — (I oy + Isplon)

A = Ty Iy +nan™ (Iuplop + Liplan)

T2 =ngn" (Is nIop + Is pIon) + 00 (Ionlop + Liplon) — ¢ (Isnlapy + Isplan)
A2 =00 (Isndap + I plopn) — s nlsp

Agy® =nan™ (Isnlap + Isplan) + Colsnlsy

A’ =nan™Is oI5 + 02 (I sy + Isplay) -

+ nannIl,n-[l,b )
+ enll,nll,b ’

—_— — — —

(4.16)

Goodbrake et al. [2020] showed that all the known universal deformations are symmetric with respect to
Lie subgroups of the special Euclidean group. In order to find universal eigenstrains corresponding to each
family, they assumed that the material metric has the same symmetry as the classical universal deformations
do. Note that the symmetry of a universal deformation ¢ : B — ¢(B) C § is encoded in the symmetry of
C’ = ¢*g. Here, we use the same strategy and assume that the material preferred direction vector N has
the same symmetries. This symmetry reduction will make the above systems of nonlinear PDEs tractable.

1Note that b"q = b"™gma, and be™ = gamb™", which are equal. Thus, we use the notation by =b"g = be™. Similarly, the
same notation is used for c.
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4.1 Family 0: Homogeneous deformations

Homogeneous deformations have the form 2%(X) = F*4 X4 + ¢%, where [F®4] is a constant matrix and
¢® are constants. The incompressibility constraint in Cartesian coordinates is written as det[F'*4] = 1.
In Cartesian coordinates the right Cauchy-Green tensor has components Cug = F*AF% 4 dup, which are
constants. This means that C° is invariant under the action of T'(3) C SE(3)—the group of translations.
We assume that N“4(X) are invariant under 7'(3) as well, or in other words N is a constant vector. In this
case all the universality constraints are satisfied. Therefore, for isochoric homogeneous deformations uniform
material preferred directions are universal.

4.2 Family 1: Bending, stretching, and shearing of a rectangular block

With respect to the Cartesian (X,Y,Z) and cylindrical (r, 8, z) coordinates in the reference and current
configurations, respectively, this family of deformations have the following representation

Z

r(X,Y.2) = VOIX +Ci), 0X.Y.2)=Co(Y +C5). 2(XY.Z)= 55 ~CoCsY +Co. (417)
1“2
Thus
2XC-EC4 0 0
[Casl=1 0 312X +Cy)+C3] -& | (4.18)

which is independent of Y and Z, i.e., C’ is invariant under the action of T(2) € SE(3). We assume that
N has the same symmetry, i.e.,

N(X,Y,Z) = [ N2(X)]| - (4.19)

such that (N'(X))? + (N2(X))? + (N3(X))? = 1.
Symmetry of the coefficients of Waay for (a,b) = (1,2) and (a,b) = (1,3) gives?
Cy [1 4+ C2C4CE — C3(Cy +2X)2)
C3[C1(Cy + 2X)]5/2
C1(Cy + 2X) [1 4 C2C4C3 — C2(Cy +2X)2]°
CLC3(Cy +2X)*

Ny(X)No(X) =0, (4.20)

Ny (X) [ClogcgNg(X) — VTN (X)2 - No(X)2| = 0.
(4.21)

From (4.20) either N1(X) =0, or Na(X) = 0. If N3(X) =0, from (4.21), either N1(X) =0 (N3(X) = £1),
or N1(X) = =1 (N3(X) =0). If N;(X) = 0, both equations are satisfied. Therefore, we have the following
two possibilities:

N=|g|, N= f(X) , for any f(X) such that f?(X) < 1. (4.22)

0 +/1- f2(X)

2Symbolic computations were done with Mathematica Version 12.3.0.0, Wolfram Research, Champaign, IL.
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Or equivalently

+1 0
N=1o|, N=1|cosy(X) |- (4.23)
0 +siny(X)

for some function 1 (X). These two vector fields satisfy all the other universally constraints. If either I,
or I5 (or both) are constant, still symmetry of the coefficients of Wag4 for (a,b) = (1,2) and (a,b) = (1, 3)
gives (4.20) and (4.21). This means that still (4.23) are solutions. However, for neither solution I or I5 is

constant. Therefore, the only solutions for IN that respect the symmetry of the Family 1 deformations are
(4.23).

Remark 4.1. Ericksen and Rivlin [1954] analyzed a special subset of this family (C3 = 0) and assumed the
following two cases

1 0
N=|g|, N= cos(| > (4.24)
0 sin ¢

where ( is a constant. Clearly, these are special cases of (4.23).

Remark 4.2. An example of a transversely isotropic solid is a unidirectional fiber composite. One can think
of the material preferred direction unit vector N(X*1, X2 X3) as the tangent vector to the fiber at the point
(X1, X2 X3) in an isotropic matrix. The solution (4.23); corresponds to a uniform distribution of fibers
parallel to the X-axis. In the solution (4.23)s for fixed X fibers are distributed uniformly in the Y Z-plane
and make an angle (X)) with the Y-axis.

4.3 Family 2: Straightening, stretching, and shearing of a sector of a cylindrical
shell

With respect to the cylindrical (R, ©, Z) and Cartesian (z,y,z) coordinates in the reference and current
configurations, respectively, this family of deformations have the following representation

€] Cs
C R,0,7) =
Clc2+ 55 Z( IASE) )

1
O+ +Z+Cs. (4.25)

1
R,0,7)=-CiC2R>+C R,0,7) =
J}( 3 Ty ) 2 1Yo + 4 y( s ) 0102 CQ

Thus
C2CIRE 0 0

2
_ 1 .
[Cap] = 0 g%gg —Clcég ; (4.26)
0 Cs 1
Cy C; Cé

which is independent of ©, and Z. We assume that N has the same symmetry, i.e.,

NY(R)

N(R,0,Z) = |N2(R)| - (4.27)

N3(R)
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such that (N1(R))? + R2(N?(R))? + (N3(R))? = 1. Symmetry of the coefficients of Wagy for (a,b) = (1,2)
and (a,b) = (1, 3) gives

(CtCSR* —1)°

oo V(BN (R) =0, (4.28)
12
C4CSRY — 1)
(1062011]%7)N1(R) [Cl V1= Ni(R)2 — R2N,(R)? + CgNQ(R)] =0. (4.29)
12

From (4.28) either N1(R) =0, or No(R) = 0. If Ny(R) = 0, from (4.29) either N1(R) =0 (N3(R) = 1), or
Ni(R) = £1 (N3(R) =0). If N1(R) =0, both equations are satisfied. Therefore, we have the following two
possibilities:

N=|og|, N= f(R)/R , for any f(R) such that f?(R) <1, (4.30)

or equivalently

+1 0
N=1lo|, N=|Llcosx(R)|: (4.31)
0 +sin x(R)

for some function x(R). Replacing the components of N with the corresponding physical components and
denoting the resulting array by N the two solutions are

+1 0
N=1|o|, N=] cos X(R) | - (4.32)
0 +sin x(R)

These two vector fields satisfy all the other universality constraints. If either Iy or I5 (or both) are constant,
then symmetry of the coefficients of Wagoy for (a,b) = (1,2) and (a,b) = (1,3) gives (4.28) and (4.29) and
(4.32) are still solutions. However, for neither solution Iy or I5 is constant. Therefore, the only solutions
for N that respect the symmetry of the Family 2 deformations are (4.32). In the solution (4.32); fibers are
distributed radially. The material preferred direction in the solution (4.32) are sketched in Fig.1.

Remark 4.3. Assuming that the cylindrical shell is made of a unidirectional fiber composite, the solution
(4.32); corresponds to a uniform radial distribution of fibers. In the solution (4.32)s for fixed R fibers are
arranged helically when ¢(R) # &, n € Z (Fig.1(b)). When cos(R) = 0, fibers are distributed uniformly
parallel to the axis of the cylindrical shell (Fig.1(c)). When sin(R) = 0, fibers are concentric circles parallel
to the (R, ©) plane (Fig.1(d)). Examples of fiber-reinforced composite with one or two families of helical
fibers can be found in biological systems [Goriely and Tabor, 2011], in gels [Demirkoparan and Pence, 2007,
2008, 2015], and in the McKibben actuators [Daerden and Lefeber, 2002, Liu and Rahn, 2003] as described
in [Goriely, 2017]. Note that, in this universal solution, helical fibers can change orientation as a function of
R. However, in the limit of R — 0, one must have x(R) — 7/2 or the vector direction becomes ill-defined.
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(@) (b) (© (d)

Figure 1: (a) Universal material preferred directions (4.32)1 for Family 2. (b-d) Universal material preferred directions (4.32)2
for Family 2: (b) cos¥(R) # 0,+1, (c) cosy(R) =0, and (d) cosy(R) = +1.

4.4 Family 3: Inflation, bending, torsion, extension, and shearing of a sector of
an annular wedge

With respect to the cylindrical coordinates (R, ©, Z) and (r, 0, z) in the reference and current configurations,
respectively, this family of deformations have the following representation

2
r(R’@,Z):\/R——{-C%, 9(R,@,Z)=C1@+CQZ+C6, Z(R,@,Z)203@+C4Z+C7.

C1Cy — CoCs
(4.33)
Thus
K(Kg5+R2) 0 0
[Can] = 0 CB+CEE+Cs] e [E 405 +G0| (4.34)
0 CC [ B +C5|+CCr C3+C3 [+

where K = C1Cy — C5C3. Note that C” only depends on R. We assume that N has the same symmetry,
ie.,

N(R.6.2)= | N*(R)| - (4.35)

N3(R)

such that (N1(R))? + R*(N%(R))? + (N3(R))? = 1. Symmetry of the coefficients of Wagy for (a,b) = (1,2)
gives

NﬂR)@thR)+cb¢1—NuRﬁ—J¥NxRV):o. (4.36)
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This implies that either Ni(R) = 0, or C1N2(R) + C2+/1 — N1(R)2 — R2N5(R)2 = 0. If N;(R) = 0, then

N(R,0,Z) = f(R)/R , for any f(R) such that f?(R) <1, (4.37)

or equivalently

N(R,0,7) = Lcosyp(R)| (4.38)
+siny(R)

for some function ¢(R). One can check that (4.38) satisfies all the other universality constraints. Suppose
C1N>(R) + Cg\/l — N1(R)? — R2N3(R)? =0, or C1N2(R) + C2N3(R) = 0. Symmetry of the coefficients of
Whi4 for (a,b) = (1,3) gives C5N2(R) 4+ C4N3(R) = 0. Therefore, we have the following system of equations
for N2(R) and N3(R):

=0,
C3Ny(R) + CyN3(R) = 0. (4.39)

The determinant of the coefficient matrix is C1Cy — C2C3 # 0 (see (4.33)). Thus, No(R) = N3(R) = 0, and
hence

{ClNQ(R) + CQNg(R)

N(R.©,Z2)= |0 | (4.40)

which satisfies all the other universality constraints. In summary, (4.38) and (4.40) are those universal
material preferred directions that respect the symmetry of the universal deformations (4.33). The universal
material preferred directions of Families 2 and 3 are identical, see Remark 4.3.

Remark 4.4. Ericksen and Rivlin [1954] analyzed this family assuming the solution (4.37) for the special
choice of f(R) = 0.
4.5 Family 4: Inflation/inversion of a sector of a spherical shell

With respect to the spherical coordinates (R, ©, ®) and (r,0, ¢) in the reference and current configurations,
respectively, this family of deformations have the following representation

r(R,0,®0) = (+R*+C?), 6(R,0,0)=+0, &(R,0,0)=0>. (4.41)
Thus
(C'fﬁ;)“/?’ 0 0
[Cap] = 0 (C3 + R?)*? 0 . (4.42)
0 0 (€3 + R*)**sin20
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C’ can be written as [Goodbrake et al., 2020]

© (R RY)
S Qu ~R®R), (4.43)
(C3 + R3)Y? R?

where 1 is the identity tensor, and R = |—§| This means that at a point X, C” is invariant under all those

rotations that fix X. We assume that N(X) has the same symmetry, i.e., it is invariant under all those
rotations that fix X. This implies that N(X) must be parallel to X, and because it is a unit vector we

conclude that X
N(X)=+— =+R. (4.44)

Thus, in spherical coordinates

NX)=|¢ |- (4.45)

These two vector fields satisfy all the other universality constraints, see Fig.2.

Figure 2: Radial universal material preferred directions for Family 4.

Remark 4.5. Golgoon and Yavari [2021] had observed that radial deformations are universal for transversely
isotropic spherical shells with radial material preferred direction.

4.6 Family 5: Inflation, bending, extension, and azimuthal shearing of an an-
nular wedge

With respect to the cylindrical coordinates (R, ©, Z) and (r, 0, z) in the reference and current configurations,
respectively, this family of deformations have the following representation

r(R,0,2) = CiR, 0(R,0,7)=Cylog R+ 30+ Cy, 2(R,0,7)= %Z 4Gy (4.46)
1v3
Thus
C? (022 + 1) C32CyC3R 0
[Casl = | C2C,C3R  C2C2R® 0 |- (4.47)
0 0 _4701103
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which only depends on R. We assume that IN has the same symmetry, i.e.,

N(R,0,Z) = |N2(R)| - (4.48)
N°(R)

such that (N1(R))? + (N?(R))? + (N3(R))? = 1. Symmetry of the coefficients of Wyyy for (a,b) = (1,2)
gives

NY(R)[CoN'(R) + C3RN?*(R))

A VR + (RNAB)P) + CICE [N (R + (G (B) + CoRN*(R)FT} 0. )
If NY(R) = 0, symmetry of the coefficients of Wiss for (a,b) = (1,2) gives
N2 (R)IN*(R) + += (RN*(R))] = 0. (4.50)
This implies that
N*(R) = % (4.51)

If By < R < Ry, we must have k2 < R?. All the other symmetry constraints are satisfied and thus one
solution is®

N(R,0,7) = k/R , (4.52)

+v/1 — k2
or equivalently

0

N(Ra 97 Z) = % cosn| » (453)

+sinn
for some constant 1. In (4.49) if CoN'(R) + C3RN?(R) = 0, arbitrariness of Cs, and Cj implies that
N1(R) = N?(R) = 0, which is already included in the solution (4.53). If

- % [N'(R)* + (RN*(R))*] + CfC%%

because C7 and C3 are arbitrary one concludes that

[N'(R)* + (C2N'(R) + C3RN*(R))*] =0, (4.54)

[NY(R)* + (RN?*(R))?] =0, (4.55)
[N'(R)? + (C2N'(R) + C3RN*(R))*]" = 0. |

The first equation implies that N3(R) is constant. For N*(R) = constant, symmetry of the coefficients of
W, for (a,b) = (1,2) gives

( d2 d
N3 RQWNl(R) + RﬁNl(R) —~ NYR)| =0. (4.56)

31f we restrict ourselves to the Ca = 0 subset of Family 5, the larger class of material preferred directions (4.38) is a solution.
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Thus, either N® =0, or N}(R) = k; R+ k—R?. If N3 = 0, symmetry of the coefficients of Wass for (a,b) = (1,2)
implies that N'(R) is constant. The unit vectors

«
N(R,©,Z) = :E%\/ 1—a?| > (4.57)
0

or equivalently

cosé

N(R7 @7 Z) = i% sinf ’ (458)

0

for some constant &, satisfy all the other universality constraints and, hence, are universal preferred material
directions. If NY(R) = k1R + k—R?, symmetry of the coefficients of Wj for (a,b) = (1,3) implies that

N3 [(N?)? = 1] [(N®)* = 1+ 4ki ko] = 0. (4.59)
Therefore, either (IN3)? = 1, which is already included in the solution (4.53) when k = 1, or (N3)? = 1—4k ks.
If (N3)2 =1 — 4k ko, one has
1o\ 2
(N2 + (N?)? =1+ (klR - Fj) <1. (4.60)

Therefore, k1 R — %2 = 0, which implies that k1 = ks = 0, or N'(R) = 0.
If either I or I5 (or both) is constant, symmetry of the coefficient of W5 for (a,b) = (1,2) results in the
following second-order ODE:

R{N'(R)' [2CoN"(R)" + 2C3RN?*(R)’ + 5C5N*(R)| + C3RN*(R)N'(R)"}

4.61
+ NY(R){R [2CoN"(R)" + 5C3N?*(R)' + C3RN*(R)"| + 6CoN'(R)' +3C3N?*(R)} = 0. (4.61)

If NY(R) # 0, this gives No(R) in terms of Ni(R) as:
Na(R) i k2 CoNi(R) , (4.62)

“®BN(R) | RN.(R)  CsR
which is clearly not a universal solution as N should not depend on the parameters of the universal de-

formations. Therefore, N'(R) = 0. Symmetries of the coefficients of Wy for (a,b) = (1,2), and W5 for
(a,b) = (1,3), imply that

N(Ra @7 Z) = |+ 1 ) (463)

which is already included in (4.53). Therefore, (4.53) and (4.58) are the only solutions.

Remark 4.6. Assuming that the annular wedge is made of a unidirectional fiber composite, in the solution
(4.53) fibers are arranged helically when cosn # 0 (Fig.1(b)). When cosn = 0, fibers are distributed
uniformly parallel to the axis of the wedge (Fig.1(c)). When sinn = 0, fibers are concentric circles parallel to
the (R, ©) plane (Fig.1(d)). For the solution (4.58) fibers are parallel to the (R, ©) plane and are distributed
uniformly in some fixed direction. Table 1 summarizes our results for incompressible transversely isotropic
solids.
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Family Universal Deformations c’ Universal material preferred directions
0 z4(X) = Fo XA+ o Cap = F AF A0, Any constant unit vector N
P arer 0 0 +1 0
r(X,Y,Z) = /Ci(2X + Cy) +C
1 0(X,Y,Z) = Cao(Y +C5) Casl=| 0 ciliex+C)+C3] -& N=1|o N= | cost)(X)
Z(X,Y.Z)=%*(/VQCSY+CB )
: 0 -2 rerTer] 0 +sinp(X)
/1 103
; C3CiR? 0 +1 0
#(R,0,7) = 1C1C3R? + C4 e
" ; . .
2 y(R,0,2) = (7;)(,-2 +Cs [CaBl = 0 %‘5% %(f? N=1o N = cosx(R)
2(R,0,2) 0+ &2+ Cs
0 odr oz 0 +sinx(R)
5 [ 0 0 £1 0
7(R,0,2) = \/ e + Cs (KGs+R?)
3 0(R,0,Z) = C10 + C2Z + Cs [Cap] = 0 o (% + 05) L2 O (% +C5) +C3Cy N=19 N = | cosy(R)
2(R,0,Z) =C50 + CyZ + Cr i
0 a6 (E+G)+0s0 (% +0)+ 0 +5inx(R)
. _
. . T 0 0 +1
(R, 0,) = (£R* + C}) (cixre)'®
4 0(R,0,0) = +0 [Cap] = 0 (F + RY)? 0 N=|g
¢(R,0,0)=® ,
0 0 (€3 + R*)**sin? © 0
C?(C2+1) C}C,C3R 0 0
r(R,0,7) = CiR T(C5+1) CIC:Cs cos¢
5 0(R,0,2) = Calog R+ C30 + C4 [Capl=| Cc20,C3R  C2C3R® 0 N=| cosp N= |isine
HR©,2) = e Z + Cs ) ‘
0 0 cicz +siny 0

Table 1: Universal deformations and universal material preferred directions for incompressible transversely isotropic solids for

the siz known families of universal deformations. Note that for Family 3, K = C1C4 — C2C3.

5 Incompressible Orthotropic Elastic Solids

For orthotropic solids there are seven invariants. Note that I, and I have identical forms, and similarly, I5
and I7 have identical forms, see (2.27). This means that the forms of the universality constraints associated
with the pair (Is, I7) are identical to those associated with (I4, I5). Since most of the analysis relies on the
previous case, we only explain briefly the underlying computations and give the main results. In the case of
orthotropic solids

€a = Jam WD — Wa ™ + WynT'nl + W5 07" + Weni*ni + Wy Eg’”‘]‘

(5.1)

n

For &, = &p|o to hold for arbitrary energy functions the coefficient of each partial derivative of W must be
symmetric. There are four groups of terms:

i) Nine terms that must be symmetric for isotropic solids as well:

Kiso = {1,2,11,22,12, 111,222, 112,122} .

ii) 25 terms corresponding to Nj:

(5.2)

K; = {4,5,44,55,14,15,24,25, 45, 444, 555, 114, 115, 124, 125,
144,145, 155, 224, 225, 244, 245, 255, 445, 455} .

ili) 25 terms corresponding to Na:

Ky = {6,7,66,77,16,17,26,27,67,666, 777,116,117, 126, 127,
166,167, 177, 226, 227, 266, 267, 277, 667, 677} .
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iv) 24 terms corresponding to coupling of N7 and Nj:

Kiii = {46,47,56, 57,146, 147, 156, 157, 246, 247, 256, 257, 446, 447,

5.5
456,457, 556, 557, 466, 467, 566, 567, 477, 577} . (5:5)

The universality constraints corresponding to the sets K; and K;; are identical in form to those corresponding
to the extra symmetry constraints of transversely isotopic solids (4.13). This means that if there are three
mutually orthogonal universal material preferred directions (N1, Ng, N3) for transversely isotropic solids,
they are universal for orthotropic solids as well if the three pairs (N1, Ns), (N2, N3), and (N3, Ny) satisfy
the universality conditions corresponding to the set K;;.

In order to write the constraint equations more compactly, let us denote the pair of vectors (n,m) =
(ny,ny). Also, (% = (3 and A% = (4°. The coefficients of the four second-order derivatives of the energy
function corresponding to the set K;;; are:

= [1nq Lo 2" |5 + L6 [12a 2" )15y + [Ma L m™ |1 + Ly p[ma m™))
= [nq Iz 0" ]jp + Iz plna 0" |1 + (Ru o)y + A indap s
ab = (laTo.n)p + Lo ntep + (mals nm™) )y + (mem™ ) Isy
A% = (T ) o + (0 1ndrp + (R0 5 0) 1 + Al s -

(5.6)

The coefficients of the twenty third-order derivatives of the energy function corresponding to the set Kj;;
read:

ARE =07 (InpIom + LunIsp)
AT =00 (IypIrn + Londry)
AR =0 (IspIon + Isnlsp)
AT =0 (IspI7 o + Isnl7s)
AHS = (Inplopn + Iunlop) »
A2 = (Lplrn + Lunlrp)
A2 = (Isplon + Isndsp) »
AZT = (IspIrm + Isnl7p)
ﬂ446 =ngn" (Laple.n + Lanlep) ,

" ( )

AT = ngn™ (Luply o + Linlzy)

ﬂ456 = nan" (Ispl.n + Isnlep) + (0 (Iaplen + Lanlsp)
ﬂ457 nat" (Ispl7n + Isnd7p) + 00 (Iaplrp + Landry) ,
ﬂ466 mem"™ (IypIsn + Lo nloy) ,

AT = mam" (LopIrn + Iondrp) + Al (Inplsp + Tanlsp)
AYT = R (I Iy + TanIry)

A28 =" (Isplon + Isnlssp)

,/7557 0y (Isplrn + Isnl7y)

AR = mam™ (Is yIo. + Isnlop)

AT = mam™ (I pIr.p + Is nI7p) + £ (Isplom + Isnlsp)
AT =B (Is Q7 + Is nd7p) -

Family 0. We saw that for transversely isotropic solids any constant unit vector is a universal material
preferred direction. For any pair of constant unit vectors, all the terms in (5.6) and (5.7) are trivially
symmetric. This means that any three constant unit vectors (N1, Ny, N3) that are mutually orthogonal are
universal material preferred directions for isochoric homogeneous deformations.
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Family 1. Let us consider two solutions in the family of solutions (4.23), namely

/T 2(X) /1= ¢7(X)

N, and N3 are orthogonal if and only if f2(X)+ ¢?(X) = 1. Thus, f(X) = cos9(X), and g(X) = sin(X),
for an arbitrary function ¥ (X). Therefore, we have the following set of mutually orthogonal universal
material preferred directions for transversely isotropic solids.

+1 0 0
Ni=1o]|, No=|cosep(X) | Na=| sing(X) |- (5.9)
0 +siny(X) Feos(X)

One can check that for any pair of mutually orthogonal vectors in the above set all the terms in (5.6) and
(5.7) are symmetric. Therefore, (5.9) is a family of universal material preferred directions for orthotropic
solids.

Families 2 and 3. The solutions for material preferred directions for transversely isotropic solids for
Families 2 and 3 are very similar to those of Family 1. Therefore, we have the following family of universal
material preferred directions

+1 0 0
N; = 0 , N, = cos)é(R) , N3 = sin >}(%(R) , (510)
0 +sin x(R) Fcos x(R)

for an arbitrary function y(R). One can check that for any pair of mutually orthogonal vectors in the
above set all the terms in (5.6) and (5.7) are symmetric. Therefore, these are universal material preferred
directions.

Family 4. In the case of transversely isotropic solids, there are only two solutions for the material preferred
directions (4.45) that are parallel. This means that in the case of orthotropic solids Family 4 is not universal.

Family 5. Let us consider arbitrary members of the two families of solutions (4.53) and (4.58)

Ni=1 k/Rr |, Ne=|+tly1-a2| - (5.11)

+v1 — k? 0
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Note that N; - Ng = +kv/1 — a2 = 0 implies that K = 0 or a = 41. Therefore, we have the following two
classes of universal material preferred directions:

0 cos& sin &
Ni=1]0]|, Np=|£4sinf|, Nz= |FEcos|,
| +1) | 0 0
(5.12)
[+1] [0 0
Ni=|0], Nz= %cosn , N3= %Sinn
| 0 | £sinn Fcosn

One can check that for any pair of mutually orthogonal vectors in each row in the above set all the terms in
(5.6) and (5.7) are symmetric. Table 2 summarizes our results for incompressible orthotropic solids.

Family Universal Deformations o Universal material preferred directions
0 24(X) = Fo4 X4 4 ¢ Cap = F4F% 40 Any three mutually orthogonal constant unit vectors (Nl‘Nz.Ng)
e 0 0 +1 0 0
r(X,Y,Z) = /C.(2X + Cy) 2X+Ch
1 0(X.,Y,Z) = Co(Y + C5) [Casl=| 0o ci[aiex+C)+C3) & Ni=1|o0|: No=|cosp(X) |+ Ns=| sing(X)
2X,Y,2) = gl — C203Y + C .
0 -& ﬁ 0 +sine)(X) Feosh(X)
; C2C4R? 0 0 +1 0 0
2(R,0,Z) = sC1C3R? + Oy e
2 y(R,©.2) = % +Cs [CaB] = 0 % ?C(‘T Ni=|o0|, Na=]cosy(R) |+ Ns=| sinx(R)
s iy GGy
2(R,0,2) = 20+ 52+ Cs o . )
0 TC!E oz 0 “+sinx(R) F cos x(R)
R2 K(I\’(Ej+R2) 0 0 +l 0 0
7(R,0,2) = \)ocliee + Cs . . : ) A
3 0(R.0,7) = (10 + (2 Z + (g [Cag] = 0 2 (% + (,g) Nuye. B o X e (% + cr,) 4050y Ni=|o0|, No=/|cosx(R) |+ Ns=| siny(R)
2(R,©,Z) = C30 + C4Z + C; 2 i
0 feXe (I,L + C;,) 10500 3 (% + cs> 02 0 Lsin x(R) Fcos x(R)
[0] cos§ sin& ]
r(R,0,7) = C1R C?(C3+1) C}CC3R 0 Ny=|0]|, Ny=|+sin¢|, Ny=|Fcosé
10,2) =Cy
+1 0 0
5 0(R,0,Z) = Czlog R+ C30 + Cy [Casl = | c20,c5R  C2C2R2 0 Fiil 0 Foo
2(R,0,7) = m#=2+Cs S < .
OFCs L Ni=|0|, No=|cosy|, Ny=| sinpg
0 0 e
e 0 +siny Fcosn

Table 2: Universal deformations and universal material preferred directions for incompressible orthotropic solids for the sic
known families of universal deformations. Note that for Family 3, K = C1C4 — C2Cs. For orthotropic solids Family 4 is not
universal.

6 Incompressible Monoclinic Elastic Solids
For monoclinic solids
1
a = Gam W™ — Wy ™ + Wy n{”n? + Ws g{nn + We ngbng + W+ g;rm + §Wg fgnn . (61)
|n

For £, = &pja to hold for arbitrary monoclinic energy functions the coefficient of each partial derivative of
W must be symmetric. In addition to the terms corresponding to the sets Kiso, K, Kii, Kiii, there are an
extra 78 terms corresponding to the following set:
K = {8,18,19, 28,29, 48,49, 58, 59, 68, 69, 78,79, 88, 89,

118,119, 128,129, 148,149, 158, 159, 168, 169, 178,179, 188,189, 199, 228, 229,

248,249, 258, 259, 268, 269, 278, 279, 288, 289, 299, 448, 449, 458, 459, 468, 469, (6.2)

478,479, 488,489, 499, 558, 559, 568, 569, 578, 579, 588, 589, 599, 668, 669,

678,679, 688,689,699, 778,779, 788, 789, 799, 888, 889,999} .

24



Similar to the analysis for orthotropic solids, in order to write the constraint equations more compactly, we
denote the pair of vectors (n,m) = (ny,ny). Also, (@ = (3 £ = (30 and ¢ = (2*. The coefficients of
the first and second-order derivatives of the energy function corresponding to the set K;, are:

ﬂB
ﬂ18
ﬂ19
‘%28
ﬂ29
ﬂ48
ﬂ49
ﬂ58
A%

ﬂ68
ﬂ69
ﬂ78

Agy =

_n
=g |nb

9oin D + (90 Tin)p + (05 T80 )b + by 1 sy

(bgIo.n )b + by nlop s

Qo in L2 + (90 Lon)p — (calsn)ip — conlsp

—(caTon)p — camlon

Qo Loy + (95 Lan)p + (an™Is n)p + (Ran™)1nls

(nan™ g n )y + (nan™) 1 lop

9 in Isp + (98 Isn)p + (0o d8,n) 1o + L 1n 18 (6.3)

= (lalon)p + Cantop s

9o inLop + (90 Ion)p + (Mam"Ig ) jp + (Mam™)ndsp
(mam™ g n) 1o + (Mam™)nlop

9o in L7 + (98 Trn)p + (RgIs n)p + A s,
(ég[gﬂl)‘b + Ry inlop

ASS = Iss + (@0 Isn)pp
A5y = qin T+ (9 Tom)ps -

The coefficients of the third-order derivatives of the energy function corresponding to the set K;, read:

A8
A

ab

A=
A -
a5 -
a5 -

199
ﬂab

= by (I1,pds,n + I1nl8) ,
Lilon + 1 nloyp) ,
Lplsn+ I nlsp
Il n + I2ndop
Iyplg o + Iy nlgp

( )
( )
( ) — o (I1plsn + Tinlsp)
( ) —
( )
(Laplom + Lanlop)
( )
( ) +
( )
( )
( )

o (Iiplon + Tindop)
+nan" (I plgn + I1nlsy)
+ 00" (It plon + I ndop) ,

IspIgm + Is gy +["(I1bfsn+11n18b) ;
Isplon + Isndop) + (o (Inplon + T nlop) (6.4)
Is pIsn + I ndsp) + mem™ (11 pIs n + 11 nlsp)
Isplop + Isnlop) +mem”™ (I plo n + I nlop) ,
IrpIs + I7ndsy) + Ro (Tplsn + Tinlsyp)
by (Inplom + I nlop) + Ay (I plon + Iindop)

ba Ispls.n +qq (11 plsn + Tinlsy)

ba (Is,plon + Ismndop) + a5 (Iiplon 4+ Tinlop) ,
=b) Igplyp,

=b
=b
=b
=b
=b
=b
=b
=b
=b
b

n
a
n
a
s
a
n
a
n
a
n
a
n
a
T
a
n
a
T
a
n
a
n
a
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and

A2 = " (Iopls o + Tonlsy)

AZ = =l (Loplop + In o)

A = ' (Iypls p + Ianlsp) + nan™ (Ioplsn + Ionlsy)
A% = =i (Iaplom + Tandop) + nan™ (Izplon + Iz nlop) ,
At = ¢ (Isplsn + Isnlsp) + (o (T2 pIsn + Ionls )
AZ = =l (Isplop + I5 ndoy) + (0 (Inplon + Ionlop)
A = —c (Is plsn + To nlsp) + mam™ (Iopls y + Io nlsyp)
AR = —c (Ioplom + Tonlop) + mam™ (Izplon + Iz nloy) |
T2 =~ (InpIsn + Irndsp) + A7 (Iopls n + Ionlsy)
AZ = =l (Inplon + Innlop) + AL (Inplom + I nlo)

A28 =~ Isplsn + q7 (Iopdsn + Tonlsy)

A2 =~ (IspIo . + Isndop) + 97 (IopIomn + Ionlop)
AR = —ci Iy plom,

ﬂ448 =ngn" (Laplsn + I nlsy) ,

A = ngn™ (Inplo n + Lanloyp)

and .
AL =ngn™ (1

(Ispls.n + Is;mlsy) + (o (Iaplgn + Ianlsp) ,
AL = ngn™ (Is pIo.p + Is ndop) + (7 (IopIon + Isnlop)
ﬂ468 =non" (Lo pIsn + Io ndsp) + mem™ (Iapls n + Lanlsy) |
A0 = ngn™ (I pIo.n + Io nlop) + mam™ (Ioplon + Isnloy)
AL = nan” (I7plsn + I7.0ndsp) + Ao (Taplsm + Iandsy) ,
AL = ngn™ (Ir pIg o + Trnop) + A (Typlom + Iandoy)
A = ngn™ Is pIs p + g2 (InpIsn + Iinlsy)

AL = nan™ (Isplon + Is nlop) + g2 (Inplon + LunIop)
ﬂ499 =ngn" Iy plon ,

AR =0 (Isplsn + Is nlsyp)

AR =" (Isplon + Is o)

)

)
568 =0y (Isplgn + Isnlsp) + mam™ (Is plg n + Is nlsp)
A’ = 03 oo, + Ionlop) +mam™ (IspIom + Isnloy)
578 =0y (Irplgn + Irnlsy) + Ay (Isplsn + Isnlsy) ,
579 =g (Inplop + Irnlop) + kg (Isplon + Isnlop)
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and
AZE =0 Is pIs n + q (Ispls .+ Isnlsyp)

T =1 (Isplon + Isndop) + g7 (Isplon + Isnop)
AP =0 1o 1o

AS8 = mym™ (To,p18,n + I6nlsp)
A = mam™ (Is 1o 1 + I nlop)
A8 = mam™ (Ir pIg p + Trndsp) + A7 (Ispls.0 4 Tonlsy)
AR = mam™ (I pIg n + Ir.nlop) + £l (Isplom + IsnTos)

ﬂGSS = mam" IgpIs n + qy (Lo plsm + Lo nlsy)
ASE = mam™ (Is pIo.n + Is nIop) + 92 (Isplon + Is.nlop)

6.7
ﬂ699 mam™ Ig 19 1 , (6.7)
AL =R (IrpIsn + Irnlss)
AL =k} (Irplom + Irnlos)
ﬂ788 = hky Is pIs n + qu (17’1)]8’” + ]7’nfg’b) ,
AT = B (Isplon + Is ndop) + g7 (IzpIon + Iz nop)
Az = ki Ioplon
A® = i IspIsm
ASY =q7 (Isplom + Isnloy)
A = a0 Ioplom -
Family 1. Let us consider two arbitrary but distinct members of the set (4.23),, namely
0 0
Nl = | cosy1(X) | > NQ = | cosya(X) | - (6.8)
+sin (X) +sin iy (X)

These two vectors satisfy all the universality symmetry conditions for arbitrary 11 (X) and o (X), 1 (X) #
12(X). This means that (6.8) are universal material preferred directions for Family 1.

Families 2 and 3. For families 2 and 3, let us consider two arbitrary but distinct members of the set
(4.32)2, namely

0 0
Ny = | cos x1(R) | > N2 = | cos x2(R) | - (6.9)
+sin x1(R) +sin x2(R)

The above two vectors satisfy all the universality conditions for arbitrary x1(R) and x2(R), x1(R) # x2(R),
i.e., (6.9) are universal material preferred directions for Families 2 & 3.
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Family 5. In the case of orthotropic solids, Family 5 has two classes of universal material preferred direc-
tions (5.12). Let us consider two arbitrary but distinct members in Class 1 of universal solutions, namely

cos &1 cos &2
Ni= [4ging | » No=|tging| - (6.10)
0 0

These vectors satisfy all the universality symmetry conditions for arbitrary & and &3, & # &, i.e., (6.10)
are universal material preferred directions for Family 5.

Next we consider two arbitrary but distinct members in Class 2 of the transversely isotropic universal
solutions, namely

0 0
N, = cos M , Np= COS )2 . (6~11)
+sinm +sinmny

It turns out that the above two vectors satisfy all the universality constraints other than ﬂsb =A bsa, which
gives the following universality condition:

Cosinmy cosng = 0. (6.12)

If Co =0, (6.11) are universal material preferred directions for arbitrary 7; and 7y as long as 77 # 75. This
is similar to what was observed in footnote 3 for transversely isotropic solids. Considering the full set of
universal deformations (4.46), the universality conditions are: sinn; cosny = 0. The cases sinn; = 0, and
cosne = 0 were discussed in Remark 4.6. Therefore, we have the following two classes of universal material
preferred directions

0 0
N, = +1f > N, = cosn |, siny #0, (6.13)
0 +sinn
and : : : _-
0 0
Ni=|¢g|, Ny= cosn |- cosn#0. (6.14)
+1 +sinn
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In summary, we have the following three classes of universal material preferred directions for Family 5:

Cla

Class (ii) :

Class (iii) :

j95}
w

(i) :

0

N,

N,

+1

cos &

+sin&;

)

cos &y
N, = +sing| - &1 #F &2, (6.15)
0
_ ) :
= cosy |, sinn#0, (6.16)
+sinn
- ) :
= cosy |, cosn#0. (6.17)
+siny

Class (i) corresponds to two families of fibers that are parallel to the (R,©) plane and are distributed

uniformly in two distinct fixed directions.

In Class (ii) one family of fibers are concentric circles parallel

to the (R, ©) plane, and the second family of fibers are arranged helically, i.e., a combination of fibers in
Figs.1(b) and (d). Note that the two families of fibers are not mechanically equivalent, in general. In Class
(iii) one family of fibers are distributed uniformly parallel to the axis of the wedge, and the second family

of fibers are arranged helically, i.e., a combination of fibers in Figs.1(b) and (c).

results for incompressible monoclinic solids.

Table 3 summarizes our

Family Universal Deformations c Universal material preferred directions
0 24(X) = F 4 XA + ¢ Cap =F*AF"sda Any two non-parallel constant unit vectors Ny, and Ny
Eete 0 0 0 0
H(X.Y,Z) = /O (2)( +m) s
1 0(X,Y.Z) = ( (Casl=] 0 X +C)+C3] -& Ni= | cost(X) No = | cosen(X)
2(X,Y,Z) = (..Cg *CZCR,Y*’C& )
0 -2 oot +sin ey (X) + sin o (X)
o s CiCiR? 0 0 0 0
#(R,0,7) = ‘(’1(”1?2 +Cy v
2 y(R.0,2) = g (‘2 +Cs [Can] = 0 2;3; CTE,; Ni= | cosxi(R) No = | cosya(R) x1(R) # x2(R)
AR.O.Z) = 0+ L2+ Co )
0 ﬁ é +sinxi(R) +sinx2(R)
R2
r(R,0,Z) = RKC:+R7) 0 0 0 0
3 0(R,0,2) = g [Cas] = 0 ct(E+cs)+ct aa(E+0)+ao| | M= wsa®) N = | cosxa(R) x1(R) # xa(R)
2(R,0,Z) = 030 + C4Z + Cy ]
0 feXeX ( +C ) +00 C2 (’;—2 + (75) + 02 +5in 1 (R) +5in x2(R)
[ cos &y cos o
Ny = |+sing Ny = [+siné&|, & #&,
- - 0 0
C}(C3+1) CICLCsR 0 L
r(R,0.Z) =CiR F(C3+1) CPCyCy . .
5 0(R,0,7Z) = Cylog R+ C30 + Cy [CaB) = C2CHC3R - CRCER? 0 N, = |+1 No = | cos n |, sinp#0,
z2(R.0©,2) = 531(‘72+Cn L0 +sinn
0 0 cicz [0 0
Ni=|0 N, = cosn cosn #0.
+1 +sinn

Table 3: Universal deformations and universal material preferred directions for incompressible monoclinic solids for the siz

known families of universal deformations. Note that for Family 3, K = C1C4 — C2C3.

universal. Also, note that N3 is normal to the plane of N1 and N2
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Remark 6.1. For Families 1, 2, and 3, the monoclinic universal material preferred directions are reduced to
those of orthotropic solids when Nj - Ng = 0. For Family 5, the same thing happens for Class (i) solutions.
However, for Class (ii) solutions the monoclinic universality constraints force one family of fibers to be either
parallel lines or concentric circles. When N; - Ny = 0, this recovers only a subset of the corresponding
orthotropic solutions.

7 Concluding Remarks

We have shown that the universal deformations for compressible transversely isotropic, orthotropic, and
monoclinic solids are homogeneous and the universal material preferred directions are uniform. In the
case of incompressible transversely isotropic, orthotropic, and monoclinic solids, in addition to the nine
universality constraints for isotropic solids that were derived by Ericksen [1954], there are extra 25, 74, and
152, respectively, extra universality constraints that need to be satisfied. For each of the six known families
of universal deformations for isotropic solids we obtained the corresponding universal material preferred
directions assuming that the material preferred directions share the symmetries of the right Cauchy-Green
strain. Tables 1, 2, and 3 summarize our results for incompressible transversely isotropic, orthotropic, and
monoclinic solids. This classification of universal solutions provides a collection of solutions that can be used
for applications and restrict the possible choice of new solutions to material preferred directions that do
not preserve the underlying symmetry of the deformations. We believe that these solutions are unlikely to
exist and we conjecture that this classification, like the cases of isotropic incompressible solids, and isotropic
anelastic solids is complete.
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