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Abstract

In linear elasticity, universal displacements for a given symmetry class are those displacements that can
be maintained by only applying boundary tractions (no body forces) and for arbitrary elastic constants
in the symmetry class. In a previous work, we showed that the larger the symmetry group, the larger
the space of universal displacements. Here, we generalize these ideas to the case of anelasticity. In
linear anelasticity, the total strain is additively decomposed into elastic strain and anelastic strain, often
referred to as an eigenstrain. We show that the universality constraints (equilibrium equations and
arbitrariness of the elastic constants) completely specify the universal elastic strains for each of the
eight anisotropy symmetry classes. The corresponding universal eigenstrains are the set of solutions to a
system of second-order linear PDEs that ensure compatibility of the total strains. We show that for three
symmetry classes, namely triclinic, monoclinic, and trigonal, only compatible (impotent) eigenstrains are
universal. For the remaining five classes universal eigenstrains (up to the impotent ones) are the set of
solutions to a system of linear second-order PDEs with certain arbitrary forcing terms that depend on
the symmetry class.

Keywords: Universal deformation, universal displacement, linear elasticity, anelasticity, anisotropic solids,
eigenstrain.

1 Introduction

In nonlinear anelasticity, in the notion first defined in [Eckart, 1948], strain has an elastic and an anelastic
part. In terms of deformation gradient it is written as F = FeFa, where Fe and Fa are the elastic and
anelastic deformation tensors, respectively [Sadik and Yavari, 2017, Goodbrake et al., 2020a, Sozio and Yavari,
2020]. The hybrid German-English portementeau term eigenstrain has its origin in the pioneering paper of
Hans Reissner [Reissner, 1931] (Eigenspannung means proper or self strain) and was further popularized by
Mura [Kinoshita and Mura, 1971, Mura, 1982]. In the literature several equivalent terms have been used for
the same concept; initial strain [Kondo, 1949], nuclei of strain [Mindlin and Cheng, 1950], transformation
strain [Eshelby, 1957], inherent strain [Ueda et al., 1975], and residual strains [Ambrosi et al., 2019] (see
also [Jun and Korsunsky, 2010, Zhou et al., 2013]). In the setting of linear elasticity, and for infinite
bodies, inclusions and their induced stress fields were systematically studied by Eshelby in a celebrated
paper [Eshelby, 1957]. He showed that an ellipsoidal inclusion that has uniform eigenstrain and is embedded
in an infinite linear elastic medium, has a uniform stress field. It is known that in the case of finite bodies
the stress field of an inclusion with uniform eigenstrain is not necessarily uniform, e.g., a spherical inclusion
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centered at a finite ball [Li et al., 2007]. The extension of Eshelby’s analysis of eigenstrains to nonlinear
anelasticity has received attention in the last twenty years. In the case of some special constitutive equations
one can mention [Ru and Schiavone, 1996, Diani and Parks, 2000, Ru et al., 2005, Kim and Schiavone, 2007,
2008, Kim et al., 2008]. There are several more recent works that use geometric techniques [Yavari, 2013,
Yavari and Goriely, 2015a,b, Golgoon et al., 2016, Golgoon and Yavari, 2017, 2018, Yavari, 2021b].

If one is asked to deform an elastic body to a desired arbitrary shape, most likely body forces will be
required to achieve the desired deformation, especially when one does not specify a particular material.
However, there are special deformations that can be maintained by applying only boundary tractions for
any member of a material class. These are called universal deformations. The systematic study of universal
deformations began in two seminal papers of Ericksen [Ericksen, 1954, 1955] motivated by earlier works of
Rivlin [Rivlin, 1948, 1949a,b]. Ericksen proved that for compressible isotropic solids only homogeneous de-
formations are universal. For incompressible isotropic solids he found four families of universal deformations,
in addition to the isochoric homogeneous deformations. He conjectured that only homogeneous deformations
have constant principal invariants. This turned out to be incorrect [Fosdick, 1966], and led to the discovery
of a fifth family of universal deformations [Singh and Pipkin, 1965, Klingbeil and Shield, 1966]. Existence
of other constant principal invariant inhomogeneous universal deformations is still an open problem, but the
current conjecture is that none exists.

We extended Ericksen’s analysis to compressible anelasticity and showed that universal deformations
must be covariantly homogeneous [Yavari and Goriely, 2016]. We proved that this implies that for simply-
connected bodies universal eigenstrains are impotent. Universal deformations and eigenstrains in incompress-
ible anelasticity were investigated in [Goodbrake et al., 2020b]. It was shown that the six known families
of universal deformations in incompressible isotropic elasticity are invariant under certain Lie subgroups of
the special Euclidean group. In the analysis of universal eigenstrains it was assumed that for each class
of universal deformations the corresponding universal eigenstrains have the same symmetries. Under this
assumption, the universal eigenstrains were characterized for each class.

Ericksen’s analysis was extended to inhomogeneous compressible and incompressible isotropic solids in
[Yavari, 2021a] (this was motivated by an earlier result in [Golgoon and Yavari, 2021]). It was shown that
if the energy function is assumed to be position dependent (in the reference configuration) there are some
extra universality constraints, in addition to those of the corresponding homogeneous solids. The universal
inhomogeneities—the form of the position dependence of energy function consistent with the universality
constraints—were fully characterized for compressible isotropic solids and for the six known universal defor-
mations of incompressible isotropic solids.

Ericksen and Rivlin [1954] presented a limited analysis of universal deformations in anisotropic solids
assuming fixed material preferred directions. We extended Ericksen’s analysis to transversely isotropic, or-
thotropic, and monoclinic solids in both compressible and incompressible cases [Yavari and Goriely, 2021].
We showed that for compressible transversely isotropic, orthotropic, and monoclinic solids universal deforma-
tions are homogeneous and the universal material preferred directions are uniform. For each of the six known
families of universal deformations in the incompressible case (that turn out to be universal for anisotropic
solids as well) we assumed that the corresponding universal material preferred directions have the same
symmetries as those of the universal deformations (these symmetries are encoded in the symmetries of the
right Cauchy-Green strain). Under this assumption we fully characterized the universal material preferred
directions for each family and material class. Recently, we completed the universal program of nonlinear
hyperelastic elasticity by characterizing the universal inhomogeneities for each of the three material classes
for both compressible and incompressible cases [Yavari and Goriely, 2022a].

Since the central object of linear elasticity is displacement fields rather than deformations, universal
displacements are the natural analogue of universal deformations in linear elasticity [Truesdell, 1966, Gurtin.,
1972, Yavari et al., 2020]. These are displacements that can be maintained in the absence of body forces and
by applying only boundary tractions for arbitrary elastic constants in a given symmetry class. In [Yavari
et al., 2020], universal displacements of linear anisotropic elasticity were fully characterized for each of the
eight symmetry classes assuming that the directions of the material anisotropy are known. Recently, we
extended the analysis of universal displacements to inhomogeneous anisotropic linear elasticity [Yavari and
Goriely, 2022b]. It was shown that the universality constraints of inhomogeneous linear elasticity include
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those of homogeneous linear elasticity. For each of the eight symmetry classes we fully characterized the
universal inhomogeneities, i.e., the form of position dependence of the elastic moduli that are consistent with
the universality constraints. In the present paper, we study universality in anisotropic linear anelasticity.

This paper is organized as follows. In §2 we define universal elastic strains and eigenstrains in linear
anelasticity. Universal elastic strains and eigenstrains of isotropic linear anelasticity are discussed in §3.
The same problems are investigated for the other seven symmetry classes (triclinic, monoclinic, tetragonal,
trigonal, orthotropic, transversely isotropic, and cubic) in §4. Conclusions are given in §5.

2 Universal elastic strains and eigenstrains in linear anelasticity

In linear anelasticity, linearized strain is additively decomposed into elastic and anelastic parts: ε = εe + ε∗,
with

ε =
1

2

(
∇u +∇uT

)
, (2.1)

where u is the displacement field and ε∗ is the linearized eigenstrain, which in this paper we simply refer to as
eigenstrain. Note that, in general, εe and ε∗ are incompatible, i.e., curl ◦ curl εe 6= 0, and curl ◦ curl ε∗ 6= 0,
where curl ◦ curl is the incompatibility operator. The constitutive equations read σ = C·εe, or in components

σab = Cabcd
(
uc|d − ε∗cd

)
, (2.2)

where C is the elasticity tensor and summation over repeated indices is assumed. Let us consider a homoge-
neous linear elastic body B. In the Cartesian coordinates {xa} the body has uniform elastic constants Cabcd.
At x ∈ B, the displacement and eigenstrain fields have components ua(x) and ε∗ab(x), respectively. In the
absence of body forces, the equilibrium equations read

σab,b = Cabcd uc,db − Cabcd ε
∗
cd,b = 0 . (2.3)

It is more convenient to rewrite this in terms of elastic strains as

Cabcd ε
e
cd,b = 0 , (2.4)

which must hold for arbitrary Cabcd in a given symmetry class. We refer to (2.4) as the universality con-
straints.

Definition 2.1. For a given symmetry class, a strain field that satisfies C · ∇εe = 0, or in components,
Cabcd ε

e
cd,b = 0, a = 1, 2, 3, for all the elasticity tensors in the symmetry class, is called a universal elastic

strain.

The incompatibility tensor is defined as R = curl ◦ curl ε, or in components

Rij = Rji = εaki εblj εab,kl , (2.5)

where εabc is the permutation symbol. The six bulk compatibility equations of linear elasticity are therefore
given by Rij = 0 [Yavari, 2013]. Knowing that the total strain is compatible, one concludes that R∗ = −Re.
For a given symmetry class the universality constraints (2.4) determine the set of universal elastic strains as
we will see in the following sections. This leads to the definition of universal eigenstrains.

Definition 2.2. For a given symmetry class, the corresponding universal eigenstrains are the set of solutions
to the following linear partial differential equations (PDEs)

εaki εblj ε
∗
ab,kl = −εaki εblj εeab,kl , (2.6)

where εe is a universal elastic strain fields of the symmetry class. In other words, a universal eigenstrain satis-
fies (2.6) for at least one universal elastic strain. Note that the above PDEs determine universal eigenstrains
up to compatible (impotent) eigenstrains.
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3 Isotropic linear anelasticity

For isotropic solids, in a Cartesian coordinate system {xa}, the elasticity tensor has the representation
Cabcd = λ δabδcd + µ (δacδbd + δadδbc), where λ and µ are the Lamé constants. The universality constraints
(2.4) for isotropic solids are simplified to read

λ εecc,a + 2µ εeab,b = 0 , a = 1, 2, 3 . (3.1)

Note that the above identity must hold for arbitrary elastic constants λ and µ, and hence

εecc,a = εeab,b , a = 1, 2, 3 . (3.2)

Therefore, universal elastic strains have constant trace and are divergence free. A divergence-free second-
order tensor can be represented by: εeab = εacm εbdn φcd,mn, where φcd = φdc is the Beltrami potential
[Beltrami, 1892, Gurtin]. In other words, any constant-trace divergence-free elastic strain is universal. Note
that these universal elastic strains are incompatible as one can show that

Rij = φkl,ijkl + φij,kkll − φkj,ikkll − φik,jkll . (3.3)

Proposition 3.1. For isotropic linear elastic solids universal elastic strains are divergence free and have
constant trace. The universal eigenstrains (up to impotent eigenstrains) are the set of solutions of the
following linear PDEs:

εaki εblj ε
∗
ab,kl = −φkl,ijkl − φij,kkll + φkj,ikkll + φik,jkll , (3.4)

where φij = φji are Beltrami potentials such that εecc = φnn,mm − φmn,mn is constant.

4 Anisotropic linear anelasticity

In the absence of eigenstrains, Yavari et al. [2020] characterized the universal displacements of linear elasticity
for all the eight anisotropy classes. In this section, we extend their work to anisotropic linear anelasticity for
all the eight symmetry classes: triclinic, monoclinic, tetragonal, trigonal, orthotropic, transversely isotropic,
and cubic [Cowin and Mehrabadi, 1995, Chadwick et al., 2001, Ting, 2003, Cowin and Doty, 2007]. Consider
a homogeneous body made of a linear elastic solid with elasticity tensor Cabcd that has major Cabcd = Ccdab
and minor symmetries Cabcd = Cbacd. We use the Voigt notation with the bijection (11, 22, 33, 23, 31, 12)↔
(1, 2, 3, 4, 5, 6) to write the constitutive equations as σα = cαβεβ , where Greek indices run from 1 to 6. The
elasticity tensor is then represented by a symmetric 6× 6 stiffness matrix as

C(x) =



c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66



. (4.1)
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In this notation the equilibrium equations are written as


∂
∂x1

0 0 0 ∂
∂x3

∂
∂x2

0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x1

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0





c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66





εe1

εe2

εe3

εe4

εe5

εe6



=


0

0

0

 , (4.2)

where
εe1 = εe11 , εe2 = εe22 , εe3 = εe33 , εe4 = 2εe23 , εe5 = 2εe13 , εe6 = 2εe12 . (4.3)

Equation (4.2) and the arbitrariness of the elastic constants for a given symmetry class forces the elastic
strains to satisfy a set of PDEs that we call universality constraints.

4.1 Triclinic solids

Triclinic solids are the least symmetric among the eight symmetry classes; the identity and minus identity
are the only symmetry transformations for such materials. This means that triclinic linear elastic solids
have 21 independent elastic constants. In [Yavari et al., 2020] it was shown that for triclinic linear elastic
solids homogeneous displacements are the only universal displacements. It is straightforward to show that
for triclinic solids, the universality constraints (2.4) read εβ,a = 0, for β = 1, ..., 6, and a = 1, 2, 3.1 This
means that universal elastic strains are constant. This implies that universal elastic strains are compatible,
and consequently the universal eigenstrains are impotent.

Proposition 4.1. For triclinic linear elastic solids, universal elastic strains are uniform, and consequently,
universal eigenstrains are impotent.

Remark 4.2. The universal eigenstrains are of the form ε∗(x) = 1
2

[
∇u∗(x) +∇u∗(x)T

]
, where u∗(x) is any

displacement field. For a given impotent eigenstrain ε∗(x), universal displacements are superposition of u∗(x)
and all homogeneous displacements. This implies that all displacement fields are universal. However, if one
defines universal eigenstrains modulo impotent eigenstrains, in the case of triclinic solids, only homogeneous
displacements are universal.

4.2 Monoclinic solids

In a monoclinic solid there is one plane of material symmetry that we assume to be parallel to the x1x2-plane.
A monoclinic linear elastic solid has 13 independent elastic constants. The elasticity matrix has the following

1All the symbolic computations in this paper were performed using Mathematica Version 13.0.0.0, Wolfram Research,
Champaign, IL.
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form:

c =



c11 c12 c13 0 0 c16

c12 c22 c23 0 0 c26

c13 c23 c33 0 0 c36

0 0 0 c44 c45 0

0 0 0 c45 c55 0

c16 c26 c36 0 0 c66



. (4.4)

In [Yavari et al., 2020] it was shown that for a monoclinic linear elastic solid with planes of symmetry parallel
to the x1x2-plane, universal displacements are the superposition of homogeneous displacements F · x (F is
a constant matrix) and the one-parameter inhomogeneous displacement field (cx2x3,−cx1x3, 0).

For monoclinic solids, the universality constraints (4.2) read εβ,a = 0, for β = 1, 2, 3, 6, and a = 1, 2, 3,
and

∂εe23
∂x2

=
∂εe23
∂x3

= 0 ,

∂εe13
∂x2

=
∂εe13
∂x3

= 0 ,

∂εe13
∂x2

+
∂εe23
∂x1

= 0 .

(4.5)

The first two PDEs imply that εe23 = εe23(x1), and εe13 = εe13(x2), and the third PDE implies that εe23
′(x1) =

−εe13′(x2) = c0, a constant. It is straightforward to check that the universal elastic strains are compatible.

Proposition 4.3. For monoclinic linear elastic solids the universal elastic strains have the following form

εe(x) =


c1 c6 −c0x2 + c5

c6 c2 c0x1 + c4

−c0x2 + c5 c0x1 + c4 c3

 , (4.6)

where ci, i = 0, 1, ..., 6 are constants. These strains are compatible, and consequently, universal eigenstrains
are impotent.

Remark 4.4. The universal eigenstrains are of the form ε∗(x) = 1
2

[
∇u∗(x) +∇u∗(x)T

]
, where u∗(x) is

any displacement field. For a given impotent eigenstrain ε∗(x), universal displacements are superposition
of u∗(x) and all universal displacements in the absence of eigenstrains, i.e., those of linear elasticity [Yavari
et al., 2020, Proposition 3.2]. This implies that all displacement fields are universal. However, if one defines
universal eigenstrains modulo impotent eigenstrains, in the case of monoclinic solids, universal displacements
are identical to those given in [Yavari et al., 2020, Proposition 3.2].

4.3 Tetragonal solids

A tetragonal solid has five symmetry planes. The normals of four of them are coplanar and the fifth plane is
normal to the other four. In a Cartesian coordinate system (x1, x2, x3) we assume, without loss of generality,
that the fifth normal is parallel to the x3 axis. Two of the symmetry planes are parallel to the x1x3 and
x2x3-planes. The other two symmetry planes are related to the ones parallel to the x1x3-plane by π/4 and
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3π/4 rotations about the x3 axis. A tetragonal solid has 6 independent elastic constants and the elasticity
matrix has the following form:

c =



c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66



. (4.7)

In [Yavari et al., 2020] it was shown that in a tetragonal linear elastic solid with the tetragonal axes
parallel to the x3-axis, the universal displacements are a superposition of homogeneous displacements and
the following inhomogeneous displacements:2

u1(x1, x2, x3) = F11x1 + F12x2 + F13x3 + c1x2x3 + c2x1x3,

u2(x1, x2, x3) = F21x1 + F22x2 + F23x3 − c2x2x3 + c3x1x3,

u3(x1, x2, x3) = F31x1 + F32x2 + F33x3 + g(x1, x2) ,

(4.8)

where c1 and c2 are constants, and g = g(x1, x2) is a harmonic function.
The universality constraints (4.2) give us the following thirteen PDEs:

∂εe11
∂x1

=
∂εe11
∂x2

= 0 ,

∂εe22
∂x1

=
∂εe22
∂x2

= 0 ,

∂εe11
∂x3

+
∂εe22
∂x3

= 0 ,

∂εe33
∂x1

=
∂εe33
∂x2

=
∂εe33
∂x3

= 0 ,

∂εe12
∂x1

=
∂εe12
∂x2

= 0 ,

∂εe13
∂x3

=
∂εe23
∂x3

= 0 ,

∂εe13
∂x1

+
∂εe23
∂x2

= 0 .

(4.9)

The first five PDEs imply that εe11 = εe11(x3), εe22 = −εe11(x3) + c0, where c0 is a constant. Eq.(4.9)4 implies
that εe33 is constant. Eq.(4.9)5 implies that εe12 = εe12(x3). The last three PDEs imply that

εe13 = εe13(x1, x2), εe23 = εe23(x1, x2), with the constraint
∂εe13
∂x1

+
∂εe23
∂x2

= 0 . (4.10)

Therefore, we have the following result.

Proposition 4.5. For a tetragonal linear elastic solid with the tetragonal axis parallel to the x3-axis in a

2There is a typo in Eq.(3.22)2 in Yavari et al. [2020]: −c2x1x3 should read −c2x2x3.
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Cartesian coordinate system (x1, x2, x3), the universal elastic strains have the following form

εe(x) =


εe11(x3) εe12(x3) εe13(x1, x2)

εe12(x3) −εe11(x3) + c0 εe23(x1, x2)

εe13(x1, x2) εe23(x1, x2) εe33

 , (4.11)

where c0 and εe33 are constants, εe11(x3), εe12(x3), and εe13(x1, x2) are arbitrary functions, and εe23(x1, x2) has
the following representation

εe23(x1, x2) = −
∫
εe13,1(x1, x2) dx2 + f(x1) , (4.12)

for an arbitrary function f(x1). Universal egenstrains (up to impotent eigenstrains) are solutions of the six
second-order linear PDEs curl ◦ curl ε∗ = −Re.

Remark 4.6. The incompatibility tensor of the universal elastic strains reads

Re =


−εe11′′(x3) εe12

′′(x3) −∇2εe13(x1, x2)

εe12
′′(x3) εe11

′′(x3) −∇2εe23(x1, x2)

−∇2εe13(x1, x2) −∇2εe23(x1, x2) 0

 . (4.13)

It is seen that the universal elastic strains (and consequently the universal eigenstrains) are impotent if εe11
and εe12 are linear functions, and εe13 and εe23 are harmonic.

4.4 Trigonal solids

A trigonal solid has three planes of symmetry whose normals lie in the same plane and are related by π/3
rotations. We choose Cartesian coordinates (x1, x2, x3) such that the trigonal axis is parallel to the x3-axis.
A trigonal solid has 6 independent elastic constants and the elasticity matrix has the following form:

c =



c11 c12 c13 0 c15 0

c12 c11 c13 0 −c15 0

c13 c13 c33 0 0 0

0 0 0 c44 0 −c15

c15 −c15 0 0 c44 0

0 0 0 −c15 0 1
2 (c11 − c12)



. (4.14)

Yavari et al. [2020] showed that in the absence of eigenstrains universal displacements are a superposition of
homogeneous displacements and the following inhomogeneous displacements

uinh1 (x1, x2, x3) = a123x1x2x3 + a12x1x2 + a13x1x3 + a23x2x3,

uinh2 (x1, x2, x3) =
1

2
(a12 + a123x3)(x21 − x22) + b13x1x3 − a13x2x3,

uinh3 (x1, x2, x3) = −a123x21x2 − (a23 + b13)x1x2 +
1

3
a123x

3
2 − a13(x21 − x22).

(4.15)
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The universality constraints (4.2) give us the following fourteen PDEs:

∂εe33
∂x1

=
∂εe33
∂x2

=
∂εe33
∂x3

= 0 ,

∂εe13
∂x3

=
∂εe23
∂x3

= 0 ,

(4.16)

and
∂εe11
∂x3

+
∂εe22
∂x3

= 0 ,

∂εe11
∂x1

+
∂εe12
∂x2

= 0 ,

∂εe22
∂x1

− ∂εe12
∂x2

= 0 ,

∂εe12
∂x1

+
∂εe22
∂x2

= 0 ,

∂εe12
∂x1

− ∂εe11
∂x2

= 0 ,

(4.17)

and
∂εe13
∂x1

+
∂εe23
∂x2

= 0 ,

∂εe11
∂x3

− ∂εe22
∂x3

− 2
∂εe23
∂x2

+ 2
∂εe13
∂x2

= 0 ,

∂εe11
∂x1

− ∂εe22
∂x1

− 2
∂εe12
∂x2

= 0 ,

∂εe23
∂x1

+
∂εe13
∂x2

+
∂εe12
∂x3

= 0 .

(4.18)

From (4.16) one concludes that εe33 is constant and εe13 = εe13(x1, x2), εe23 = εe23(x1, x2). From the last four
PDEs in (4.17) one gets

∂εe11
∂x1

+
∂εe22
∂x1

= 0 ,

∂εe11
∂x2

+
∂εe22
∂x2

= 0 .

(4.19)

These together with (4.17)1 imply that εe22(x1, x2, x3) = −εe11(x1, x2, x3) + c0, where c0 is a constant. Sub-
stituting this into (4.18)3 one obtains

∂εe11
∂x1

− ∂εe12
∂x2

= 0 . (4.20)

This together with (4.17)2 implies that
∂εe11
∂x1

=
∂εe12
∂x2

= 0 , (4.21)

and hence εe11 = εe11(x2, x3) and εe12 = εe12(x1, x3). Now the remaining PDEs are simplified to read:

∂εe13
∂x1

+
∂εe23
∂x2

= 0 ,

∂εe11
∂x3

− ∂εe23
∂x2

+
∂εe13
∂x1

= 0 ,

∂εe12
∂x1

− ∂εe11
∂x2

= 0 ,

∂εe23
∂x1

+
∂εe13
∂x2

+
∂εe12
∂x3

= 0 .

(4.22)
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From (4.22)3, one obtains

∂

∂x1
εe12(x1, x3) =

∂

∂x2
εe11(x2, x3) ⇒ ∂2

∂x21
εe12(x1, x3) =

∂2

∂x22
εe11(x2, x3) = 0 . (4.23)

Thus, one has
εe11(x2, x3) = x2f11(x3) + g11(x3) ,

εe12(x1, x3) = x1f12(x3) + g12(x3) .
(4.24)

From (4.22)3, one concludes that f12(x3) = f11(x3). Equation (4.22)2 can be rewritten as

∂εe13(x1, x2)

∂x1
− ∂εe23(x1, x2)

∂x2
= −x2f ′11(x3)− g′11(x3) . (4.25)

Therefore, x2f
′′
11(x3) + g′′11(x3) = 0, which implies that f ′′11(x3) = g′′11(x3) = 0. Thus, f11(x3) = a11x3 + a0,

and g11(x3) = b11x3 + c1. Similarly, from (4.22)4 one concludes that g12(x3) = b12x3 + c2.
Finally, the three PDEs in (4.22) are simplified to read

∂εe13
∂x1

+
∂εe23
∂x2

= 0 ,

∂εe13
∂x1

− ∂εe23
∂x2

= −a11x2 − b11 ,

∂εe23
∂x1

+
∂εe13
∂x2

= −a11x1 − b12 .

(4.26)

From the first two one obtains

εe13(x1, x2) = −1

2
a11x1x2 −

1

2
b11x1 + f13(x2) ,

εe23(x1, x2) =
1

4
a11x

2
2 +

1

2
b11x2 + f23(x1) .

(4.27)

Substituting these back into (4.26)3, one obtains f ′23(x1) + 1
2a11x1 + b12 = −f ′13(x2). This implies that

f ′23(x1) + 1
2a11x1 + b12 = −f ′13(x2) = c3, and hence f23(x1) = − 1

4a11x
2
1 + (−b12 + c3)x1 + c4, and f13(x2) =

−c3x2 + c5.
In summary, we have proved the following result.

Proposition 4.7. For trigonal linear elastic solids whose trigonal axes are parallel to the x3 axis in a
Cartesian coordinate system (x1, x2, x3), the universal elastic strains have the following components

εe11(x1, x2, x3) = a11x2x3 + a0x2 + b11x3 + c1 , εe22(x1, x2, x3) = −εe11(x1, x2, x3) + c0 ,

εe33(x1, x2, x3) = εe23 , εe23(x1, x2, x3) =
1

4
a11x

2
2 +

1

2
b11x2 −

1

4
a11x

2
1 + (−b12 + c3)x1 + c4 ,

εe13(x1, x2, x3) = −1

2
a11x1x2 −

1

2
b11x1 − c3x2 + c5 , εe12(x1, x2, x3) = a11x1x3 + b12x3 + c2 .

(4.28)

These strains are compatible, and consequently, universal eigenstrains are impotent.

Remark 4.8. The universal eigenstrains are of the form ε∗(x) = 1
2

[
∇u∗(x) +∇u∗(x)T

]
, where u∗(x) is

any displacement field. For a given impotent eigenstrain ε∗(x), universal displacements are superposition
of u∗(x) and all universal displacements in the absence of eigenstrains, i.e., those of linear elasticity [Yavari
et al., 2020, Proposition 3.4]. This implies that all displacement fields are universal. However, if one defines
universal eigenstrains modulo impotent eigenstrains, in the case of trigonal solids, universal displacements
are identical to those given in [Yavari et al., 2020, Proposition 3.4].
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4.5 Orthotropic solids

An orthotropic solid has three mutually orthogonal symmetry planes. Let us choose Cartesian coordinates
(x1, x2, x3) whose coordinate planes are parallel to the symmetry planes. An orthotropic solid has 9 inde-
pendent elastic constants, and the elasticity matrix has the following form:

c =



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66



. (4.29)

In [Yavari et al., 2020] it was shown that in an orthotropic linear elastic solid whose planes of symmetry are
normal to the coordinate axes in a Cartesian coordinate system (x1, x2, x3), and in the absence of eigenstrains
the universal displacements are the superposition of homogeneous displacement fields and the 3-parameter
inhomogeneous displacement field (a1x2x3, a2x1x3, a3x1x2).

The universality constraints (4.2) give us the following fifteen PDEs:

∂εe11
∂x1

=
∂εe11
∂x2

=
∂εe11
∂x3

= 0 ,

∂εe22
∂x1

=
∂εe22
∂x2

=
∂εe22
∂x3

= 0 ,

∂εe33
∂x1

=
∂εe33
∂x2

=
∂εe33
∂x3

= 0 ,

∂εe12
∂x1

=
∂εe12
∂x2

= 0 ,

∂εe13
∂x1

=
∂εe13
∂x3

= 0 ,

∂εe23
∂x2

+
∂εe23
∂x3

= 0 .

(4.30)

Thus, the normal elastic strains are constant and εe23 = εe23(x1), εe13 = εe13(x2), and εe12 = εe12(x3). Therefore,
we have proved the following result.

Proposition 4.9. For orthotropic linear elastic solids with planes of symmetry normal to the coordinate
axes in a Cartesian coordinate system (x1, x2, x3), the universal elastic strains have the following form

εe(x) =


εe11 εe12(x3) εe13(x2)

εe12(x3) εe22 εe23(x1)

εe13(x2) εe23(x1) εe33

 , (4.31)

where εe11, ε
e
22, ε

e
33 are constant, and εe23(x1), εe13(x2), εe12(x3) are arbitrary functions. Universal eigenstrains
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(up to impotent eigenstrains) are the set of solutions to the following six PDEs

∂2ε∗11
∂x22

+
∂2ε∗22
∂x21

− 2
∂2ε∗12
∂x1∂x2

= 0 ,

∂2ε∗11
∂x23

+
∂2ε∗33
∂x21

− 2
∂2ε∗13
∂x1∂x3

= 0 ,

∂2ε∗22
∂x23

+
∂2ε∗33
∂x22

− 2
∂2ε∗23
∂x2∂x3

= 0 ,

− ∂2ε∗11
∂x2∂x3

− ∂2ε∗23
∂x21

+
∂2ε∗13
∂x1∂x2

+
∂2ε∗12
∂x1∂x3

= εe23
′′(x1) ,

− ∂2ε∗22
∂x1∂x3

+
∂2ε∗23
∂x1∂x2

− ∂2ε∗13
∂x22

+
∂2ε∗12
∂x2∂x3

= εe13
′′(x2) ,

− ∂2ε∗33
∂x1∂x2

+
∂2ε∗23
∂x1∂x3

+
∂2ε∗13
∂x2∂x3

− ∂2ε∗12
∂x23

= εe12
′′(x3) .

(4.32)

Remark 4.10. The incompatibility tensor of the universal elastic strains reads

Re =


0 −εe12′′(x3) −εe13′′(x2)

−εe12′′(x3) 0 −εe23′′(x1)

−εe13′′(x2) −εe23′′(x1) 0

 . (4.33)

We observe that the universal elastic strains (and consequently the universal eigenstrains) are impotent if
εe23(x1), εe13(x2), εe12(x3) are linear functions.

4.6 Transversely isotropic solids

A transversely isotropic solid has an axis of symmetry that is normal to the isotropy planes. Let us assume
that the axis of transverse isotropy is along the x3-axis in a Cartesian coordinates (x1, x2, x3). A transversely
isotropic solid has 5 independent elastic constants, and the elasticity matrix has the following representation:

c =



c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 1
2 (c11 − c12)



. (4.34)

In [Yavari et al., 2020] it was shown that, in the absence of egenstrains, universal displacements have the
following form:

u1(x1, x2, x3) = c1x1 + c2x2 + cx2x3 + x3h1(x1, x2) + k1(x1, x2),

u2(x1, x2, x3) = −c2x1 + c1x2 − cx1x3 + x3h2(x1, x2) + k2(x1, x2),

u3(x1, x2, x3) = c3x3 + û3(x1, x2),

(4.35)
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where ξ(x2 + ix1) = h2(x1, x2) + ih1(x1, x2) and η (x2 + ix1) = k2(x1, x2) + ik1(x1, x2)3 are holomorphic,
and û3(x1, x2) is harmonic.

The universality constraints (4.2) give us the following fifteen PDEs:

∂εe33
∂x1

=
∂εe33
∂x2

=
∂εe33
∂x3

= 0 ,

∂εe13
∂x3

=
∂εe23
∂x3

= 0 ,

∂εe13
∂x1

+
∂εe23
∂x2

= 0 ,

(4.36)

and
∂εe11
∂x3

+
∂εe22
∂x3

= 0 ,

∂εe11
∂x1

+
∂εe12
∂x2

= 0 ,

∂εe22
∂x1

− ∂εe12
∂x2

= 0 ,

∂εe12
∂x1

− ∂εe11
∂x2

= 0 ,

∂εe12
∂x1

+
∂εe22
∂x2

= 0 .

(4.37)

From (4.36)1 one concludes that εe33 is constant. The remaining PDEs in (4.36) imply that εe13 = εe13(x1, x2),

εe23 = εe23(x1, x2), and
∂εe13(x1,x2)

∂x1
+

∂εe23(x1,x2)
∂x2

= 0. Therefore, εe13(x1, x2) is an arbitrary function and

εe23(x1, x2) = −
∫
εe13,1(x1, x2) dx2 + ε̂23(x1) , (4.38)

where ε̂23(x1) is an arbitrary function. From the last four PDEs in (4.37), one obtains

∂εe11
∂x1

+
∂εe22
∂x1

= 0 ,
∂εe11
∂x2

+
∂εe22
∂x2

= 0 , (4.39)

which together with (4.37)1 imply that εe22(x1, x2, x3) = −εe11(x1, x2, x3) + c0, where c0 is a constant. The
remaining PDEs are (4.37)2 and (4.37)4. They imply that

∂2εe11
∂x21

+
∂2εe11
∂x22

= 0 ,

εe12(x1, x2, x3) =

∫
εe11,2(x1, x2, x3) dx1 + ε̂(x2, x3) ,

(4.40)

where ε̂(x2, x3) is an arbitrary function. Therefore, we have proved the following result.

Proposition 4.11. For transversely isotropic linear elastic solids with the isotropy plane parallel to the
x1x2-plane in a Cartesian coordinate system (x1, x2, x3), the universal elastic strains have the following
form

εe(x) =


εe11(x1, x2, x3) εe12(x1, x2, x3) εe13(x1, x2)

εe12(x1, x2, x3) −εe11(x1, x2, x3) + c0 εe23(x1, x2)

εe13(x1, x2) εe23(x1, x2) εe33

 , (4.41)

3Note that there is a typo in [Yavari et al., 2020, Proposition 3.6].
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where εe33 is constant. εe11(x1, x2, x3) satisfies the PDE (4.40)1, and εe12(x1, x2, x3) has the representa-
tion (4.40)2. εe13(x1, x2) is an arbitrary function, while εe23(x1, x2) has the representation (4.38). Uni-
versal egenstrains (up to impotent eigenstrains) are the set of solutions of the six second-order linear PDEs
curl ◦ curl ε∗ = −Re, where the incompatibility tensor of the universal elastic strains reads

Re =


−∂

2εe11
∂x2

3

∂2εe12
∂x2

3

∂
∂x2

Ä
∂εe23
∂x1
− ∂εe13

∂x2

ä
∂2εe12
∂x2

3

∂2εe11
∂x2

3

∂
∂x1

Ä
∂εe13
∂x2
− ∂εe23

∂x1

ä
∂
∂x2

Ä
∂εe23
∂x1
− ∂εe13

∂x2

ä
∂
∂x1

Ä
∂εe13
∂x2
− ∂εe23

∂x1

ä
0

 . (4.42)

4.7 Cubic solids

A cubic solid has nine planes of symmetry at every point such that their normals are parallel to the edges
and face diagonals of a cube. Suppose the edges of the cube are parallel to the coordinate axes of a Cartesian
coordinate system (x1, x2, x3). A cubic solid has 3 independent elastic constants and with respect to this
coordinate system has an elasticity matrix with the following representation

c =



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44



. (4.43)

In [Yavari et al., 2020] it was shown that for cubic solids and in the absence of eigenstrains universal
displacements have the following form

u1(x1, x2, x3) =
a

2
x1(x23 − x22) + c1x1x3 + b1x1x2 + d1x1 + g1(x2, x3),

u2(x1, x2, x3) =
a

2
x2(x21 − x23) + a1x1x2 − c1x2x3 + d2x2 + g2(x1, x3),

u3(x1, x2, x3) =
a

2
x3(x22 − x21)− a1x1x3 − b1x2x3 + d3x3 + g3(x1, x2),

(4.44)

where g1, g2, and g3 are arbitrary harmonic functions.
The universality constraints (4.2) give us the following nine PDEs:

∂εe11
∂x1

=
∂εe22
∂x2

=
∂εe33
∂x3

= 0 ,

∂εe22
∂x1

+
∂εe33
∂x1

= 0 ,

∂εe11
∂x2

+
∂εe33
∂x2

= 0 ,

∂εe11
∂x3

+
∂εe22
∂x3

= 0 ,

(4.45)
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and
∂εe12
∂x1

+
∂εe23
∂x3

= 0 ,

∂εe12
∂x2

+
∂εe13
∂x3

= 0 ,

∂εe13
∂x1

+
∂εe23
∂x2

= 0 .

(4.46)

From (4.45)1, εe11 = εe11(x2, x3), εe22 = εe22(x1, x3), and εe33 = εe33(x1, x2). From the remaining PDEs in (4.45)
one concludes that

εe11(x2, x3) = g(x2) + h(x3) ,

εe22(x1, x3) = f(x1)− h(x3) ,

εe33(x1, x2) = −f(x1)− g(x2) ,

(4.47)

where f(x1), g(x2), and h(x3) are arbitrary functions.
From (4.46) one concludes that

εe12(x1, x2, x3) = f3(x1, x3) + g3(x2, x3) ,

εe23(x1, x2, x3) = f1(x1, x2) + g1(x1, x3) ,

εe13(x1, x2, x3) = f2(x1, x2) + g2(x2, x3) ,

(4.48)

such that
∂

∂x1
f3(x1, x3) +

∂

∂x3
g1(x1, x3) = 0 ,

∂

∂x2
g3(x2, x3) +

∂

∂x3
g2(x2, x3) = 0 ,

∂

∂x1
f2(x1, x2) +

∂

∂x2
f1(x1, x2) = 0 .

(4.49)

Thus

g1(x1, x3) = −
∫
f3,1(x1, x3) dx3 + α(x1) ,

g3(x2, x3) = −
∫
g2,3(x2, x3) dx2 + γ(x3) ,

f2(x1, x2) = −
∫
f1,2(x1, x2) dx1 + β(x2) ,

(4.50)

where α(x1), β(x2), and γ(x3) are arbitrary functions. Therefore, we have proved the following result.

Proposition 4.12. For cubic linear elastic solids the universal elastic strains have the following form

εe(x) =


g(x2) + h(x3) f3(x1, x3) + g3(x2, x3) f2(x1, x2) + g2(x2, x3)

f3(x1, x3) + g3(x2, x3) f(x1)− h(x3) f1(x1, x2) + g1(x1, x3)

f2(x1, x2) + g2(x2, x3) f1(x1, x2) + g1(x1, x3) g(x2) + h(x3)

 , (4.51)

where g1(x1, x3), g3(x2, x3), and f2(x1, x2) are given in (4.50), and the remaining functions are arbitrary.
Universal egenstrains (up to impotent eigenstrains) are the set of solutions of the six second-order linear
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PDEs curl ◦ curl ε∗ = −Re, where the incompatibility tensor of the universal elastic strains reads

Re =


−g′′(x2)− h′′(x3) −∇2f3(x1, x3)−∇2g3(x2, x3) −∇2f1(x1, x2)−∇2g1(x1, x3)

−∇2f3(x1, x3)−∇2g3(x2, x3) −f ′′(x1) + h′′(x3) −∇2f2(x1, x2)−∇2g2(x2, x3)

−∇2f1(x1, x2)−∇2g1(x1, x3) −∇2f2(x1, x2)−∇2g2(x2, x3) g′′(x2) + h′′(x3)

 .
(4.52)

5 Conclusion

We have studied the universality of elastic and anelastic strains in anisotropic linear anelasticity. Universal
displacements are those displacement fields that satisfy the equilibrium equations in the absence of body
forces for arbitrary elastic constants in a given symmetry class. The universality constraints of linear anelas-
ticity restrict the possible forms of elastic strains. We completely characterized the universal elastic strains for
all the eight symmetry classes. We observed that for triclinic, monoclinic, and trigonal solids universal elastic
strains are compatible. The total strain ε = εe+ε∗ is compatible, and hence, curl ◦ curl εe+curl ◦ curl ε∗ = 0.
Having determined the set of universal elastic strains for every symmetry class, the corresponding universal
eigenstrains are found to be those that satisfy the linear second-order PDEs curl ◦ curl ε∗ = − curl ◦ curl εe

for at least one universal elastic strain field εe(x). For triclinic, monoclinic, and trigonal classes we showed
that only compatible eigenstrains are universal. If universal eigenstrains are defined modulo the compatible
eigenstrains, for these three classes the universal displacements are identical to those of the corresponding
linear elasticity universal displacements that were characterized in [Yavari et al., 2020]. For the other five
classes universal eigenstrains are solutions to a system of inhomogeneous PDEs with forcing terms that are
certain arbitrary functions depending on the symmetry class. We observed that the smaller the symmetry
group, the smaller the space of universal elastic strains, and consequently, the smaller the space of uni-
versal eigenstrains. Hence, we have achieved a complete classification of universal elastic strains in linear
anelasticity.
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